

ESTEC contract 13345 – COO3

Marc LEFEBVRE Marc SOUYRI <u>marc.lefebvre@astrium.eads.net</u> <u>marc.souyri@astrium.eads.net</u>

Content

- 1. Contract and Studies presentation
- 2. Architecture and main IP blocks of the System On a Chip (SOC)
 - a. Overall architecture
 - b. Performances
- 3. Detailed design and breadboarding
 - a. Detailed design results
 - b. Test environment and results
- 4. Results of the study

Contract and study presentation

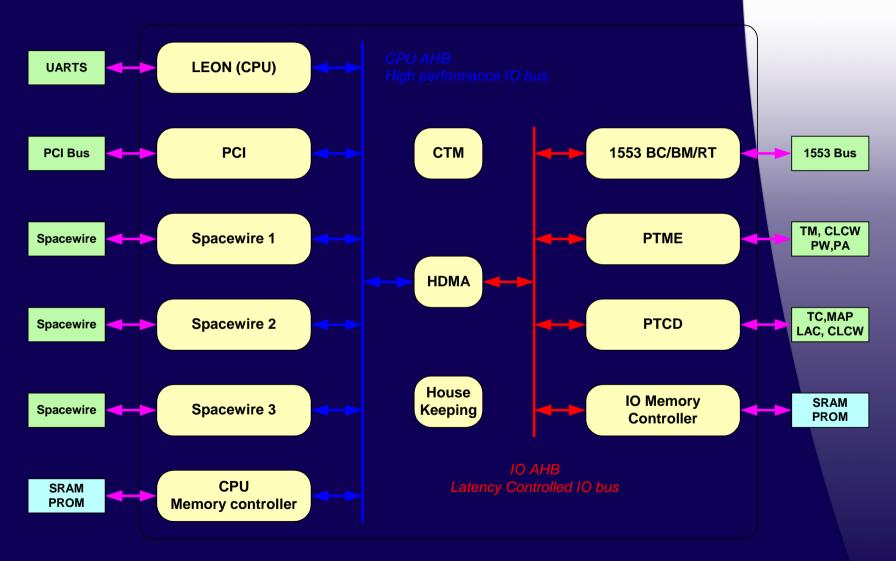
- COO3 is phase 3 of ESA 13345 contract called "Building Blocks for System on a Chip".
- Development of a modular architecture
 - Based on a standard bus : AMBA[™] AHB and APB
 - Based on standard services : interrupt, synchronization
- Development of re-usable IP cores
- Use of existing IP cores from different sources :
 - Company internal IP cores
 - ESA provided IP cores
 - Re-use of previous VHDL ASIC developments
- Page 3 Microelectronics Presentation Days. 4 and 5 of February 2004

Development Plan

- Classical development approach of an ASIC
 - Architectural design with full VHDL RTL simulation
 - IP core interconnection study
 - Adaptation of the previous ASIC design
 - Global simulation of the SoC
 - Detailed design performed targeting a XILINX FPGA
- But with specific methodology for SoC design
 - Modular approach of the SoC : progressive integration of the IP cores
 - Validation of the IP core at block level
 - Validation of the interconnection scheme at upper level

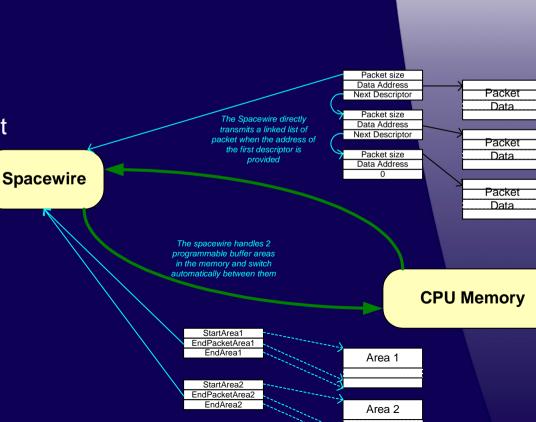
Environment of the SCoC Spacecraft Controller on a Chip

