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1 Introduction

High-performance parallel architectures are becoming a reality in the critical real-time
embedded systems in general, and in the space domain in particular. This is the case of the
NGMP GR740 featuring four LEON4FT SparcV8 cores with fault tolerance support, suitable
for the space domain. In order to exploit the performance opportunities of these processors,
the use of advance parallel programming models becomes of paramount importance.

This project evaluates the use of OpenMP parallel programming model in the space domain.
OpenMP is a well-known and widely adopted parallel programming model in the high-
performance domain, that incorporates a powerful tasking and acceleration execution
models to easily express very sophisticated types of dynamic, fine-grained and irregular
parallelism, facilitating to exploit the huge performance opportunities of the newest multi-
core many-core heterogeneous embedded systems.

OpenMP addresses key issues in practical programmability of current real-time (RT) systems:
the mature support of task definition augmented with features to express data
dependencies among them is particularly relevant for RT systems, in which applications are
typically modelled as periodic direct acyclic graphs (DAG).

Moreover, OpenMP is supported by a large set of current multi-core and many-core
architectures, including the NGMP GR740. Developing systems that can be easily ported
among different platforms is of paramount importance to exploit the performance
opportunities brought by hardware evolutions.

This final report includes deliverables D1.1 (Annex 1), D2.1 (Annex Il) and D3.1 (Annex lll), in
which  OpenMP is evaluated considering four key performance parameters:
programmability, performance, time predictability and OS services required. Concretely:

* In Annex |, Deliverable D1.1 - Report on parallelisation experiences for the space
application investigates OpenMP from a: (1) programmability point of view, devising
three parallelisation strategies for a space application, a pre-processing sampling
application for infrared H2RG detectors targeting both, homogeneous and
heterogeneous parallel architectures; (2) performance point of view, evaluating the
speed-up on four different parallel architectures: A 16-core Intel Xeon, a 274-core
MPPA; and (3) time predictability point of view, evaluating the worst-case response time
of the OpenMP tasking model consider both, dynamic and static allocation approaches.

* In Annex Il, Deliverable D2.1 - Report on the evaluation of current implementations of
OpenMP investigates the performance and memory overhead introduced by the
OpenMP run-time when increasing the number of parallel tasks, and proposes a set of
OS services to execute of OpenMP program with a minimum code footprint impact and
memory requirements for OS targeting the highest critical systems,

* In Annex ll, Deliverable D3.1 - Report on the applicability of OpenMP4 on multi-core
space platforms evaluates the parallel version of the space application considering in
this project under two parallel platforms suitable for space domain, including the RTEMS
SMP OS and two LEON-based processors, i.e. a 4-core LEON3 implemented on a FPGA
and a 4-core NGMP-GR740.

Overall, we conclude that OpenMP is a very convenient parallel programming model for
real-time embedded systems in general, and space systems in particular.

This project has successfully achieved all project objectives, going even beyond of what was
stated in the Statement of Work document, by evaluating OpenMP on a parallel platform
relevant for space and so reaching a TRL of 4.
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2 Future work: Next development activities to reach higher

TRL (5/6)

The next development activities needed to reach TRL 5 or 6 and so consolidate the adoption
of OpenMP into the space domain are the following:

1.

This project demonstrated that the overhead introduced by the run-times may diminish
the benefit brought by parallel computation. Therefore, the development of efficient
and lightweight OpenMP run-times with smaller overheads is desirable to further exploit
finer-grain parallelism and so increase the performance of multi-core architectures such
as the NGMP GR740.

Despite this project has proved that OpenMP is time predictable, the techniques used to
characterise the timing behaviour of parallel regions (tasks) were not accurate enough
to be used in an industrial environment, e.g. the overhead introduced by run-time and
OS context switch were not considered. Therefore, further investigations on sound and
trustworthy timing analysis methods are required.

This project proposed a set of services required to execute OpenMP run-time on top of
Erika Enterprise OS suitable for critical real-time embedded systems. Its implementation
however is still required.

