

Design of High Speed Pipeline ADC

Väinö Hakkarainen vjh@ecdl.hut.fi Electric Circuit Design Laboratory Helsinki University of Technology

Estec February 4-5, 2004

Outline

- Background
- Resources
- Specifications
- Architecture
 - ADC
 - Clock generation
- Phase 1 test chip
 - Schematics & Simulations

Background

- Wideband high speed ADCs required for satellite comminications
- Target to design and implement high speed ADC to feed poly phase filter
- Project started: 12/2002
- Closing: First half of 2005

Resources

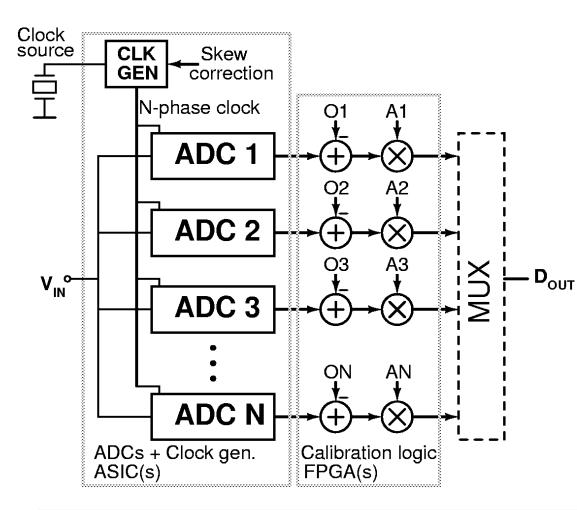
- ECDL (Väinö Hakkarainen, Mikko Aho, Jaana Riikonen, Kari Halonen)
 - ADC design
 - Calibration
- VTT (Arto Rantala, David Comes Martins, Markku Åberg)
 Clock generation & skew calibration
- Nokia (Paavo Kosonen, Tom Ahola)
 - Measurements

Target Specifications

- Resolution 9-10 bits
- Sample Rate 1.8-2 GS/s
- 500 MHz input bandwidth
- Monolithic ADC
- "Low" power dissipation (<10W)
- Target technology: BiCMOS 0.35 µm (SiGe)

Design Challenges

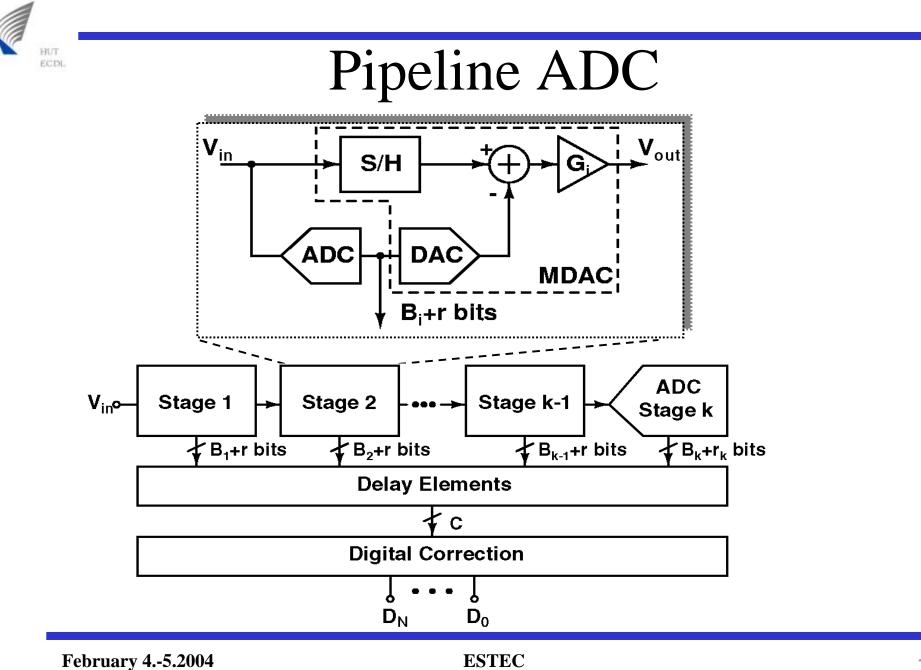
- Clock generator is the most critical block
 - Jitter specification
 - Resolution of the skew correction
- Calibration
- Area and power dissipation must be controlled
- Measurements @ 2 GS/s Sample rate
- Very tight schedule
 - Test chip + final version within two years


