GR740 Processor development
Magnus Hjorth, Cobham Gaisler AB

Space Engineering and Technology Final Presentation Days
24 May 2017
ESA/ESTEC, Noordwijk, Netherlands
Presentation agenda

• Contents:
 - Brief company introduction
 - European processor background
 - Project overview
 - Work performed in project
 - Results and outputs
 - Related activities
 - Future work
 - Conclusions
Cobham Gaisler AB

Company presentation

• Located in Gothenburg, Sweden
• Fully owned subsidiary of Cobham plc
• Management team with 50 years combined experience in the space sector:
 - Sandi Habinc: General Manager
 - Per Danielsson: Senior Advisor
 - Jan Andersson: Director of Engineering
 - Arne Samuelsson: Proposal/Program Manager
• 25 employees with expertise within electronics, ASIC and software design
• Complete design facilities in-house for ASIC, FPGA and software design
• 9.2 M$ turnover in CY2016
Cobham Gaisler LEON/SPARC history

• Company founded by original developer of the LEON/LEON2.
• Now develops, markets LEON3(FT), LEON4(FT) and GRLIB IP library for commercial and space customers.
• Provides and maintains GRLIB-GPL open-source distribution of LEON3 and IP library.
• Software section develops and maintains tools, operating system ports, and drivers. Many contributions to open source projects (Linux, RTEMS, GCC).
• Acquired by Aeroflex (US), that was subsequently acquired by Cobham (UK)
 - LEON-related development is still done in Gothenburg, Sweden.
 - We provide tech support for Aeroflex UT699/UT700 processors.
Cobham Gaisler Processor Solutions
One-Stop-Shop

Synthesizable IP Core Library

Simulators, Debuggers, Operating Systems, Compilers

FT LEON3/LEON4 Processor Components

FT FPGA Processors

Development Boards

System Testbeds
SPARC/LEON Processor Background

An open non-proprietary standard for space

• State of the European space market in 1990
 - 8-bit processors, like 80S32 and 8086
 - 16-bit RISC processors, like MIL-STD-1750, MDC281, MA31750
 - Motorola 68020, 32-bit CISC – Ariane 5 OBC (Launcher)
 - Intel 386, 32-bit CISC – Columbus Laboratory OBC (ISS)

• European Space Agency (ESA) studies
 - RISC Evaluation Study (Saab Space), 1990
 - RISC Architecture and Technology (Sagem), 1990

• Selection criteria for a new architecture
 - Widely supported, Open architecture, License free

• SPARC V7 was selected

• SPARC in Space today
 - More than 10000 flight parts with SPARC inside have been shipped
 - Unique situation with a multitude of silicon sources
 - 25 years of experience, large installed base
Motivation

• Why develop a new microprocessor?
 - Enable more demanding applications
 - Higher integration enables more flexible, compact, power efficient payloads
 - Allow consolidating multiple applications on same computer chip
 - Moving computation from separate FPGA/DSP/CPU to same chip
 - Ensure unrestricted European supply of microprocessor components free of foreign export restrictions.

• ESA development of Next Generation Microprocessor (NGMP)
 - Cobham Gaisler’s bid was selected by ESA in open competitive tender to develop and commercialize the NGMP.
 - European space industry consensus was to continue development based on SPARC architecture.
Device Overview (1)

Internal architecture

• System-on-chip
 - 4 x LEON4 fault tolerant CPU:s with MMU, FPU
 - 16+16 KiB Level-1 I+D cache, separate per CPU
 - 2048 KiB Level-2 cache, shared between CPUs
 - PLLs for clock generation
 - SDRAM memory controller with EDAC and scrubber
 - PROM memory controller with EDAC
 - Communication interfaces

• Targeting general-purpose payload processing.
Device Overview (2)

Package

- Product name GR740
- Ceramic 625 pin LGA Package
- Flight model will have columns attached (CCGA package)
Business model

• Commercialized by Cobham Gaisler:
 - Component and eval board sales
 - Supporting software (debugger etc)
 - Technical support
 - General point of contact on matters concerning device

• STMicroelectronics manages production, assembly, testing, and qualification (with Cobham Gaisler support when needed)

• Large commercial interest for product
 - Many inquiries and evaluation board sales
 - Interest both within and outside Europe
 - Customers already designing their own boards
 - At least two different customers planning to fly the first silicon
ESA Project overview (1)