Finally, this project has not addressed the functional correctness of OpenMP programs
required to execute on safety critical environments such as space. Investigations on
compiler techniques to ensure functional correctness are therefore needed.
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Parallel Programming Models for Space Systems
(ESA Contract No. 4000114391/15/NL/Cbi/GM)

Abstract

This report briefly summarises the OpenMP tasking and acceleration execution models, and
devises three parallelisation strategies of the pre-processing sampling application for infra-
red H2RG detectors using the two OpenMP execution models, and targeting shared and a
distributed memory architectures. The presented parallelisation strategies are then
evaluated considering programmability, performance speed-up and time predictability.
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1 Introduction

Multicores and many-cores are becoming a reality in the critical real-time embedded
systems in general, and in the space domain in particular. Examples include the NGMP
GR740 quad core LEON and 256 MPPA Kalray. In order to exploit the performance
opportunities of these processors, the use of advance parallel programming models
becomes of paramount importance.

OpenMP is a well-known and widely adopted parallel programming model in the general-
purpose and high-performance domains. Originally focused on massively data-parallel, loop-
intensive applications, the latest specification of OpenMP (version 4.5, released on
November 2015) has evolved to consider very sophisticated types of dynamic, fine-grained
and irregular parallelism. It also incorporates new features to exploit the performance of the
newest many-core heterogeneous embedded systems, allowing to couple a main host
processor to one or more acceleration devices in which highly parallel code kernels can be
offloaded for improved performance/watt.

OpenMP addresses key issues in practical programmability of current real-time (RT) systems:
It provides mature support for highly dynamic task parallelism, augmented with features to
express data dependencies among tasks. Such points make OpenMP particularly relevant for
RT systems, in which applications are typically modelled as periodic direct acyclic graphs
(DAG). Overall, OpenMP results in an excellent choice for current and future RT systems as:

1. it provides the abstraction level required to program parallel applications, while hiding
the complexities of parallel architectures, and

2. it provides the necessary methodology to exploit the huge performance opportunities of
the newest many-core processors, facilitating the migration of RT systems from
multicore to many-core platforms.

Developing systems that can be easily ported among different platforms is of paramount
importance to exploit the performance opportunities brought by hardware evolutions. This
is in fact one of the objectives of parallel programming models.

Unfortunately, OpenMP adopts a parallel execution model that differs in many aspects from
the RT execution model: The programming interface is completely agnostic to any timing
requirement that the target application may have.

This document evaluates the use of OpenMP in the space domain by presenting our
experiences of parallelising a space application, i.e. a pre-processing sampling application for
infrared H2RG detectors. Concretely, we present three different parallelisation strategies
targeting multi-core and many-core processor architectures. These parallelisation strategies
are then evaluated considering three key evaluation parameters: programmability,
performance speedup and time predictability.

The rest of the document is organized as follows. Section 2 describes the space application
considered in this project and Section 3 introduces the two execution models of OpenMP:
the tasking and the acceleration models. Sections 4 and 5 presents the experiences of
parallelising the space application targeting a shared memory architecture, and evaluate the
parallel versions from a programmability and performance speed-up point of view. Section 6
evaluates the same parallel versions but from a time predictability point of view. Section 7
presents the experiences of parallelising the space application targeting a many-core
heterogeneous architecture. Finally, conclusions are presented in Section 8.
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2 Application description

This project considers a pre-processing sampling application for infrared H2RG detectors
composed of nine sequential stages (in parenthesis, we specify the name of the C function
implementing the corresponding stage):

1.

Get frame stage (named getCoAddedFrame). It simulates the acquisition of a given
number of readouts from the H2RG sensor frame (the number of readouts is defined by
the #frame parameter), and copies it into a 2048x2048 array structure.

Saturation detection stage (named detectSaturation). It detects when pixels go into
saturation in order to reduce the readout noise.

Super-bias subtraction stage (named subtractSuperBias). It removes pixel-to-pixel
variation by subtracting a bias frame from the detector's frame.

Non-linearity correction stage (named nonlinearityCorrection). It corrects the frame
using a 4th order polynomial.

Phase 1 - reference pixel subtraction stage (named subtractPixelTopBottom). It removes
common noise by calculating the mean of odd and even pixels of the first and last 4 rows
and subtract it from the odd and even pixel of the frame

Phase 2 - reference pixel subtraction stage (named subtractPixelSides). It removes
common noise by computing the average of lateral pixels.

