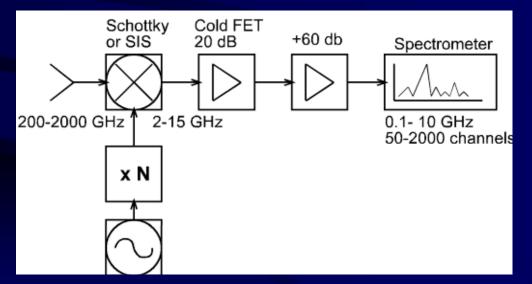
Omnisys


Dr. Anders Emrich: ae@omnisys.se / www.omnisys.se

- 12 employees, 11 engineers from B. Sc. to Ph. D.
- Designed and delivered a large part of the ODIN radiometer system
 - 119 GHz and four receivers between 450-600 GHz
 - hybrid spectrometers
 - front-end and IF control, LO generation....
- Are involved with SMILES, TELIS and other projects
- Designed and delivered the power system to SMART-1, ESA mission
- Focus on design and development of new systems to solve new demands
- Developing a 300-360 GHz heterodyne radiometer with 4 GHz, 4000 channels resolution.
 - less than 2 kg, less than 15 W, tunable without moving parts
- Have developed 4-5 generations of correlator ASIC's and spectrometers.

Spectrometers

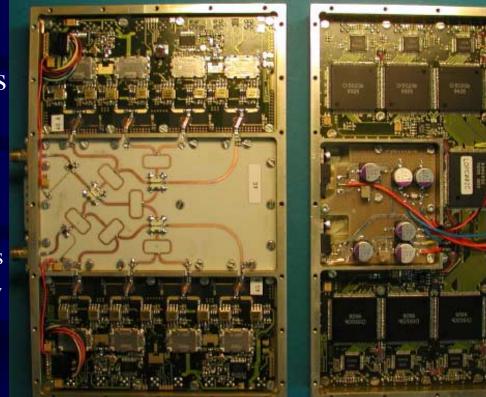
• In its most general form, a spectrometer can be considered to be a device that receives an input signal, which is variable in time, and estimates its power spectral density.

ODIN (1997)

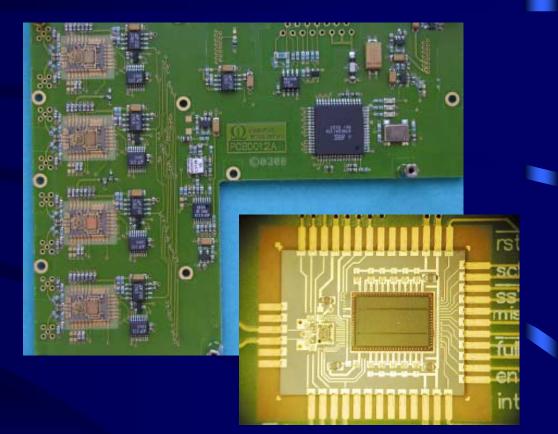
- BW: 100-800 MHz in steps with
- resolution: 0.13-1.1 M
- mass:

• size (mm):

power:


- 0.13-1.1 MHz 1050 grams 220x180x30 18 W
- 2 spectrometers in orbit since feb 2001
- two full custom ASIC's
- providing aeronomy as well as astronomy spectra

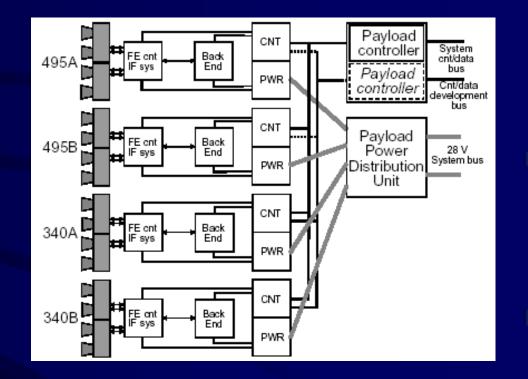
Telis (1999)


- 2x 2 GHz
- 2 x 1024 channels
- 20 W
- 950 grams
- two full custom ASIC's
- 2 spectrometers will fly on TELIS (balloon)

Current

- 12 GHz bandwidth
- 1024 channels
- 110x170x30 mm
- 800 grams
- 8 Watt
- two full custom ASIC's
- Future flights???
- More chips needed