Architecture definition phase

• Phase 1 (previous contract) – Architecture definition and prototyping
 - Hardware architecture development
 - Software development (OS, debugger, simulator)
 - FPGA prototypes
 - Functional prototype (“NGFP”) on structured ASIC and development board (parallel contract)
 - Benchmarking and evaluation
 - Requirements input and evaluation of architecture by end user (EADS Astrium)

• European 65nm space ASIC technology development going on (without our involvement) in parallel during phase 1.
ESA Project overview (2)

Porting to Space DSM

• Access to ST 65nm space (C65SPACE) design kit in 2014
 - IO limitations not known earlier meant design had to be revised
 - Extensive pin multiplexing required
 - Use of classic SDRAM instead of DDR memory

• Phase 1 CCN (previous contract) – Layout on C65SPACE
 - Design adaptations to technology library
 - Design upgrades following user feedback
 - ASIC back-end implementation (performed by STM)
 - Post-layout verification
 - Package design (e2v)
Phase 2 (this contract) – Prototype ASIC development
- ASIC manufacturing (performed by STM)
- Package manufacturing (NTK)
- Package+ASIC assembly (e2V/STM)
- Production test program development (Gaisler/ST)
- Test pattern generation
- Production testing (by STM w Gaisler support)
- Functional validation of processor and interfaces
- Benchmarking
- Radiation testing
- Development board design and production
Outputs from contract

• Materials:
 - Packaged prototypes (10 to ESA)
 - Validation boards (3 to ESA)

• Technical data:
 - Design database
 - Package design files
 - Validation board design files
 - Final test patterns

• Public documents (website):
 - GR740 data sheet
 - Validation board user manual
 - Validation / Benchmarking technical note

• Documents:
 - Layout plot
 - Production test plan
 - Production test report
 - Validation board specification
 - Validation plan
 - Validation report
Results – production testing

Test program and bring-up

• Complete production test program developed and implemented on ATE and run successfully at ST Grenoble.
 – Covers all tests that are foreseen to be needed for the flight model.
 – Testing over full temp range and burn-in boards remaining

• Some characterization of devices also performed and trials of testing over temperature

• Functional bring-up of ASIC done at Gaisler
 – Processor system (CPU,FPU,caches) working correctly
 – All interfaces working correctly
Results - GR740 Development board

• A board was developed (with Pender Electronics) to allow benchmarking and development of GR740 software.
• Same board with socket used for ASIC bring-up, and radiation tests
• Version with device soldered available commercially as development board.
• All interfaces of the GR740 are available.
Results – Benchmarking (1)
Overview, single-core scaling

• A number of benchmarks have been ported and run on the GR740.
 - SPEC CPU2000
 - EEMBC CoreMark
 - Dhrystone
 - Whetstone
 - LinPack

• Key results have been published online in technical note
 - www.gaisler.com/gr740

• Technical note also contains power measurements

Figure 3. Cobham Gaisler device comparison (single-core)
Results – Benchmarking (2)

Multi-core scaling

- Multi-core speedup is application dependent and varies between benchmarks.
- L2 capacity and hit-under-miss support helps improve scaling and reduce impact of external memory speed.

Figure 5. Impact of AMBA SPLIT transactions on bus interference
Results – Benchmarking (3)

Power consumption

- Highest test case device power consumption measured in lab = 1.8W – excellent power/performance!
- Thermal/power design value 4.4W at full load including margins for leakage at high temp and voltage variation
Radiation testing (1)

Overview

• Radiation campaigns performed at ESA radiation facilities UCL HIF/LIF (Belgium) and RADEF (Finland).
 - Static (basic cell error rate) and dynamic/application testing
 - Heavy ion and proton testing
• 4 sessions, 74 hours of beam time total.
• Radiation testing on this type of device is challenging
 - Device itself is logging the errors
 - A lot of post-processing and analysis required – many times more than the actual test time.
Radiation testing (2)

Results summary

- Radiation test results are overall positive
 - Error rates of building blocks (cells, RAM) matches expectation
 - TMR schemes implemented on RTL/layout level are working well
 - Target of 1×10^{-4} errors/device/day (recoverable with reset) expected to be met with some margin in both GEO and LEO orbits
Radiation testing (3)