Page 5 N


IP cores integrated into the SCoC

- Includes the main digital functions able to perform the Data Handling of a Spacecraft :
 - The processor based on LEON with its FPU
 - A parallel bus at board level : PCI
 - A fast serial link : SpaceWire Link
 - A CCSDS Time Management function
 - A serial bus for control of remote equipments : 1553
 - A Telecommand function based on PTCD design
 - A Telemetry function based on PTME IP
 - Automatic housekeeping generation

SCoC Simplified Architecture

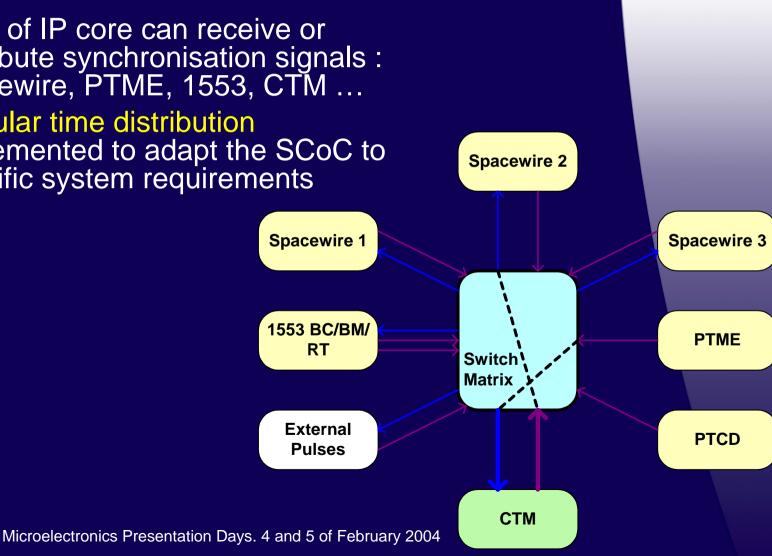


Page 7 Microelectronics Presentation Days. 4 and 5 of February 2004

Distributed DMA control

- DMA controller are integrated at IP core level in order to have Core specific capabilities
 - -Into the PCI interface : burst access, prefetch ...
 - –Into the Spacewire : double buffer management, linked list of packets
 - –Into the Mil-Std-1553 : programmable Bus Controller

. . .



IP Core synchronisation

Page 9

- Most of IP core can receive or distribute synchronisation signals : spacewire, PTME, 1553, CTM ...
- Modular time distribution • implemented to adapt the SCoC to specific system requirements

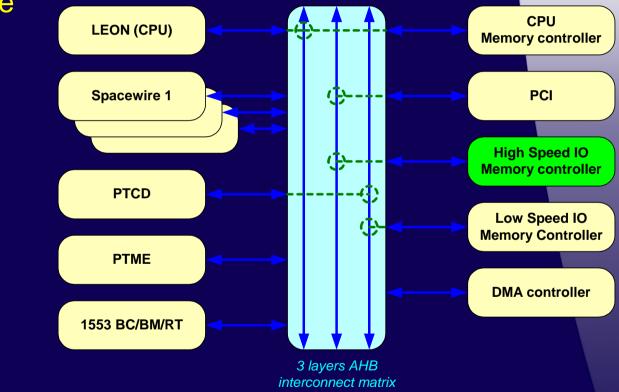
FA

Performance of the system

- The SCoC presents limitation
- Bottleneck identified at CPU SRAM level and AHB bus
- Reduces maximum performances

Global Hypothesis	
Maximum allowed bus load	80%
Bus Frequency	100 MHz
Slaves Hypotheses	
Memory controller	
RAM Read Wait states	0
RAM Write Wait States	0
MCTRL AHB WS on first read access	3
MCTRL AHB WS on next read access	2
MCTRL AHB WS on first write access	3
MCTRL AHB WS on next write access	2