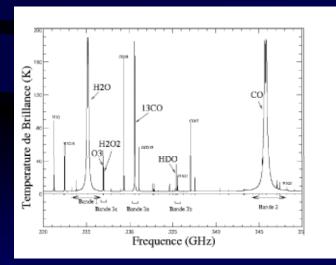
Chip and spectrometers

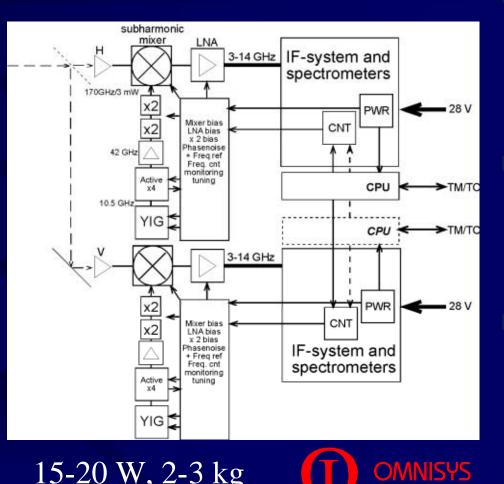

	mW	#	GHz	mW/#/GHz	pwr	
Bos	1000	16	0.02	3125.00	3657	1992 state of the art
Omnisys-ODIN	400	96	0.1	41.67	49	2 chips, works in space, 1996
Omnisys&ESA	1100	256	0.6	7.16	8	2 chip, 1999
French HIFI	500	128	0.2	19.53	23	3 chip, 2001??
Omnisys&ESA: S	230	128	2	0.90	1	2 chip, 2002
Omnisys&ESA: L	1750	1024	2	0.85	1	2 chip, 2002
Spaceborne	5500	128	2	21.48	25	1 chip, 2003
Omnisys SCS	1200	1024	4	0.29	0.34	1 chip, planned

Instrument level					
Feature	Omnisys	XXX	ratio	Now	Tomorrow
Chip set	2 types	3 types	cost++	2 types	1 type
Assembly	soldering	multiple MCM's	cost++	small MCM	soldering
Chip set power	25 W	65 W	2.6	6 W	2 W
Instrument power	45 W	235 W	5.2	15 W	8 W
Size	2 liter	10 liter	5	0.7 liter	0.4 liter
Mass	2 kg	14 kg	7	0.7 kg	0.4 kg
				WBS as well,	WBS as well,
Comment	ODIN	no history		+10 W	+2 W

omnisys Instruments

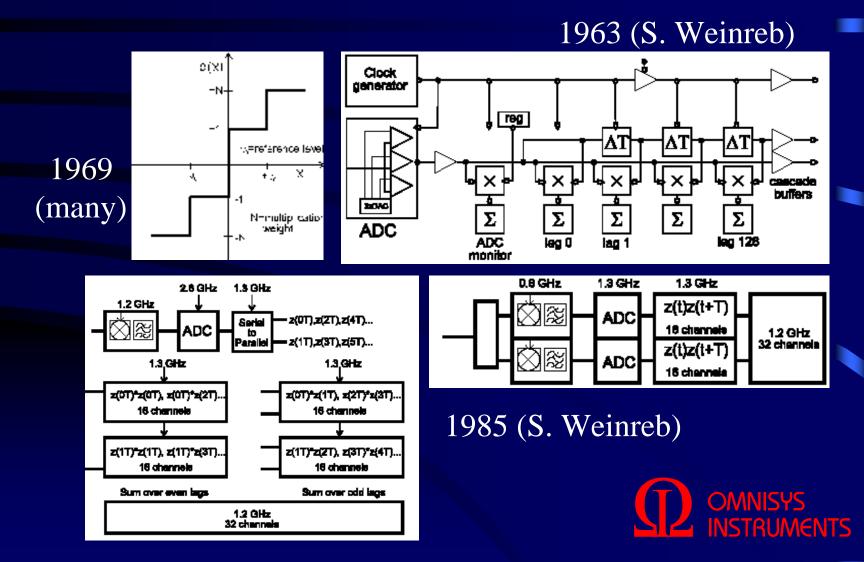
STEAM (Earth Limb sounding)

