

MPW Program for Space ESA Contract: 17767/03/NL/FM

Jean BOUILLON MDP ESA Feb 4th, 2004

MPW Space Objectives

- For ATC18RHA ASIC family
- Share the set of reticules and silicon costs between several designs
- Prototyping
- Flight Models compliant with the Space requirements
- A service for the European Space Industry

ATC18RHA status

- Alpha Design Kit
 - Already available (upon special Atmel/Customer agreement)
 - No design manual
 - LVDS, PECL & PLL not included yet
 - Dynamic characterization based on to date process parameters
- Beta Design Kit
 - Release in March 2004 (upon special Atmel/Customer agreement)
 - Design manual, LVDS, PECL and PLL included
 - No correlation with Si yet
- Final Design Kit
 - Release end 2004

MPW for Space Program

- ESA Contract: 17767/03/NL/FM
 - Kicked-off in October 2003
- Engineering activity
 - Set-up of the MPW Space service
 - Verification on a Validation Run
 - Completion in Q4 2004

Production activities

- ESA funding for production runs
- 4 lots (25w each), ESA proprietary
- Starting Q1 2005
- 2 lots per year foreseen

ATC18RHA Matrices

Pre defined matrices and pad frames (95µm pad pitch)

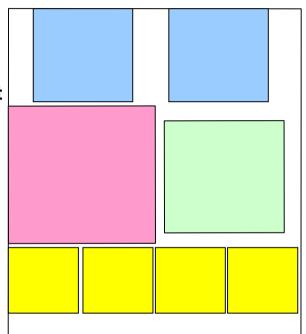
Die Size (mm)	Surface (mm2)	Nb of pads	Typ Nb of gates
M1 : 6.19 sq	38.3	216	1 M
M2 : 8.76 sq	76.7	324	2.2M
M3 : 10.66 sq	113.6	404	3.5M
M4 : 13.03 sq	169.8	504	5.5M

Some MPW Space Technical constraints

• Wafer fab

Metal filling between circuits

Probe


- Starting point for each design
- Repetition step compatible with equipment
- Dedicated process for inking die not to be picked up

Assembly

- Repetition step compatible with sawing equipment
- Recognition of the die to be picked-up
- Pick and Place process for die assembly

Logistic

Adaptation of our production tracking system to keep the tracability

This will lead to the definition of a set of rules for

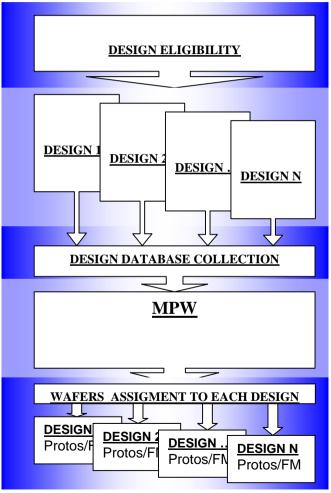
organizing the reticule

MPW Space Validation run

- Purpose: validation of the solutions
- Will embark external customer designs
 - Engineering lot
 - No Hirel guaranty for Flight Models
 - Prototypes only

