

Radiation Hardening By Design

Low Power, Radiation Tolerant Microelectronics Design Techniques

Steven Redant IMEC

Emmanuel Liégeon Alcatel Space

Steven.Redant@imec.be
Emmanuel.Liegeon@space.alcatel.fr

The foundry problem...

Rad-Hard foundries are leaving the marketplace

- Reduced demand from military customers
- Too small volumes
- Only 1 supplier in Europe left (ATMEL)

Solution: Hardening commercial CMOS technologies

- US independent
- more advanced, deep sub-micron technologies possible
- Higher speed
- V Low power
- V Low volume/mass
- V Low cost
- => A lot of interest from the (European) space community

Design Against Radiation Effects

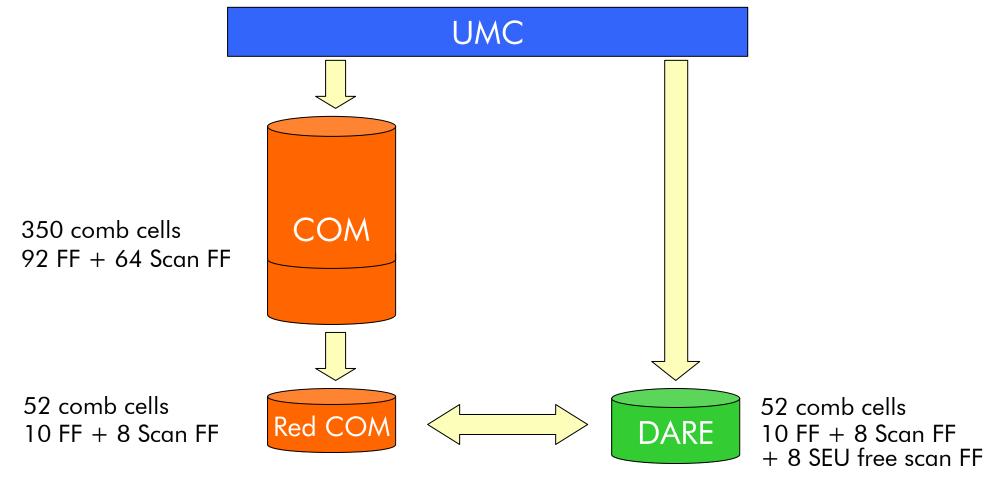
Using layout techniques to minimize the radiation impact

▼ Free library for European Space Industry

Technology: UMC .18 μ m CMOS, 6 metal

- Available through EUROPRACTICE (MPW shuttle every month)
- ▼ Very smooth co-operation between IMEC and UMC
- ▼ Stable commercial technology

DARE library includes


- ▼ 78 Core Cells
 - → Scan equivalents for all flip-flops
 - → SEU hardened flip-flops included (HIT cell)
- 23 In-line IO Pad Cells (+ P/G + Corners + Fillers)
 - → 3.3V & 2.5V I/O's
 - → Includes LVDS
 - Cold spare & 5V tolerance additions are being investigated
- ▼ Single Port SRAM Compiler
- **PLL**

Libraries used

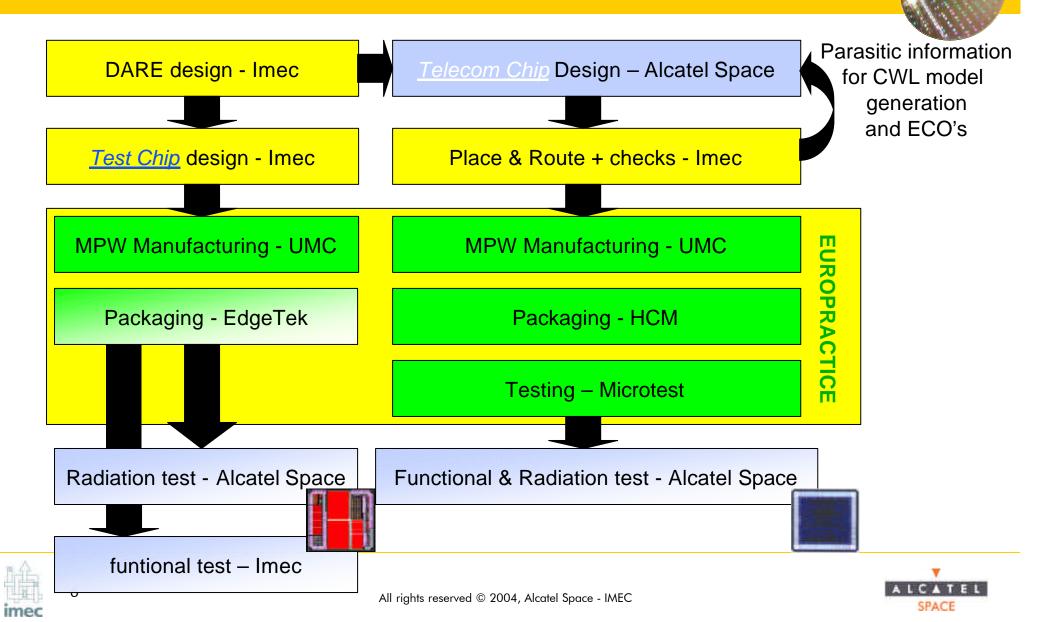
Available EDA tool views

Liberty (.lib) file – for 6 process corners using accurate table lookup timing model

- ▼ Synopsys Design Compiler / PrimeTime
- ▼ Synplicity Synplify ASIC

V...