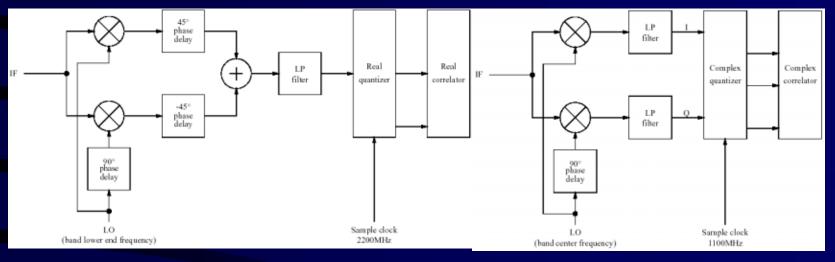

- Multibeam (simplified optics)
- Developed as an integrated instrument
- 8 front-ends at 320-360 GHz, DSB
- 8 front-ends at 490-505 GHz, DSB
- 8x8 GHz + 8x4 GHz = 96 GHz of spectrometers
- HIFI/Herschel = 8-10 GHz???
- operation in ambient temperature (simplified system)
- 2000 K T_{sys} (prel)
- a few kgs, 60-70 W
- on-board, near real-time signal processing (Linux)



Mambo (Mars and Venus)

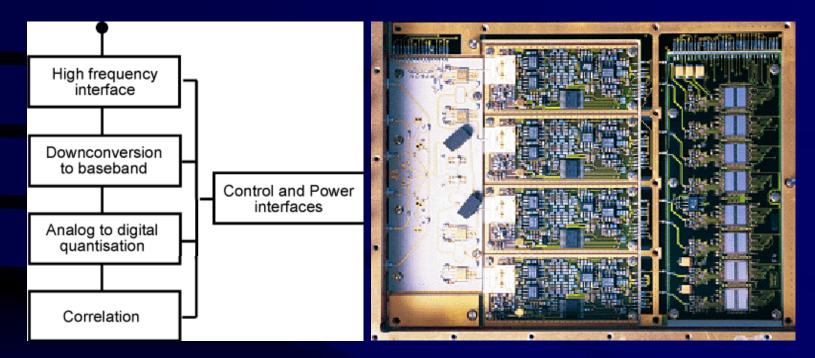
- CO at 345.796 GHz
- 13CO at 330.588 GHz \bullet
- H2O at 325.153 GHz \bullet
- HDO at 335.395 GHz •
- O3 at 326.901 GHz •
- H2O2 at 326.981 GHz \bullet




INSTRUMENTS

15-20 W, 2-3 kg

Basics


Complex design (1997 Omnisys)

- The complex sampler does not require high quality single-sideband filtering
- This can significantly reduce the design effort when building a spectrometer.
- The complex sampling frequency is half the sampling frequency used by a real quantizer. The effective sampling frequency will remain the same, since twice as much data is produced per sample.

Spectrometers

- all parts must be realised in a spectrometer
- this project has focused on 40-50 % of a spectrometer

OMNISYS

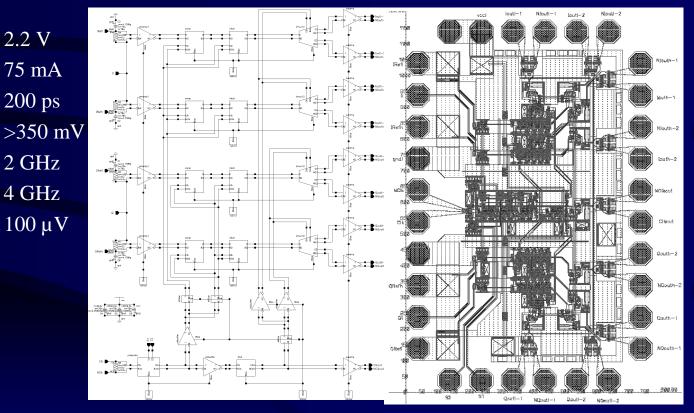
INSTRUMENTS

Complex digitizer

- Speed is the most important design goal
 - clock speed result = 4 GHz (spec = 2.2 GHz)
- High speed analog inputs
 - result = 2 GHz (spec = 750 MHz, 4 GHz bandwidth)
- Analog reference inputs
- High speed digital outputs
- Pinout to ease PCB layout and improve signal integrity