Cosmic ray detection stage (named detectCosmicRay). It estimates the disturbances by
cosmic ray.

Linear least square fit stage (named linearLeastSquaresFit). It detects disturbances by
cosmic ray.

Final signal frame stage (named calculateFinalSignalFrame). It updates the frame in the
required format.

Stages 1 to 8 are executed within a loop iterating given number of times (bounded by the
#Groups parameter). Figure 1 shows the sequential execution of the nine stages defined
above.

C 1. getCoAddedFrame
( 2. detectSaturation ] # of
rames
meanFrames ]

# of Groups
[ 5. subtractPixelTopBottom )
( 6. subtractPixelSides )
C 9. calculateFinalSignalFrame )

Figure 1. Pre-processing sampling application stages.

2.1 Sensor frame readout simulation

The getCoAddedFrame function incorporates a random system call to simulate space
radiation during the sensor data acquisition, which impacts negatively on the overall



Parallel Programming Models for Space Systems BSC - Evidence
ESA Contract No. 4000114391/15/NL/Cbi/GM

performance of the application. Because the variations on the input data introduced by the
random system call does not impact on the overall execution time of the application, the use
of random values is not representative of the physical data acquisition occurring into a real
system.

To that end, the results presented in this project do not consider this first stage, and assume
that the physical process of sensor data acquisition is overlapped with the computation of
the previous acquired frame as shown in Figure 2. In any case, the overall performance of
the application will be limited by the readout rate of the H2RG sensor".

Figure 2. Pipeline parallelisation strategy between the frame acquisition and frame
processing.

3 The OpenMP parallel programming model

OpenMP? (Open Multi-Processing) is a de-facto parallel programming standard for shared
memory architectures widely adopted in high performance computing domain. With the
recent introduction of many-core heterogeneous processors targeting the embedded
domain, OpenMP is increasingly receiving a lot of attention from this domain as well.

3.1 Evolution of OpenMP

Up to specification 2.5 (2005), OpenMP supported the traditional fork-join execution model
focused on massively data-parallel, loop-intensive applications, following the single program
multiple data programming paradigm. To do so, OpenMP provided threads as an abstraction
layer upon which programmers could assign the code segment to be executed in parallel.
Latter, during the parallel execution, the OpenMP run-time assigns threads to cores
following the execution model defined by OpenMP specification.

With the introduction of OpenMP 3.0 specification® (2008), the task directive was
introduced, exposing a higher level of abstraction to programmers. A task is an independent
parallel unit of work, which defines an instance of code and its data environment executed
by a given available OpenMP thread. This new model, known as tasking model, provides a
very convenient abstraction of parallelism, being the run-time in charge of scheduling tasks
to threads.

With the introduction of OpenMP 4.0 specification® (2013), OpenMP evolved to consider
very sophisticated types of fine-grained, irregular and highly unstructured parallelism, by
enabling a mature support to express dependencies among tasks. Moreover, it incorporated
for the first time, a new acceleration model including features for off-loading computation
and data transfers between the host and the accelerator device.

! Full-frame readout rates from less than 0.1 Hz to 76 Hz according to
http://panic.iaa.es/sites/default/files/H2RG_Brochure_rev6_v2_ 2 OSR.pdf
? http://openmp.org

® http://www.openmp.org/mp-documents/spec25.pdf

* http://www.openmp.org/mp-documents/spec30.pdf

> http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
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The latest OpenMP specification, 4.5° (2015), enhances the previous accelerator model by
coupling it with the tasking model.

3.2 Tasking and acceleration model of OpenMP4.5

An OpenMP program starts with a single thread of execution, called the master or initial
OpenMP thread, that runs sequentially. When the thread encounters a parallel
construct, it creates a new team of threads, composed of itself and n - 1 additional threads
(n being specified with the num threads clause). The use of work-sharing constructs
allows specifying how the computation within a parallel region is partitioned among the
threads.

3.2.1 Tasking model

The tasking execution is supported by the task directive. When a thread encounters it, a
new task region is generated from the code contained within the task. The execution of the
new task region can then be assigned to one of the threads in the current team for
immediate or deferred execution, based on the depend clause’, which allows to describe a
list of in, out or inout dependences on target data items. If a task has an in dependence
on a variable, it cannot start executing until the set of tasks that have out and/or inout
dependences on the same variable complete. Dependences can only be defined among
sibling tasks, i.e. tasks created within the same task region.