Level 2 cache issue

- Extensive radiation test campaign revealed L2 cache errata
 - Bit error in L2 tags not corrected properly in certain special cases
- The issue was isolated and diagnosed, root cause found
- Evaluated potential for metal mask fix with spare cells
 - Trial layout by ST showed such fix NOT feasible to implement
- Developed a partial SW workaround based on locked down cache
 - Gets MTBF down to order of 1 error/week (recoverable with reset)
 - Turning off L2 completely also possible workaround
- First silicon can still be flown
 - There are early adopter customers planning to fly first silicon using SW workaround, accepting higher error rate caused by errata.
- Extensive verification done to ensure issue has been corrected properly for respin.
Issues encountered

Outcome of testing

• A few other silicon errata discovered during the functional validation
• Minor ESD protection issue, limited to LVDS driver cells
 - Requires more careful handling of prototypes
• Minor logic errata
 - Can be handled with software or PCB workarounds
• All these issues will be corrected for the flight silicon
Next phase

• Phase 3 – Flight model development
 – New silicon addressing L2 EDAC errata and ESD sensitivity issue
 – Package and assembly adjustment to improve mechanical reliability of component (STM)
 – Qualification and burn-in test development (STM)
 – Establish supply chain for column attach

• GSTP activity approved in IPC May 2017

• Work is already progressing on all four points above
 – RTL is ready, back-end work on respin ready to begin in mid 2017
 – Preparations for qualification and columns ongoing
 – QML qualified flight silicon planned to be available by end of 2018
Related activities (1)

- The NGMP/GR740 work has been useful in other activities. A few examples (see also ESAs NGMP website):
 - “DDR interface for C65SPACE” (CG, ISD) - ESA contract to develop memory controller IP and PHY for DDR2/3 on ST 65nm space platform. Controller IP design uses lessons learned and experience from NGFP and GR740.
 - “Development environment for future Leon multi-core” (CG, OAR, ADS) - ESA project to make multi-core version of the RTEMS OS, uses GR740 as target.
 - “Heavy ion SEE testing of Microsemi RTG4 flash based FPGA” (Cobham RAD UK, CG) - Radiation test activity re-using NGMP design and GR740 radiation test software
 - “System impact of distributed multicore systems” (ADS, Univ. Pol. of Valencia) - Development of XtratuM hypervisor for LEON/SPARC, using NGMP as target.
Related activities (2)

Practical example

• Porting of GAI A VPU software
 - Study done together with Airbus DS to port space image processing application from US single board computer to NGMP.
 - Proof-of-concept for parallelizing single-core application
 - GR740 met performance needs with significant power saving compared to existing solution.

Image (C) ESA
Future evolution

• Future work ("GR745"), pending funding
 - Architectural improvements for higher compute performance
 - Extended support for time and space partitioning
 - More efficient virtualization support, hypervisor mode in HW
 - Move to DDR2/3/4 memory for performance and capacity
 - High-speed serial interfaces (SpFI / SRIO)
 - Flip chip packaging for improved pin count and signal integrity

• Depends on some technology level features
 - In particular, availability of DDR phy and IO buffers
Conclusions

• State of the art space microprocessor has been developed up to prototype level and meets or exceeds performance goals.
• European design and supply chain.
• Prototypes and development boards available for use by industry. We see healthy interest in the product.
• Two errata has been identified, one relating to radiation performance and one related to ESD protection. These will be corrected in the re-spin of the silicon. Otherwise, functional aspects of the design have been validated to be correct.
• Flight model development in progress (parts available planned for end of 2018)
• Thanks for listening!

Contact: sales@gaisler.com
GR740 Website: http://www.gaisler.com/gr740
ESA NGMP website: http://microelectronics.esa.int/ngmp/

• Quad-core LEON4FT rad-tolerant SoC device
 - 4x LEON4FT with dedicated FPU and MMU
 - 128 KiB L1 caches connected to 128-bit bus
 - 2 MiB L2 cache, 256-bit cache line, 4-ways
 - 64-bit SDRAM memory I/F (+32 checkbits)
 - 8-port SpaceWire router with +4 internal ports
• 32-bit 33 MHz PCI interface
• 2x 10/100/1000 Mbit Ethernet
• Debug links: Ethernet, JTAG, SpaceWire
• MIL-STD-1553B, CAN 2.0B, 2 x UART
• SPI master/slave, GPIO, Timers & Watchdog