

Turbocoding at Minimum Power

ESTEC Contract nr 1378199/NL/FM

ESA MPD, Feb 5th, 2004

L. Hollevoet on behalf of the T@MPO-team

> SEEDS FOR TOMORROW'S WORLD

Transmission errors can be corrected using channel coding

Channel coding: towards the limit

There is a limit to the transmission rate of reliable data over an unreliable channel

Claude Shannon 1948

The efficiency of forward error correcting codes is ever increasing

Classic existing forward error correcting codes

- Reed-solomon
- Convolutional codes

More powerful codes gain interestTurbo codesLDPC codes

Channel coding modifies the power budget distribution

Turbocoding allows approaching Shannon's limit

The obtained coding gain can be used to:

- Reduce the power consumption in the RF blocks
- Transmit a higher modulation over the same system (increase throughput)
- Increase the operating range of the system

Turbocoding uses an innovative decoder architecture

- The decoding
- requires a whole block
- is iterative
 - \rightarrow high latency
 - \rightarrow low throughput
- is data intensive
- is complex (SISO)
 - \rightarrow high power consumption
 - \rightarrow high cost (Si area)

We applied IMEC's design methodology to turbo coding

This allows making an ASIC that implements the complex decoding algorithm

At high speed (high throughput)

At low power

With low latency

While maintaining high performance

Project goal: a state of the art codec

T@MPO

Others

- Flexible PCCC
- Up to 80 Mbit/s
- Low latency (< 10 µs)
- Low power (< 10 nJ/bit)</p>

- TPC
- 36 Mbit/s (155 Mbit/s)
- High latency
- No info available

Designing T@MPO was quite a challenge

Our structured flow speeds up the design process

Both algorithm and hardware have been optimized

Maximal throughput is obtained through:

- optimized collision-free interleaver units
- 7 parallel worker units
- interleaved decoding process

Minimal power consumption through:

- a separate gated clock for every worker
- optimized memory hierarchy
- early stop criterion

The T@MPO is implemented in .18 CMOS

400 k gates

7 mm²

36 kBit RAM

on-chip PLL

The PICARD system allows for real-time evaluation

The test setup is based on a generic platform

- Modular system based on standard pc
- Add-in board houses the T@MPO
- Software library gives access to the board over the PCI bus
- Standard C software used to assess the performance

T@MPO provides minimal latency and high throughput

The decoder has a fixed latency for all block sizes 5.7 μs @ 6 iterations

The throughput, at 40 MHz clock, is maximum 76 Mbit/s

code rate	block length	throughput, calculated (Mbit/s)	throughput, measured (Mbit/s)
1/3	32	6.0	6.0
1/2	96	17.9	17.9
2/3	256	47.8	47.8
3/4	432	75.6	75.8

Decoding energy is less than 10 nJ/bit

As the number of iterations decreases, the energy consumption drops.

Performance measurements match the dataflow simulations

Full tests have been performed for

- all supported code rates and block lengths
- all modulations (BPSK, QPSK, QAM16, QAM64)

Supported code rates: 1/3, 1/2, 2/3 and 3/4

12 supported block lengths between 32 and 432 bits

On-the-fly configuration of the working mode is possible

Coding gain at BER 10⁻⁵ ranges from 4.5 to 7 dB for QPSK

T@MPO performs well compared to other turbocoders

Coder	T@mpo	Bell Labs	KAIST	
Throughput	76	24	5.5	Mbps
Clock speed	160	145	?	MHz
Latency	5.4	?	?	US
Power	1.6	10	7	nj/bit/it
Cost (area)	7	14.5	?	mm2

Tempo performs better in throughput, latency, power consumption and area!

All design goals are met

With our methodology, we obtain

- High throughput
- Low latency
- Low power

Expected performance for most operation modes

In our first-time right T@MPO ASIC

Live demo!

SEEDS FOR TOMORROW'S WORLD

© imec 2004

SEEDS FOR TOMORROW'S WORLD

IMECNOLOGY

www.imec.be

Worldwide collaboration with more than 450 companies and institutes.

IMEC - Kapeldreef 75 - B-3001 Leuven - Belgium - Tel. +32 16 281211 - Fax +32 16 229400 - www.imec.be