Architecture (1)

- Pipeline topology most suitable
 - Resolution
 - Calibration
 - Double-sampling
 - Time-interleaving
- DLL based clock generation
 - Lower jitter than in PLLs
 - Skew calibration achievable

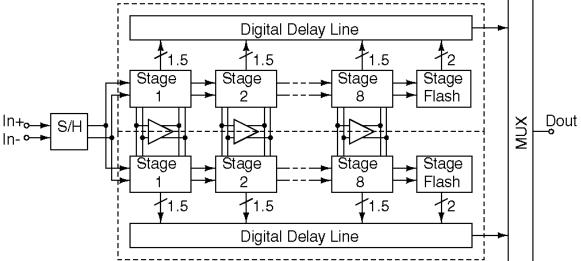
Architecture (2)

- Time-interleaved parallel pipeline
- Low-jitter clock generator with
 - skew correction
- Digital calibration of channel gain and offset mismatch

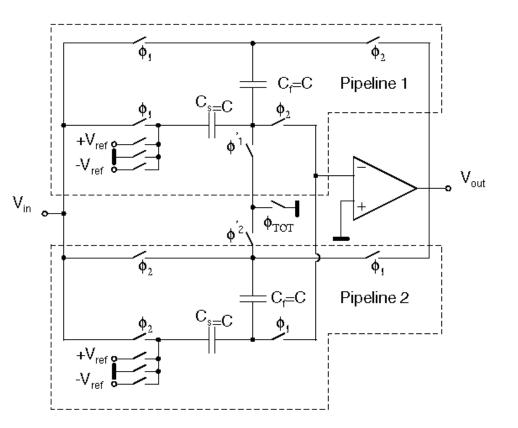


Architecture -Summary

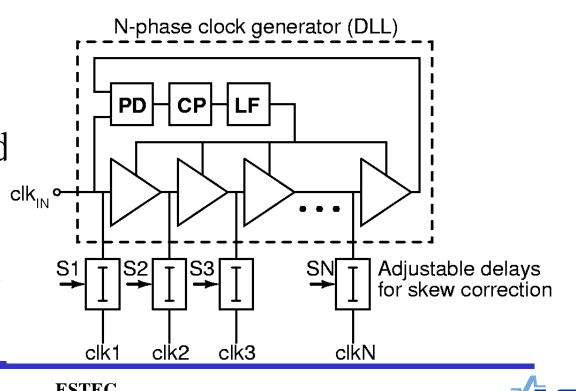
Architecture	Monolithic Time Interleaved Pipeline			
Resolution	9-10 bits			
Sample Rate	1.8-2 GS/s			
Number of Channels	24			
Channel Clock Rate	75-85 MHz			
Calibration	Digitally with FPGA			
Sample Clock Generation	Adjustable DLL			
Technology	0.35-µm BiCMOS (SiGe)			



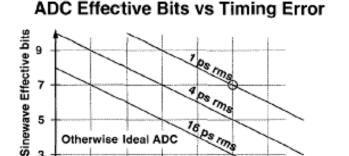
Double-Sampling (1)


- Shared opamp between
- two pipeline fingers
 - Working in opposite clock phases
- Lower power
- dissipation but,
- Memory effect could cause error
 - Faster settling required

Double-Sampling (2)


- Φ_1 and Φ_2 in opposite phases
- Bottom plate sampling utilized $(\Phi_1^{'} \Phi_2^{'})$
- Φ_{TOT} operating at 2*f_s
 => Skew insensitivity

Clock Generation


- Lowest jitter with external crystal oscillator - ENOB = 8 bits @ 1 GHz requires $\sigma_a < 0.5$ ps
- Adjustable DLL
- Skew between channels minimized with calibration
- Very careful layout design