Digitizer

- Min supply
- Current
- rise/fall time


2.2 V

75 mA

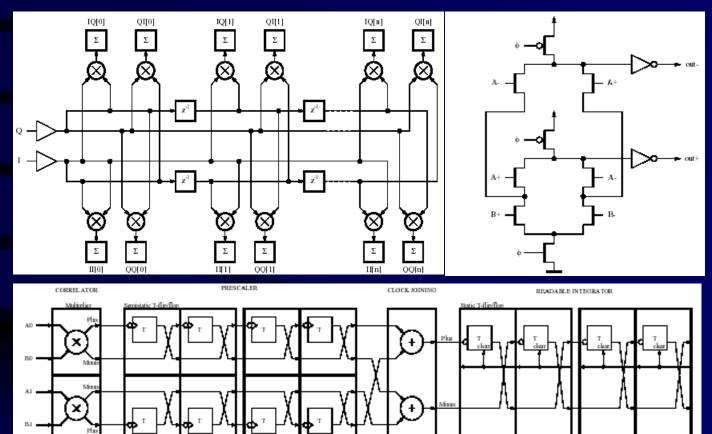
200 ps

2 GHz

- Output swing •
- Input •
- Clock 4 GHz •
- Sensitivity $100 \,\mu V$ •
- 780 x 1200 µm

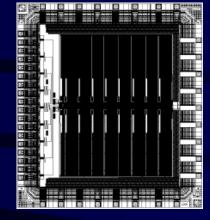
Digitizer tests

- Rail: 2.2-2.7 V
- Consumption: 75 mA
- rise/fall time: 200 ps
- Output swing: >350 mV
- Bandwidth: > 4 GHz
- Sensitivity $100 \mu V$
- better sensitivity??

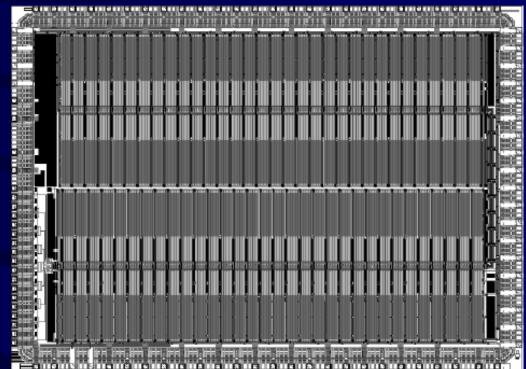


Correlator chip

- Speed is the most important design goal
- Low power consumption is essential
- Differential high speed inputs
- Integrator length
 - around 1 sec integration time
- Data readout scheme
 - support electronics complexity
- Pinout to ease PCB layout