All tasks bound to a given parallel region are guaranteed to have completed at the implicit
barrier at the end of the parallel region, as well as at any other explicit barrier directive.
Synchronization over a subset of explicit tasks can be specified with the taskwait
directive, which forces the encountering task to wait for all its first-level descendants to
complete before proceeding.

3.2.2 Accelerator model

The OpenMP accelerator model, supported by the target directive, implements a host-
centric model in which the host is the responsible of orchestrating the offloads to the
accelerator devices. When a target directive is encountered, a new target task is
generated, enclosing the target region. The target task is completed after the execution of
the target region finishes. The target task is executed immediately by the encountering
thread unless a nowait clause is present, which may defer the execution of the target task.

The enclosed target region is sequentially executed in the accelerator device by the initial
thread until a parallel directive is encountered. The source-code implementation enclosed
within a target must ensure that the target region executes as if it were executed in the
data environment of the accelerator device®. The map clause specifies the data items that
will be mapped into current target’s data environment, copying the data value either from
the host to the device (using the to clause), or from the device to the host (using the from
clause).

One of the most interesting features of the new accelerator model supported in v4.5
specification is the integration of the acceleration and the tasking model. The target
directive supports the depend clause, which allows describing in, out or inout
dependences on data items among tasks.

® http://www.openmp.org/mp-documents/openmp-4.5.pdf
7 OpenMP also includes the untied, if and final clauses that are not explained in this report.

8 . . . . .
Unless an if clause is present and its associated expression evaluates to false.

10
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4 Parallelisation strategy 1

This project considers a data parallelisation strategy in which the frame is divided into NxN
blocks, each being potentially executed in parallel by application stages.

Unfortunately, there exist data dependencies among the different stages, which limit
application's parallelization degree. Concretely, the two phases of the reference pixel
subtraction stage process the elements of the frame in an order different from other stages,
requiring previous stages to complete before starting them.

Figure 3 shows the data dependencies, in the form of a task dependency graph (TDG)?,
existing among the different stages when dividing the frame in 16 blocks (N = 4) and
assuming #Groups = 1. As shown, functions detect-Saturation, subtractSuperBias,
nonlinearityCorrection, detectCosmicRay, linearLeastSquares-Fit and calculateFinalSignal-
Frame can process the 16 blocks in parallel. This is not the case of subtractPixelTopBottom,
and subtractPixelSides functions, which reduce considerably the level of parallelism. The
Figure also includes the getCoAddedFrame function that cannot be parallelised as explained
above.

User functions:

[ subtractPixelSides [ detectSaturation [] getCoAddedFrame [ linearLeastSquaresFit W subtractSuperBias

[ calculateFinalSignalFrame [ detectCosmicRay | nonLinearityCorrection [ subtractPixelTopBottom

Figure 3. Data dependencies (in the form of TDG) among stages when dividing the frame in
16 blocks.

4.1 Parallel implementation with the tasking model

Figure 4 shows the use of the task directive, on a portion of the space application;
concretely when the functions subtractSuperBias, nonLinearityCorrectionPolynomial,
subtractReferencePixelTopBottom and subtractRefe-rencePixelSides are called.

For each of the blocks in which the frame array data structure is divided (determined by the
DIM Y and DIM X parameters in the source code), the for-loop processes each block with
the corresponding application stage. The computation of each stage is assigned to a task,

° The TDG has been generated with Mercurium (https://pm.bsc.es/mexx) , source-to-source compiler
developed at BSC.

11
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enriched with the depend clause to express the dependencies existing among the
different stages and shown in Figure 3. Hence, when the computation of function
subtractSuperBias upon  block [i,j] finishes, the computation of function
nonlLinearityCorrectionPolynomial upon block [i,j] can start executing as defined by the
input/output dependency over p[0:bs].

