LEONUMC – The LEON-2 Fault-Tolerant Processor in 0.18 µm Commercial UMC Technology

Microelectronics Presentation Days ESTEC, 4 – 5 February 2004

Roland Weigand European Space Agency Data Systems Division TOS-EDM Microelectronics Section Tel. +31-71-565-3298 Fax. +31-71-565-6791 Roland.Weigand@esa.int Steven Redant IMEC Leuven, Belgium Tel. +32-16-281928 Fax. +32-16-281584 redant@imec.be

Introduction and Objectives

- ▲ Objectives
- ▲ Project Timeline
- A Design Presentation

SEU Fault-Tolerance (FT) by Design

- EDACs and parity protection of memories
- TMR Implementation in VHDL and netlist
- Clock and reset triplication and clock edge spreading

Impacts of FT to the Design Flow

- ▲ Simulation and Synthesis of a design with TMR inserted partially in VHDL or at netlist
- Initialisation of gate level simulations
- Timing issues due to the clock edge spreading
- ▲ Scan insertion and scan testing of a multiple clock and clock-edges design

Packaging issues

▲ Bonding of a very small die

Conclusion

Prove the efficiency of the SEU protection in LEON2

- LEON1 Demonstrator in 0.35 μm Atmel technology (<= May 2001)</p>
- Now added clock edge spreading and mapped to 0.18 μm UMC technology

Measure radiation behaviour of commercial library

- Comparison to the Rad-Hard-By-Design (RHBD) library (same technology)
- A Total dose and latchup behaviour to be analysed

Provide early prototypes of the AT697 chip

- Almost compatible (LEON2-1.0.4 + InSilicon PCI interface)
- ▲ 100 MHz clock frequency significant performance gain compared to FPGA
- A Development board has been designed and is available

Lessons learned – an important outcome of the project

- Experience with LEON and PCI interface in general
- Lessons for FT implementation
- ▲ Interfacing to the ASIC/MPW flow of IMEC/Europractice
- Important know-how transfer to other projects

Project Schedule (1)

- Q1/2002: Initiation, design definition and VHDL design
 - A Green light (budget) for activity given 6. March, proposal from IMEC

• Q2/2002: Detailed Design, contract placement (13. June)

- Selection and generation of Macrocells (PLL's, memories)
- First netlist end of May, final pre-layout netlist and floorplan 9. August in several iterations, numerous issues had to be solved:
 - » Netlist compatibility issues (Verilog naming rules in Synplify ASIC)
 - » Change of source code (insertion of test pins, bugfixes of LEON 22. July)
 - » Preparation of scan insertion interactively between IMEC and ESTEC

• Q3/2002: Gate level simulation, layout, scan insertion and –pattern generation

- ▲ Severe initialisation problems at gate level simulation \rightarrow forcing flip-flops necessary
- Final pre-layout netlist with scan path ready 19. August
- Place & route, clock tree synthesis, layout checks, several iterations performed by IMEC
- A Hold time fix and two reoptimisations facing Synopsys bugs
- Final layout 19 September, tapeout released 9 October
- A Difficult package selection (small chip, high I/O count, suitable for radiation tests)
- Scan pattern generation completed 18. October (after tapeout)

Project Schedule (2)

Q4/2002: Manufacturing and test preparation

- Test specification established together with IMEC
- Test board preparation by IMEC and Microtest (Italy)
- Functional test pattern generation and conversion
- Samples delivered beginning of December, yet ongoing package discussions

Q1/2003: Bonding and Packaging

- Problems bonding small die in large cavity: "demetallisation"
- HCM (France) failed bonding, switch to AMIS (Pocatello, USA)

Q2/2003: Testing – Q3/2003: Final Report and close of project

- ▲ Testing at Microtest (Lucca, Italy)
- Scan test abandoned identified hold problems in scan path
- Functional tests affected by flip-flop forcing in gate simulation
- Pattern mismatch due to (slow) pull-up's in the test board
- ▲ A yield of 80% (40/50) was obtained on functional pattern @ 10 MHz
- Additional clock speed characterisation confirms the 100 MHz target