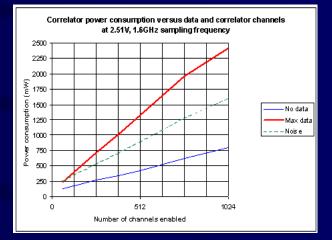
Correlator

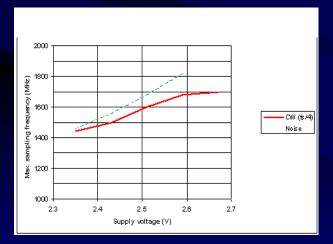


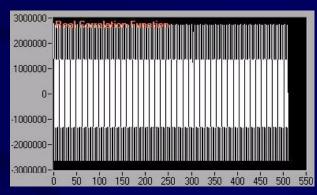
Correlator layout

- spec: 1mW/GHz
- result: 0.5mW/GHz
- *spec:* 550MHz
- result:1000 MHz

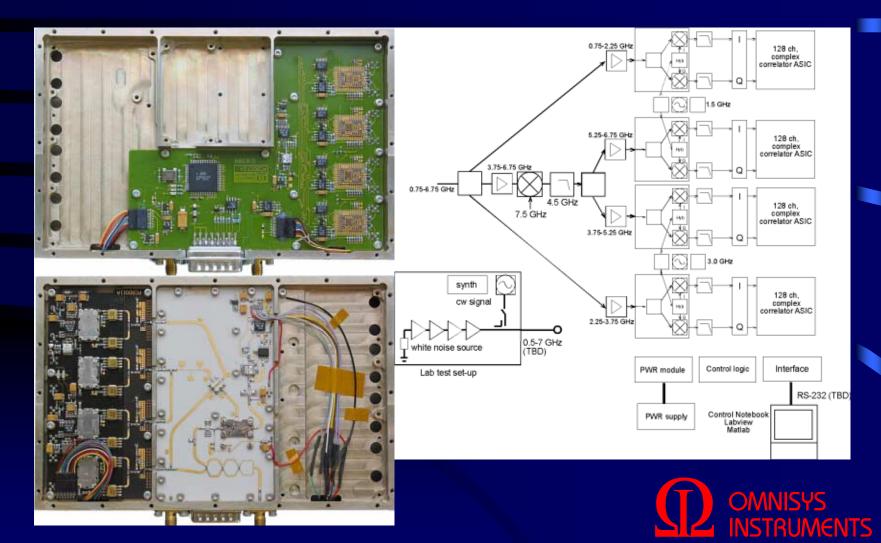
Correlator chip tests

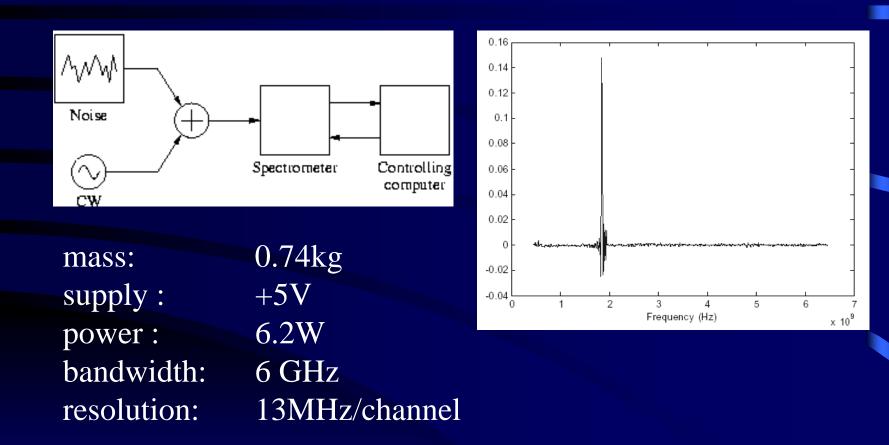



Parameter	Specification	Simulation/design result	Measured
Power consumption per channel and effective sampling frequency	1mW/GHz	~0.5mW/GHz @ 1.1GHz complex sampling clock, 2.5V	0.51mW/GHz @ 1.1GHz complex sampling clock, 2.51V
Clock frequency	550MHz min.	$\sim IGHz$	>-800MHz
Area, correlator core	-	25.8mm ²	-
Area, with pads	-	35mm ²	-
Number of channels	1024	64, 128, 256, 384, 512, 768 ar 1024	64, 128, 256, 384, 512, 768 or 1024