Jitter Minimization

- DLL achieves a lower jitter than PLL
 - Also favorable for time-interleaved ADC
- Thermal jitter of a DLL ~ N^2 (N = length of DLL)
 - High-frequency external crystal oscillator
 - Dividers after DLL to get 20 clocks
- Additional jitter from on-chip components minimized
- If not enough, additional steps
 - Combination from several clock signals

250

125

500

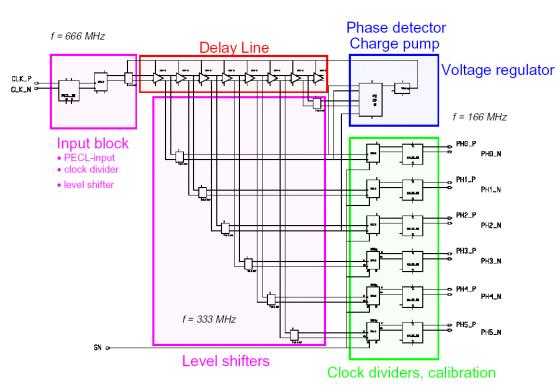
62.5

1000 2000 Fin(MHz)

Clock Skew Calibration

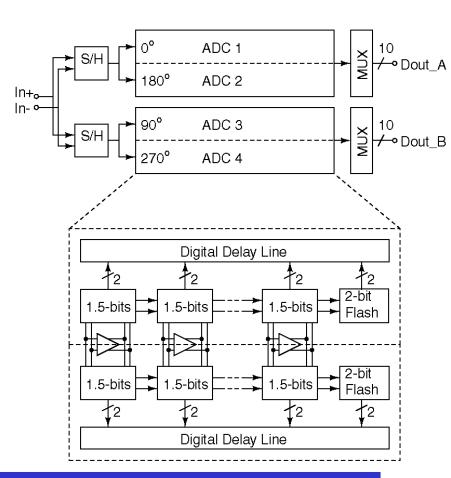
- Digitally controlled delay adjustment circuits after the clock division
 - Coarse adjustment required before division
- Skew calibration with PC
- Possible skew measurement strategies
 - Phase difference with inverse FFT
 - Phase difference from sine-fit test
 - In time domain from a ramp input signal to ADC

Clock Generator (1)


- A combined divider and delay-locked loop (DLL) clock generator
- Supply controlled delay elements (cross-coupled inverters)
- Digital counters at the output of the DLL provides 12 evenly spaced phases
- A skew calibration is applied to the output phases

Clock Generator (2)

- A high frequency external clock is phased with a short DLL
- Clock phases detected by Edge Compiner
- Output spectrum is analyzed to find out the best calibration code



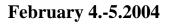
Specifications -Phase 1 Test Chip

- Sampling frequency
 - Single channel : 75-100 MS/s
 - Number of channels : 4
 - Total : 300-400 MS/s
- Resolution

ECDL

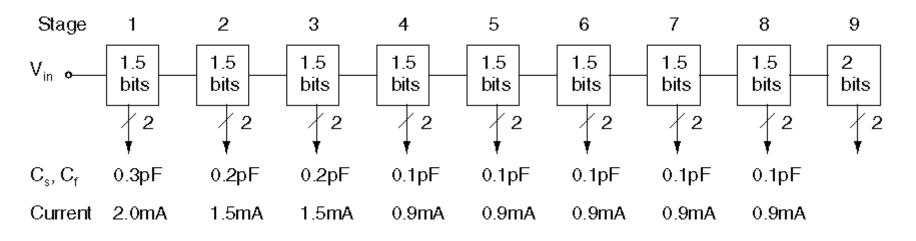
- Stage : 1.5 bits+ 2 bits (flash)
- Number of stages : 8+1
- Total : 10 bits
- Test DLL Blocks
 - Driving ADC
 - Jitter determination