Planning

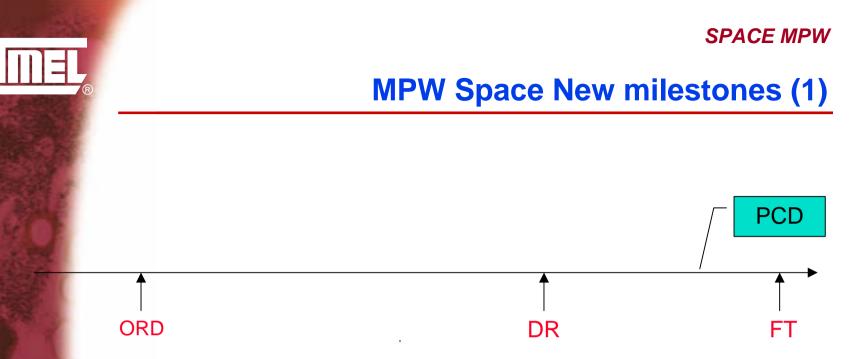
- Launch Q2 2004
- Validation Q4 2004

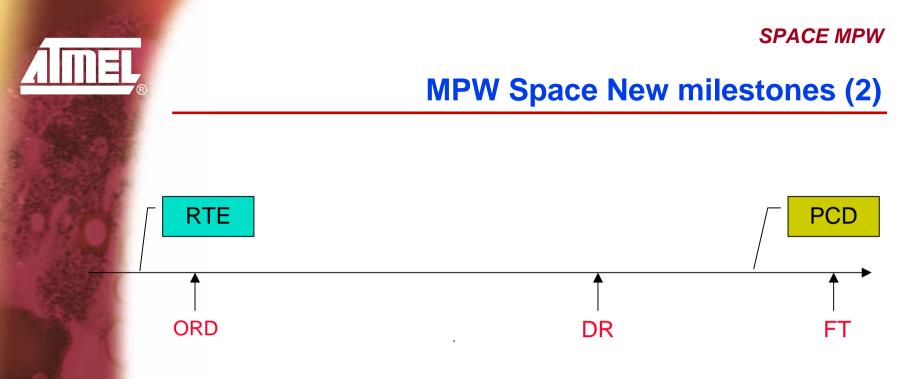


The MPW is limited to reticules and wafers lot

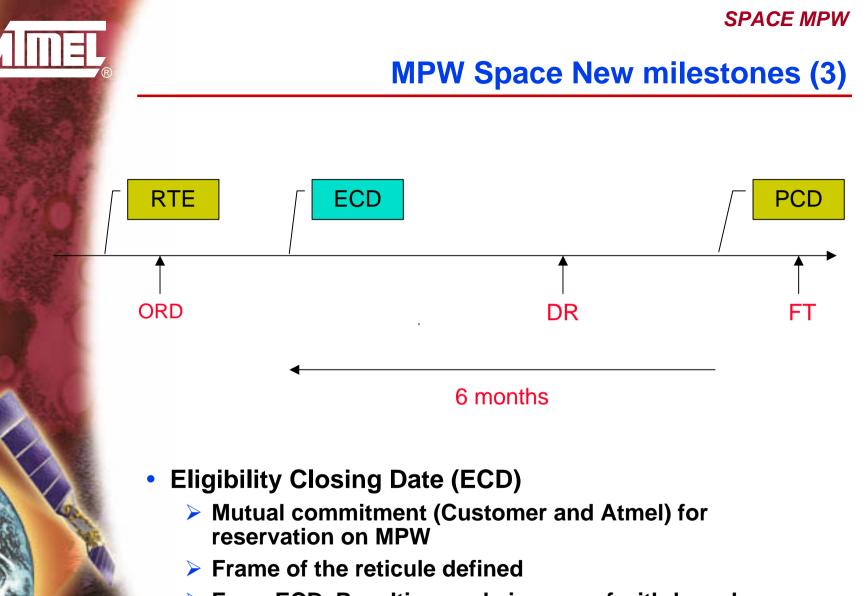
- Before DR step, no specific technical constraints
- But, new milestones during design to secure the planning
- From the probe step, MPW wafers lot split in mono-project lots

Each wafer is worked in sacrificial mode


Only 1 product extracted per wafer


• ATMEL commitment on any MPW production run

- 25 wafers launched
- Prototypes
 - 5# per design
 - 16 weeks Lead time
- Fight Models
 - Committed 15# to 25# per design (TBC) depending on matrix size for a standard 25w lot
 - Standard lead time
- For higher quantities, additional wafers can be launched


Production Closing Date (PCD)

- Start of MPW reticule and lot manufacturing
- Fix date, communicated to the space community

Request to embark and Eligibility Approval (RTE)

- has to be included in the RFQ
- Eligibility Approval will be taken into account in the feasibility study answer and quotation

From ECD, Penalties apply in case of withdrawal

MPW SPACE Promotion

• WORKSHOP at ESTEC in June 2004

- Detailed presentation of the MPW SPACE service to Space community
- ATMEL Web site
 - Announcement available on the ATMEL Website since December 2003
 - To be complemented in Q2 2004

Prices benefits

Simulation for 2 representative projects		Mono Project	ESA MPW (*)
 ✓ Large die ✓ Pad limited ✓ Average density 	NRE	60	16
	FM (25#)	40	40
	Total (base 100)	100	56
 ✓ Small die ✓ Pad limited ✓ Average density 	NRE	70	8
	FM (25#)	30	30
	Total (base 100)	100	38

• (*) foundry funded by ESA

Conclusion

- 0.18um rad hard European Source
- Competitiveness
- Industrial solution