Verilog & VITAL simulation Models


Avant! Apollo layout and timing views

Any LVS tool using CDL input

Project Flow

Actual chip sizes

Commercial Library

▼ Pad Limited

▼ Chip size : 6.540 x 6.540 mm²

▼ Core size: 4.039 x 5.519 mm²

Commercial Library reduced sub-set

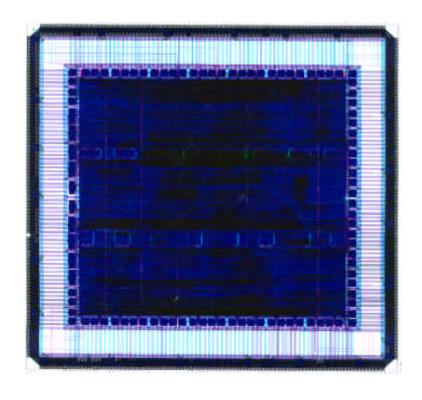
▼ Same

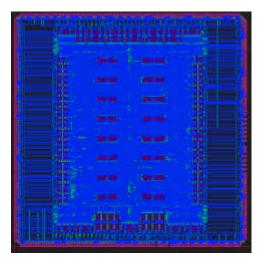
DARE

▼ Pad Limited, in-line pads

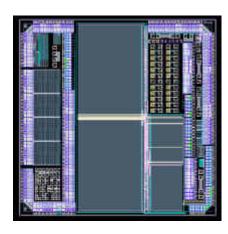
▼ Chip size : 9.418 x 9.418 mm²

▼ Core size : 7.046 x 7.344 mm²


▼ => 2 times bigger



Layouts



DARE DROM

COM DROM (= Reduced COM)

DIE HARD

What if Staggered IO?

Commercial In-line IO

 \checkmark 6540 x 6540 = 42.77 mm²

Commercial Staggered IO

 \checkmark 6360 x 4860 = 30.91mm²

DARE In-Line IO

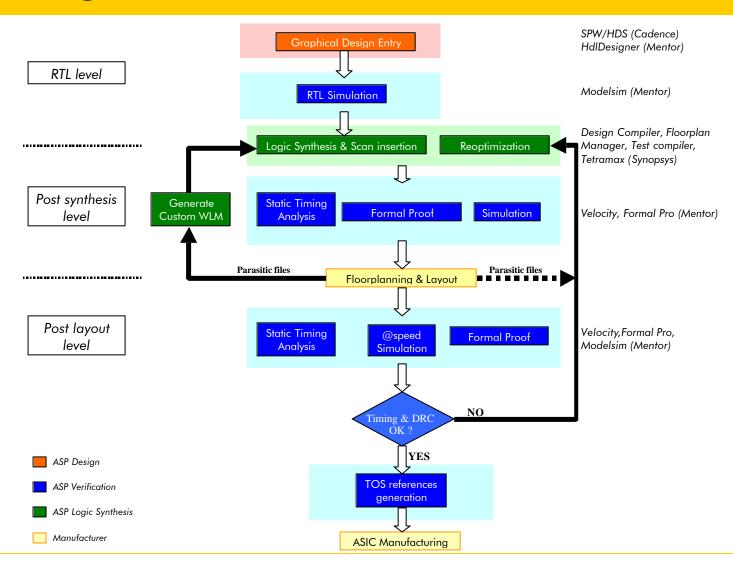
 $\mathbf{7}$ 9418 X 9418 = 88.7mm²

DARE Staggered IO (estimated)