Layout Phase 1Test Chip

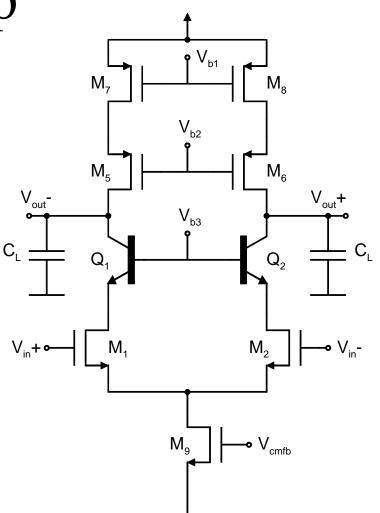
A version of the clock generator having edge conbinier circuit

A version of the clock generator connected directly to the ADC Time interleaved ADC



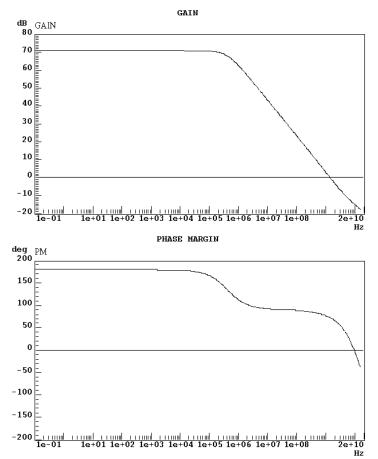
- •Two skew-insensitive double-sampled ADC fingers
- •Test DLLs
- •Area: 1.7 x 6.8 mm²
- •Sent to process June/03, Received Nov./03.
- •Measurements running

Channel ADC Phase 1


- Capacitors minimized
 - Lower power consumption but
 - Increased thermal noise
- Input bandwidth $500MHz \Rightarrow S/H$ circuit needed

OpAmp

BiCMOS telescopic OTA
Relative low current
consumption (max 2mA)
Bipolars used to achieve
enough gain
Pure CMOS requires two
stage OpAmp

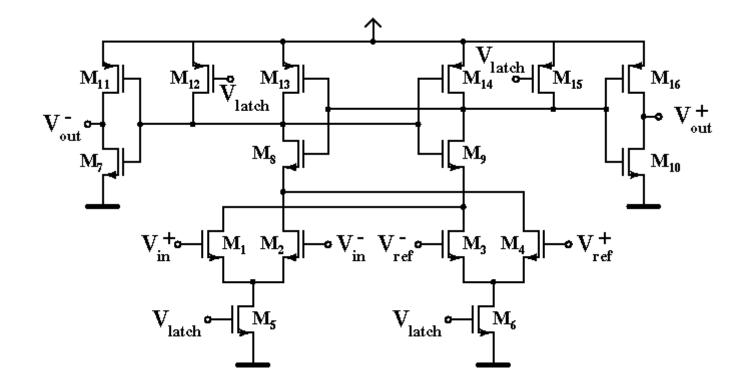


Simulations

OpAmp

• 1st stage OpAmp

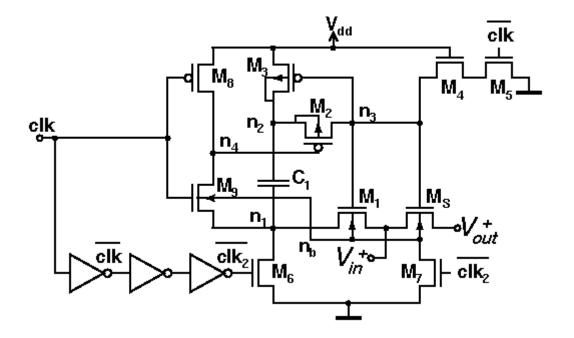
A ₀	71 dB				
GBW	1385 MHz				
V _{in,pp}	0.5V				
PM	72.4 [°]				

