

SpaceWire Router

Microelectronics Presentation Days

Dr. Stephan FischerEADS Astrium GmbHstephan.fischer@astrium.eads.netDr. Steve ParkesUniversity of DundeeGerald KempfAustrianAerospace GmbH

ESA, Noordwijk 4-5 Feb. 2004

- Introduction
- Motivation
- Router Description
- Router Functionality
- Tools
- Project Description
- Project Schedule

Introduction

SpaceWire

- SpW is a standard for high-speed data handling
- SpW is based on two existing commercial standards, IEEE-1355 and LVDS
- SpW is developed for use in space applications
- SpW Networks consists of links, nodes and packet switching routers
- Interconnected through bi-directional point-to-point high-speed (>100Mbps) digital serial links

Noordwijk, 4-5.02.2004

© EADS Astrium GmbH

4

Situation:

- SpaceWire standard is becoming increasingly important
- SpaceWire developed for space missions
- A large number of modules need to be interconnected

SpaceWire Router Goals:

- sufficient input / output ports
- compliant to the latest SpaceWire standard
- radiation tolerant

SpaceWire Routing Switches

- Link Interfaces connected via a routing matrix
- SpaceWire packet:

Destination Cargo End of Packet Marker

Header Data

Noordwijk, 4-5.02.2004

Addressing Packets

path addressing

- direct specification of the path through a network
- leading character of a packet gives the output port number of the router
- leading character is removed after output port is determined
- passing through several routers is done by multiple destination characters

logical addressing

- indirect specification of the path through a network
- usage of routing tables in the router
- leading character gives logical address
- leading character is not removed

Noordwijk, 4-5.02.2004

Routing Table

• holds the logical-physical mapping

Example (4Port Router):

	Address	Port O	Port 1	Port 2	Port 3	Port 4
				1 01 1 2		
Configuration	0	1	0	0	0	0
Hardware Addressing	1	0	1	0	0	0
	2	0	0	1	0	0
Logical Addressing	3 2	0	0	1	0	0
	33	0	0	0	0	1
	34	0	1	0	0	0
	255	0	0	0	0	0

Noordwijk, 4-5.02.2004

Group Adaptive Routing

• If 2 or more output ports lead to the same destination, they can be configured as a group

	Address	Port O	Port 1	Port 2	Port 3	Port 4
Configuration	0	1	0	0	0	0
Hardware Addressing	1	0	1	0	0	0
	2	0	0	1	0	0
Logical Addressing	3 2	0	1	1	0	0
	3 3	0	0	0	1	1
	3 4	0	1	1	0	0
	255	0	0	0	0	0

Noordwijk, 4-5.02.2004

Group Adaptive Routing

Advantages:

Bandwidth sharing

- if 2 or more links are organized in a group the data can take either way
- this leads to twice the bandwidth of a single link

• Fault Tolerance

- if 2 or more links are organized in a group and one link fails, the information can flow via the other links
- no network management needed
- automatic and immediate fault recovery
- only packet which was transmitted when the fault occurred is lost

Priority Packet Delivery

- if two input ports have to use the same output port an arbitration scheme is used
- the arbitration scheme can include a priority scheme
- no priority flag available in packet header
- priority scheme is included in routing table assigned to logical addressing

Router ASIC

Features:

- Fully SpaceWire Compliant
- 8 SpaceWire ports
- 2 External ports
- Internal Configuration port
 - accessible through SpaceWire or External ports
 - logical address routing table
 - Control registers
 - status registers
- Time Code interface
 - receiving time-codes
 - generating time-codes
- External pins for status/error monitoring

Noordwijk, 4-5.02.2004

Router Description

Noordwijk, 4-5.02.2004

Router ASIC

SWR ASIC

- implemented in an Atmel MH1RT gate array (max 519kGates)
- package 196 pin ceramic Quad Flat

Radiation tolerance

- 0.35µm CMOS process: 300k rad
- SEU free cells up to 100MeV (for critical memory cells)
- latch up immunity up to 100MeV

Maximum baud-rate: 200Mbit/s Power consumption: ~4Watt (at max data rate) Single supply voltage: 3.3V

SpaceWire CODEC

- Encodes and decodes bit-stream on physical medium, SpaceWire cable.
- Part of the data-link layer for SpaceWire systems to communicate
- Implemented in RTL level VHDL code.
- Compliant with ECSS-50-12A SpaceWire standard

Goals

- Technology independent
- High speed operation, Low area footprint
- Configurable to users requirements and target technology

Tools – SpaceWire Monitor

SpaceWire Monitor

- Monitors traffic on a SpaceWire link
- Two banks of LEDs show
 - connection state, Data flow, EOPs / EEP, NULLs, FCTs,
 - Errors
- Logic analyser connections
- Both directions monitored simultaneously

Tools – SpaceWire Monitor

Noordwijk, 4-5.02.2004

Tools – SpaceWire PCI-2 Card

SpaceWire PCI-2

- Fully SpaceWire compliant
- New SMCS 332SpW FPGA
- Board currently being designed
- Functions as SpaceWire node

Tools – SpaceWire PCI-2 Card

Noordwijk, 4-5.02.2004

Teaming:EADS Astrium GmbH (*prime*)University of Dundee (*subco*)Austrian Aerospace GmbH (*subco*)

Work:

- Router Specification, Design
- FPGA implementation
- Development of Validation Tools
- Validation Exercise
- ASIC Design / Manufacturing
- ASIC Test

Project KO:	January 2002
Router FPGA:	February 2004
Validation Exercise completed:	Q3 2004
Router ASIC:	Q2 2005

Noordwijk, 4-5.02.2004