 \mathbf{V} 8200 x 8474 = 69.48 mm²

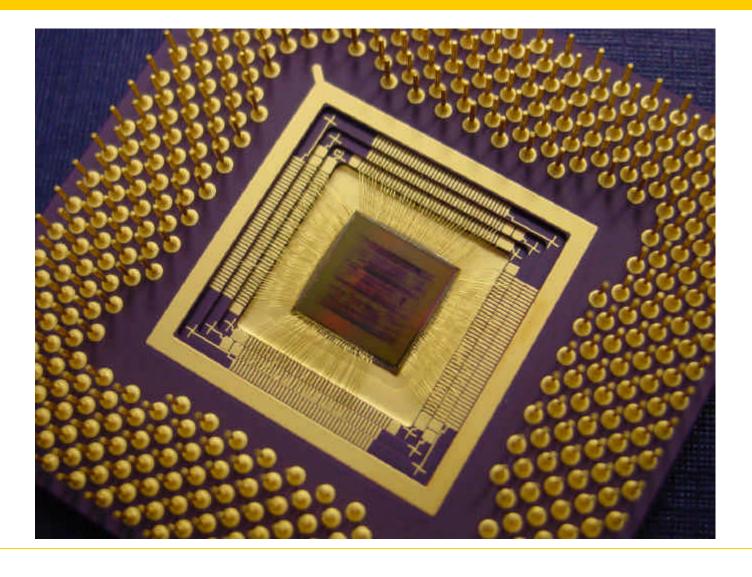
▼ => 2.25 times bigger

DROM ASIC


- ▼ DROM: Digital Signal Processing ASIC for Bent Pipe Processor running at 105 MHz
- \mathbf{V} 114 SRAMs = 84 kbits
 - □ 104 SRAMS used at 26.25 MHz max
 - □ 10 SRAMS used at 52.5 MHz max (~ TPRAM functionality)
- VLVDS I/O
- ▼ Total number of equivalent gates 1.3 MGates
- ▼ Total number of bond pads : 403 pads
- ▼ Package : CPGA 476

DROM design flow

Timing closure after layout


- Texample on a critical path in 105MHz domain
 - \square with CWLM: td = 5.24 ns
 - \square After 3 layout iterations : td = 6.14 ns (+17%)
 - \square important to take some frequency margin during the architecture phase ($\sim 15\%$)
- Hold violations have to be fixed
 - at least after first layout
 - convergence problem after layout of the logic inserted to correct violations

DROM

Library comparison

Comparison on operators/ DROM

- area
 - → Reduced COM = COM
 - → DARE = 3 x Reduced COM
 - → DARE/MH1RT : units problem (SOG / Standard cell)
- speed (delay)
 - → Reduced COM = COM
 - → DARE # Red COM
 - → DARE 2 times faster than MH1RT

Power consumption

- \square COM 0.18 μ m: 50 nW/gate/MHz
- \square DARE 0.18 μ m: 180 nW/gate/MHz
- \square MH1RT 0.35 μ m: 400 nW/gate/MHz

Single Event Effect (SEE) Tests

Two types of test have been performed:

▼ Heavy Ions Test: The European Heavy Ions Facility of Louvain La Neuve has been used for this evaluation. Ions used in the course of the present evaluation:

Ion Specy	Energy	LET	Range
	(MeV)	$(MeV/(mg/cm^2))$	μ m
15-N	62	2.97	64
20-Ne	78	5. 85	45
40-Ar	150	14. 1	42
84-Kr	316	34	43
132-Xe	459	55. 9	43

▼ Proton Test: The CPO (Centre Protonthérapie d'Orsay) Facility of the University of Orsay (France) has been used for this evaluation.

Energy: 150 MeV, 100 MeV, 70 MeV, 50 MeV and 30 MeV.

Single Event Effect (SEE) Tests

- ▼ Selftest Configuration (Autotest): specific test to easily control the nominal functionality of the ASIC
 - Autotest 1 with a 45.8 MHz carrier waveform
 - Autotest 2 with a temporal ramp
- ▼ Bist Configuration : to evaluate SRAM cells
- ▼ Scan Configuration: to evaluate D flip-flops (implemented physically) placed in several regions on the die
 - SCAN 0 is for « all 0 » initial pattern
 - SCAN 1 for « all 1 » initial pattern.

Main SEE Results

- ▼ No Single Event Latchup (SEL)
- ▼ No Single Event Hard Errors (SHE): Stuck bits
- ▼ No Single Event Functional Interrupt (SEFI)
- ▼ Only Single Event Upset (SEU) observed on basic cells : SRAM, DFF

=> Impact on DROM functionality is a transient perturbation but the ASIC recovers after few clock cycles

NB: More detailed evaluation of 0.18 μ m CMOS basic structures will be performed on the Test Chip March 2004

Main SEE Results

SCAN 1	$t_{(HI\ and\ p+)} = 12.0\ 10^{-8}\ SEU/cell.day\ (GEO)$
SCAN 2	$t_{(HI\ and\ p+)} = 7.7\ 10^{-8}\ SEU/cell.day\ (GEO)$
BIST	$t_{(HI \text{ and p+})} = 11.0 \ 10^{-8} \ SEU/cell.day (GEO)$
Autotest 1	$t_{(HI \text{ and p+})} = 5.6 \ 10^{-2} \ SEU/ASIC.day (GEO)$
Autotest 2	$t_{(HI \text{ and p+})} = 7.81 \ 10^{-2} \text{ SEU/ASIC.day (GEO)}$

Total Ionizing Dose (TID) Tests

- ▼ 6 Functional Tests (Same as the ones used for SEE Tests)
 - Selftest Configuration (Autotest) :
 - → Autotest 1 with a 45.8 MHz carrier waveform
 - → Autotest 2 with a temporal ramp
 - Bist Configuration
 - Scan Configuration : SCAN 0 and SCAN 1
- **▼ Parametric measurements** : Icc (1.8V and 3.3V)
- **▼** Bias during Irradiation
 - in Autotest Mode
- ▼ 10 samples + 1 control
- ▼ Irradiation Steps: 0, 50, 70, 100 krad(Si) Low Dose Rate
 200, 500, 700 and 1 Mrad(Si) High Dose Rate
- ▼ Tests initiated In progress

