

FPGAs in Critical Applications and Model Support

Sandi Habinc

Gaisler Research, Gothenburg

Background

- Capacity and performance of FPGAs suitable for space flight is increasing steadily
- Increase from tens of thousands to millions of system gates
- Application of FPGAs has moved from glue logic to complete subsystems that combine real time functions on a single chip, including microprocessors and memories.
- The potential for FPGA use in space is steadily increasing, continuously opening up new application areas.
- The FPGAs are more commonly being used in critical applications and are replacing ASICs on a regular basis.

The activity

Main objectives:

- Lessons learned from FPGA developments
- Overview of re-programmable FPGAs for space applications
- Development of SEU mitigation technique for reprogrammable FPGAs
- VHDL model support

Documents

- Lessons Learned from FPGA Developments, FPGA-001-01, Version 0.2, September 2002
- Suitability of reprogrammable FPGAs in space applications, FPGA-002-01, Version 0.4, September 2002
- Functional Triple Modular Redundancy (FTMR), VHDL Design Methodology for Redundancy in Combinatorial and Sequential Logic, FPGA-003-01, Version 0.2, December 2002

All documents available at www.gaisler.com

Reprogrammable FPGAs

- Main provider is Xilinx Inc., USA
 - Xilinx devices have been flown on US missions, e.g. 2003 Mars Exploration Rover
- Actel Corporation, USA, ProASIC FLASH device, small in size and problems with SEL
- Northorp Grumman, USA
- Altera, USA

Virtex FPGA features

- Densities from 50 000 to 10 000 000 system gates
 - Multi-standard interfaces
 - High-performance interface standards
- Built-in clock-management circuitry
 - Dedicated delay-locked loops (DLLs) for clock control
 - Low-skew global clock distribution nets
- Hierarchical memory system
 - Look-up-Tables (LUTs) configurable as 16-bit RAM, 32-bit RAM, 16-bit dual-ported RAM (all named LUTRAMs), or 16bit shift-register
 - Configurable synchronous dual-ported 4k-bit block RAMs (BRAMs)
- Reprogrammable by means of external PROM
- Large configuration memory on-chip (SRAM)

Virtex FPGA architecture

DLL		DLL		
IOBs	BRAMS	CLBs	BRAMS	IOBs
DLL		IOBs		DLL

Single Event Upsets

- Configuration upsets (configuration memory)
 - main cause for functional failure
 - causes loss of logical functionality
- User logic upsets (e.g. block memory, logic-block flip-flops and I/O flip-flops)
 - causes e.g. data failures
- Architectural upsets (e.g. JTAG) (SEFI)
 - causes catastrophic failures

SEU mitigation

- Configuration memory protection
 - i.e. scrubbing
- User logic protection
 - Module redundancy and mitigation
 - Logic partitioning for mitigation
 - Logic duplication and mitigation

Device redundancy and mitigation

Triple Module Redundancy (TMR)

Gate level mitigation - register

Gate level mitigation - logic

Functional TMR (FTMR)

current state record

Voting options

FTMR overview

Results - synthesis

			Con	figurat	ion	Syı	nthesis	s re	Perfor	in)				
Design	seq. TMR	comb. TMR	input voters	output voters	clock lines	reset lines	voter type	FFS	LUTS	SUFGs	3UFTS	Gate MHz	P&R MHz	ime (m
original	n/a	n/a	n/a	n/a	n/a	n/a	n/a	786	1457	ш 1	0	42	44	<u>н</u>
behavioural	n/a	n/a	n/a	n/a	n/a	n/a	n/a	784	1454	1	0	40	46	2
structural	n/a	n/a	n/a	n/a	n/a	n/a	n/a	784	2015	1	0	38	41	11
sequential	yes	no	0	1	1	1	logic	2352	2793	1	0	37	n/a	24
							buffer	2352	2012	1	2352	36	n/a	15
combinatorial	yes	yes	1	1	3	3	logic	2352	7726	3	0	33	n/a	6
							buffer	2352	6139	3	4704	33	23	8
			3	3			logic	2352	10861	3	0	34	30	7
							buffer	2352	6139	3	>100%	33	n/a	11

Synthesis results targeting Xilinx Virtex XCV1000-6

Results - place & route

Design	Configuration								P & R results							
	seq. TMR	comb. TMR	input voters	output voters	clock lines	reset lines	voter type	FFS	LUTS	Slices	BUFTS	GCLKs	IOBs	Gates	MHz	Time (min)
original	n/a	n/a	n/a	n/a	n/a	n/a	n/a	785	1438	1072	0	1	122	17686	44	5
behavioural	n/a	n/a	n/a	n/a	n/a	n/a	n/a	783	1429	1044	0	1	268	17640	46	5
structural	n/a	n/a	n/a	n/a	n/a	n/a	n/a	783	1998	1049	0	1	268	21354	41	10
combi-	yes	yes	1	1	3	3	buffer	2352	6092	5484	4704	3	366	78600	23	126
natorial								9%	25%	44%	37%	75%	90%	n/a		
			3	3			logic	2352	10751	6540	0	3	366	92475	30	12
								9%	43%	53%	0%	75%	90%	n/a		

Place & route results targeting Xilinx Virtex XCV1000-6

Conclusions

- It is possible to write VHDL in a structured yet high level coding style, obtaining the required redundancy
- FTMR provides tuneable level of redundancy
- FTRM only requires a moderate coding overhead
- Logical and sequential redundancy carries a large gate overhead, a factor between 4.5 to 7.5
- Performance reduced by about 50%
- Radiation testing is on-going

Contact

GAISLER RESEARCH AB Första Långgatan 19 SE-413 27 Göteborg

Sweden

- Tel: +46 31 7758652 (Sandi Habinc)
- Fax: +46 31 421407
- Mail: sandi@gaisler.com
- Web: www.gaisler.com