The LEONUMC Design

Figure 1: LEON2 block diagram

Chip Design Data

- ▲ LEON2FT-1.0.4 with Meiko FPU
- ▲ InSilicon PCI core with ESA wrapper
- UMC 0.18 μm libraries from Virtual Silicon (VST): core, pad, memory, PLL
- 14 Memories: 4 cache/tags, 2 two-port register files, 8 DSU memories 128x32
- 2 PLL: 33/33 MHz PCI, 25/100 LEON
- 256 Pads (including 68 power pads)
- 2x3 (TMR with edge spreading) clock domains (33 MHz PCI, 100 MHz LEON)
- A On-chip memory: 2.18 mm² = 200 kbit
- Standard cells: 3.55 mm² = 290 kGates
 = 170 kG flip-flops + 120 combinatorial =
 100 kG for PCI + 190 kG for LEON
- Core area: 2.68 x 2.68 mm = 7.18 mm²
- Chip size: 4.3 x 4.3 mm = 18.5 mm²
- High share of flip-flops (PCI FIFOs!)
- A The chip is pad-limited!

Layout and Chip Photo

LEONUMC MPD 2004

SEU and SET Fault Tolerance

EDAC and parity protection protect against Single Event Upsets (SEU)

▲ Used for internal and external memories – impact on processor control

Triple Modular Redundancy Flip-Flops

- ▲ Triplication and voting of every flip-flop in the design mitigates SEU (1)
- ▲ Increasing importance of Single Event Transient (SET) in combinatorial logic
- ▲ SET protection in voter logic by shifted feedback (2) (not implemented in LEONFT)
- ▲ SET protection in clocks (and asynchronous resets) by triplication
- ▲ LEON-FT: SET protection in all combinatorial logic by skewing the clock edges
 - » Delay δ between the clock trees technology dependent (SET pulse length)
 - \ast Increases minimum clock period by 2δ
 - » Risk of hold time problems
 - » In LEONUMC: 0.5 ns fixed δ ~ 10% of the clock target (10 ns = 100 MHz)
 - » In ATC697 use programmable δ ???

TMR Flip-Flop with enable (1)

TMR Flip-Flop with enable (2)

TMR Flip-Flop with enable (3)

TMR Flip-Flop Insertion

```
    'Native' in VHDL-RTL source code

            TMR can be instantiated or inferred
            Mixed TMR and non-TMR RTL code requires resolution function for clocks

    entity DFF1_TMR is

            port ( clk : in std_logic_vector(2 downto 0) ; -- triplicated clock d : in std_logic;
                q : out std_logic );
                end;
                 One process per TMR Flip-flop
```

```
rx0 : process(clk) begin if
   rising_edge(clk(0)) then r(0) <= d;
   end if; end process;</pre>
```

```
rx1 : process(clk) begin if
   rising_edge(clk(1)) then r(1) <= d;
   end if; end process;</pre>
```

rx2 : process(clk) begin if
 rising_edge(clk(2)) then r(2) <= d;
 end if; end process;</pre>

-- Voting outputs

```
q <= (r(0) and r(1)) or (r(0) and r(2))
or (r(1) and r(2));</pre>
```


- Preferred for third party IP's, facilitating maintenance of the source code
- Library and synthesis tool dependent
- Inique clock names in RTL source code
- Synthesise netlist without TMR
- Use package with equivalent TMR cells for all flip-flops used in the netlist
- Edit netlist to triplicate clocks (including any clock buffers/inverters), instantiate TMR cells instead of library flip-flops
- Carefully inspect edited netlist
- Resynthesise the edited netlist
- sed -e 's/CLK\(.*\) std_logic/CLK\1
 std_logic_vector(2 downto 0) /'
- -e 's/bufx\(.*\)INVDL/bufx\1INVDL_TMR/'
- -e 's/DFF1 port map/DFF1_TMR port map/'
- -e 's/DFF2 port map/DFF2_TMR port map/'

netlist_notmr.vhd > netlist_tmr.vhd

Microelectronics Section

Simulation and Synthesis

- Mixed RTL simulation of 'native' TMR and non-TMR design
 - A Definition of two clock types (triple and single), connection by a resolution function