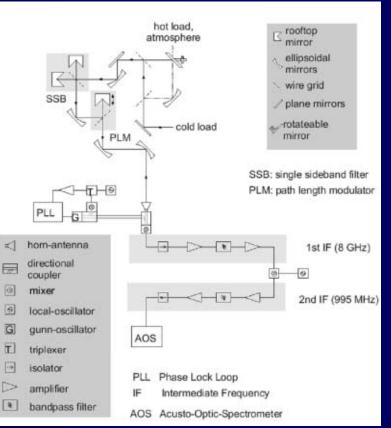

omnisys Instruments

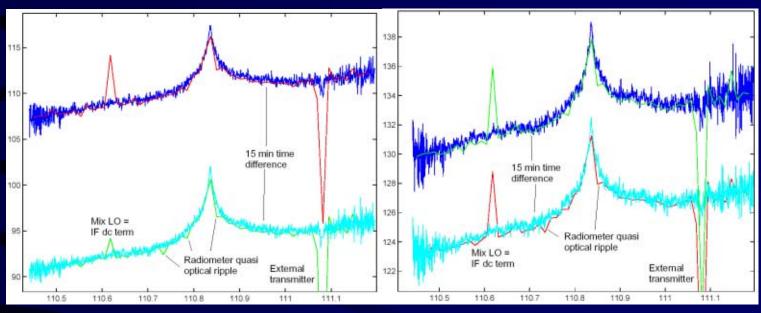
Some results

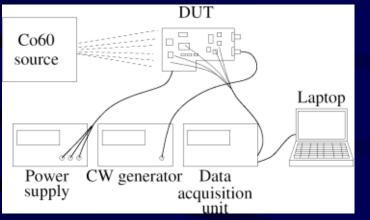


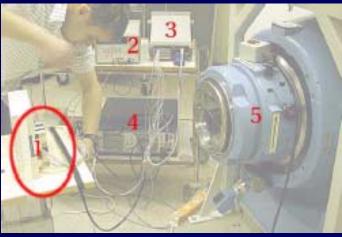


Demonstrator


Lab tests


Instrument tests


Results



- Good agreement in offset, amplitude and shape
- deviations in parts of the spectra, causes investigated and explained
- AOS integrated into the system, tested and debugged for several years
- ACS integrated into the system in 4 hours, no debugging

Radiation tests

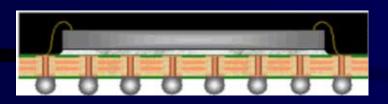
- Tested to 31 kRAD total dose
- No measured change in function, nor performance
- No change in power consumption
- Should comply with most planned space mission reuirements

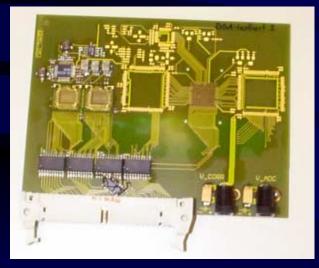
CSP

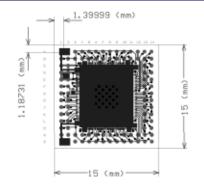
٠

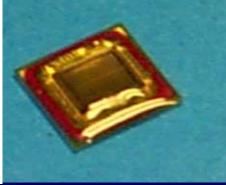
٠

٠


•


٠


٠


۲

٠

Chip	Raw clock
Naked chip 0	1100 MHz
CSP chip 0	920 MHz

920 MHz 3.3 V

Supply

3.3 V

- 1200 MHz 3.75 V
 - 1310 MHz 3.75 V
- Naked cascade 1200 MHz 3.75 V
 - 900 MHz 3.75 V
- CSP cascade 1000 MHz 3.6 V(cooled)
- cooling the main limitation!!

Naked chip 0

CSP chip 0

CSP cascade

Conclusion

- Now, as a result from the development at Omnisys, a general conclusion is that autocorrelation spectrometers are very competitive with other type of spectrometers for space and ground based (sub)millimeter radiometry.
- The main advantages are
 - compact implementations
 - scalability and versatility in bandwidth and resolution,
 - combined with potentially very high stability.
- In terms of size, the correlator is clearly much more compact than the Chirp or the AOS
 - an optimised CSP being 2-3 times the size of a correlator, while an AOS is at least 10 times larger.
- In terms of power consumption:
 - the CSP is comparable to the ACS for narrow bandwidth,
 - while the AOS consumes 2-4 times more than the ACS for wide bandwidth applications.
 - The CSP can not compete for wide bandwidth applications, while the AOS is not competitive for high resolution use.
- In terms of flexibility in bandwidth and resolution, the CSP and the AOS have very limited capabilities.
- The ACS uses no special technologies and components, such as lasers, CCD's, Bragg Cell's or Chirp filters
 - with concerns regarding availability, radiation tolerance.....
- The only special technology is the full custom design of the chip set
 - a \$1000 Billion industry helping in the production line set-up.

Conclusion

- The power consumption is 8 times better than previous generation of chip sets, and 23 times better than any other results shown and makes new missions and applications possible
- A demonstrator has been tested by an independent group
- An ACS based on the chip set has been baseline in a NASA/SMEX mission
- Two ground based and one NASA mission proposals will be based on the chip set.
- For 1 GHz+ bandwidths, there is really no realistic alternative to the ACS within the foreseeable future
- We need a production run of chips to supply the users
 - Omnisys has started a design for 6 GHz bandwidth single chip spectrometer, and has a \$100k offer for limited production, i.e. a few houndred chips
 - Omnisys can not handle design as well as production.....
- Broadband spectrometers are needed for many future earth observation missions
 - this improves vertical resolution, among other things
 - improved handling of interference