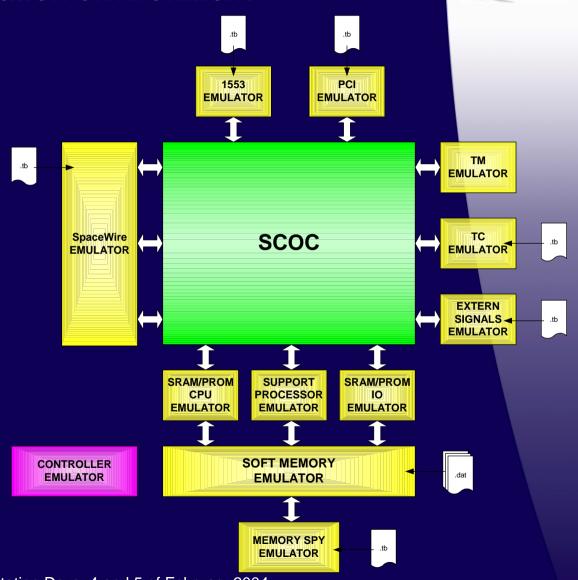
Masters Hypotheses Processor 65,5% CPU usage ratio Instruction cache hit ratio 80% Data cache hit ratio 80% 10% Load instruction ratio 5% Store instruction ratio Instruction cache fill burst length Spacewire overall Spacewire TX bit rate 100 Mbits/s overall Spacewire RX bit rate 100 Mbits/s PCI PCI write rate 0,5 Mwords/s PCI read rate 0,5 Mwords/s


Page 10 Microelectronics Presentation Days. 4 and 5 of February 2004

COMPUTATION OF PERFORMANCES ON CPU AHB BUS

Possible Performance Enhancement

Use of Multi-layer AHB and a second external RAM interface


Increases the number of external I/O (which is already high)

Page 11 Microelectronics Presentation Days. 4 and 5 of February 2004

Modularity in simulation environment

 Each IP core is associated to an emulator handling the protocol and verification of the external I/Os

Page 12 Microelectronics Presentation Days. 4 and 5 of February 2004

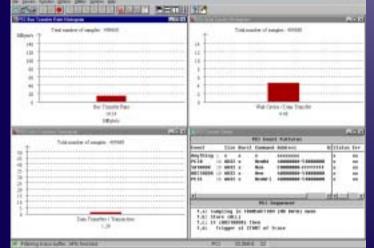
Detailed design targeting XILINX XCV2000-E

- Full SCoC design does not fit into the selected FPGA
- Modular approach of SCoC allowed targeting reduced SCoC definitions
 - Configuration 1 : PCI, 1553 and Spacewires
 - Configuration 2 : with PCI, TM/TC and housekeeping

Configuration	Max Frequency	Resource usage
PCI, 1553, SPW	23.7 MHz (WC path in IU of LEON1)	97 % of slices
PCI, TMTC	20.8 MHz (WC path in PTME)	96 % of slices

Prototyping of the SCoC – BLADE Board

- Board developed for the evaluation of the SCoC
- Design implemented in XILINX VIRTEX-E FPGA
- CompacPCI 6U standard board
- Specific interfaces implemented on the board
 - 1553 transceiver
 - Spacewire interfaces
 - TM/TC interfaces (RS232, RS422)
- Embedded FPGA to conduct test without need of specific external hardware (EGSE)


BLADE board description

Page 15 Microelectronics Presentation Days. 4 and 5 of February 2004

Test results

- All functionalities of the SCoC are activated
- Test of performances for PCI and Spacewire interfaces :
 - Spacewire :High efficient DMA controller allow high speed transfer with little CPU usage
 - PCI : The system clock limits the performances reached on the PCI bus

COO3 Study results

- This study permit to :
 - Evaluate the methodology of the design of a large ASIC based on the use of IP core
 - Verification at SoC level versus verification at IP level
 - Management of the configuration of the SCoC with IP cores coming from different sources
 - Development of modular designs
 - Develop the library of available IP cores for use in space applications
 - PTCD, PTME, 1553, CTM, AMBA bus related IP ...

Conclusion

- BLADE Board used for A3M R&T :
 - VxWorks on LEON
 - Use of Spacewire for data exchange
 - Use of CTM for time synchronisation
- This activity is a good starting point
 - AMBA can be used as standard for internal busses
 - Methodology of IP integration for complex ASIC developments
- Astrium gained experience in the development of complex integrated system