• 1st Synthesis of non-TMR block and script-based TMR insertion to netlist

- A Overconstraining required to allow insertion of TMR voters
- ▲ Inspection and resimulation of TMR inserted netlist in 'native' TMR RTL code

Resynthesis of TMR inserted netlist in TMR RTL code

- ∧ Retiming of TMR inserted netlist difficult → better use margin at 1st synthesis
- Conserve TMR in netlist, yet prune unused logic
- Conserve triplicated clock nets and define three (virtual) clocks
- ▲ Instantiated TMR flip-flops → several thousands of design units → critical (in Synopsys)
 - » Selective flattening after elaboration: only flip-flops, not the design hierarchy
 - » No relation between signal names and flip-flop instance names

Post-layout timing analysis and re-optimisation

- A Three clock trees per domain with clock delay cells instantiated
- \checkmark Carefully model the clock scenario \rightarrow propagate clocks
- Mandatory hold time fix after each re-optimisation step
- Include scan path routing to hold time fix

Gate Level Simulation

Initialisation of the LEON model with the UMC/VST libraries

- Processor turns 'X' few cycles after reset in timed or un-timed gate simulation
- Not FT-related, reported by a university project using the same libraries
- Library related problem never occurred on Atmel libraries
- Investigation of modeling in VST Verilog models did not show apparent bugs
- Problem remains unsolved... (dirty) workaround:
 - » \rightarrow reset all flip-flops by simulator command before hardware reset
- ▲ Leads to ambiguity in production test pattern
 - » some flip-flops are initialised in simulation, but not in reality... workaround:
 - » \rightarrow run two simulations, one with reset, one with preset, mask all differences

Initialisation of memories

- ▲ General problem of all processor designs using on-chip memories
- ▲ More critical with FT: EDAC affects processor control and facilitiates X propagation
- \checkmark \rightarrow Initialise memory (Verilog) simulation models for netlist verification
- \wedge \rightarrow Execute memory initialisation program for test pattern generation

Asynchronous clock domains

- ▲ RTL simulation with different clock frequencies (LEON 100 MHz, PCI 33 MHz)
- ▲ Non deterministic at gate/hardware level (cycle slips, timing violations in synchronisers)
- ∧ \rightarrow Use equal (or integer multiple) clock frequencies for test pattern generation

TMR Timing Issues

TMR voters and clock skewing reduce operating frequency

Scan Path Insertion (wrong)

Scan path routing across sub-clock domains *→* hold violations

Scan Path Insertion (right)

Better: one scan path per sub-clock domain

may also simplify pattern generation

Packaging and Bonding

Ceramic package required for radiation tests: PGA-299

Despite a small cavity: Long bonding wires

Conclusion

1st Silicon of the LEON2-FT in 0.18 μm UMC commercial technology

- ▲ Functionally (but not pin) ~ compatible to AT697 -- Prototype board available
- ▲ 100 MHz clock frequency target confirmed in production test and validation board
- ▲ Power consumption ~ 5 mW/MHz power down mode inefficient (in this technology)

Lessons learned

- Critical issues of the LEON processor (reset behaviour)
- TMR Implementation in VHDL and netlist
- Timing issues in a multiple (skewed) clock environment
- A Packaging and bonding of a very small die with high pin count

Basic SEU tests done in Californium environment

- ▲ All memory SEU's corrected, no SEU errors in flip-flops detected
- More in-depth testing should be performed
- ▲ See next presentation...

(19)