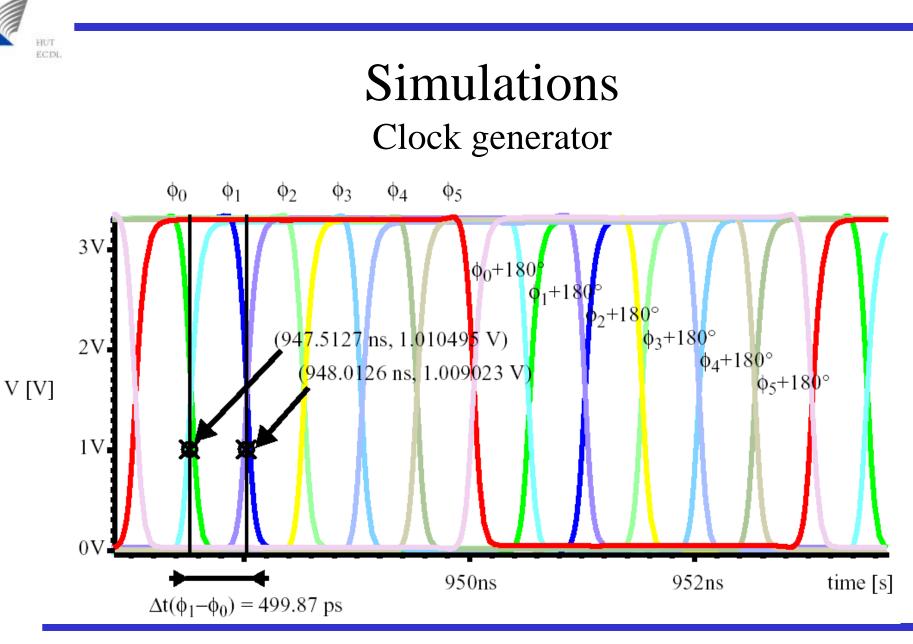


February 4.-5.2004

ESTEC

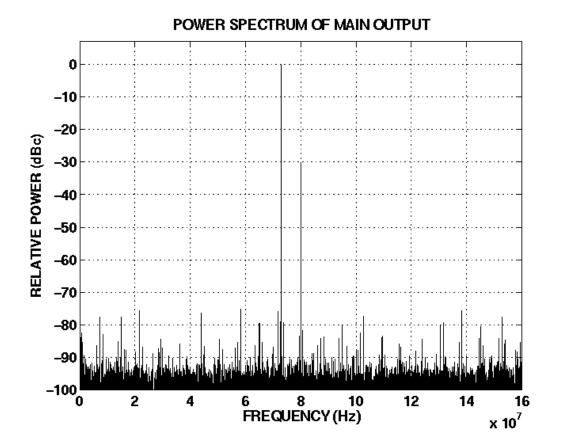
Dynamic Comparator





Bootstrapped Input Switch

Insensitive to input voltage amplitude
Used in first stage as sampling switch



February 4.-5.2004

~

Simulations Uncalibrated 4-Channel

f _{in}	72.8 MHz
f _{clk}	80 MHz
f _{tot}	360 MHz
SFDR	30.5 dB
SNDR	30.5 dB
ENOB	4.8 bits

February 4.-5.2004

ESTEC

Simulations Calibrated 4-Channel

f _{in}	72.8 MHz			
f _{clk}	80 MHz			
f _{tot}	360 MHz			
SFDR	64.1 dB			
SNDR	57.1 dB			
ENOB	9.1 bits			

February 4.-5.2004

Simulations

Summary

	Behavioral		Transistor level			
	4-chan uncalib.	4-chan calib.	1st 1.5-bit	Channel ADC	Channel Pair	Input Switch
f _{in}	72.8 MHz	72.8 MHz	9.1 MHz	9.1 MHz	9.1 MHz	913 MHz
f _{clk}	80 MHz	80 MHz	80 MHz	80 MHz	80 MHz	100 MHz
SFDR	30.5 dB	64.1 dB	72 dB	64 dB	63.5 dB	81 dB
SNDR	30.5 dB	57.1 dB		56.5 dB	56.5 dB	
ENOB	4.8 bits	9.1 bits		9.1 bits	9.1 bits	
V _{in,pp}	-1 dBFS	-1 dBFS	0.5 V	0.5 V	0.5 V	0.5 V

Drawbacks

- MPW runs of current BiCMOS 0.35 μ mprocess stopped => Forced to change vendor
- Problems with PCBs => Measurements delayed
- New test chip to process 4/2004
- Target tape out of final version moved to 11/2004