When dependencies cannot be defined, the use of a taskwait directive acts as a barrier,
ensuring that all tasks complete before continuing the computation. A taskwait directive
is used to synchronise the execution of subtractReferencePixelTopBottom and
subtractReferencePixelSides functions.

for (i=0; 1 < DIM Y; i++)
for (j=0; j < DIM X; j++)
p_block type p = (*currentFrame[groupNumber-1]) [i][]];
#fpragma omp task depend (in: biasFrame[i][Jj], inout: p[0:bs])
firstprivate (i, j)
subtractSuperBias (*currentFrame [groupNumber-1],biasFrame,i,3j);

for (i=0; 1 < DIM Y; i++)
for (j=0; j < DIM X; j++)
p_block type p = (*currentFrame[groupNumber-1]) [i][]];
#fpragma omp task depend (in: coeffOfNonLinearityPolynomial)
depend (inout: p[0:bs]) firstprivate (i, j)
nonlLinearityCorrectionPolynomial (*currentFrame [groupNumber-1],
coeffOfNonLinearityPolynomial,
i, j);
#pragma omp taskwait
for (j=0; j < DIM X; j++)
#pragma omp task firstprivate (j)
subtractReferencePixelTopBottom (*currentFrame [groupNumber-1], Jj);

#pragma omp taskwait
subtractReferencePixelSides (*currentFrame [groupNumber-17]) ;

Figure 4. Portion of the application parallelised with the tasking model.

4.2 Performance evaluation

Figure 5 shows the performance speed-up resultant of the parallelisation, when varying the
number of blocks in which the sensor frame is divided, ranging from 1 to 1024. Experiments
have been conducted on a two Intel(R) Xeon(R) CPU E5-2670 processor, featuring 8 cores
each and 20 MB L3. The performance speed-up has been computed taking as a baseline the
sequential execution of the application, i.e. when the number of blocks equals to 1.

As expected, the performance speed-up increases as the number of blocks in which the
frame is divided increases as well, reaching a performance peak of 7x when the frame
contains 64 blocks. Then, the performance starts degrading when the sensor frame is
divided in more than 64 blocks, having almost no performance benefit when considering
1024 blocks.

This performance degradation is because of a twofold reason:

1. As the number of blocks in which the sensor frame is divided increase, the number
of tasks created at run-time increase as well, which in turns increases the run-time
overhead.

12
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2. The size of the block computed by each task is too little, and so the run-time
overhead introduce by the run-time dominates on the execution.

7
6 -
5 L
=
5 4
(0]
8 3
wn
2t
1
0 ‘ ‘ Parallelisation strategy 1 —%—
1 4 16 64 256 1024

# of blocks

Figure 5. Application's performance speed-up when parallelizing considering the tasking and
fork-join execution models.

Table 5 relates the number of blocks in which the sensor frame is divided, with the number
of tasks created'®and the size of each block processed by tasks. Hence, when matrix is
divided in 1024 blocks, 26784 tasks are created, each processing a matrix of 64x64 elements.
The workload to be computed by each task is too little (and so its execution time), making
run-time overhead resultant of managing such a high number of tasks, to dominate over
application's execution time. Deliverable D2.1 - Report on the evaluation of current
implementations of OpenMP4, further discusses it.

Table 1. Number of created tasks at run-time and size of the sub-frame processed by each
task, when dividing the sensor frame in blocks.

Number of blocks | Created tasks Block size
1 31 2048x2048
4 114 1024x1024
16 436 512x512
64 1704 256x256
256 6736 128x128
1024 26784 64x64

4.3 Analysis of the parallel execution

In order to further investigate the parallel performance of the space application, we use
Paraver'!, a performance analysis tool developed at BSC, used to visualize how parallel
applications make use of computing resources. Paraver is a flexible data browser that
enables the support of new parallel platforms (e.g. the multi-core NGMP GR740) by simply
capturing the events under analysis (e.g. execution time, communication load, power
consumption) following the Paraver trace format. Moreover, metrics are not hardwired on

09t s important to remark that data dependencies existing among tasks may limit the parallel
execution. For example, when only 1 block is considered, the 31 created tasks are executed

sequentially due to the data dependencies existing among them.
11 .
http://www.bsc.es/computer-sciences/performance-tools/paraver

13
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the tool but programmed by means of functions, allowing to display a large number of
different metrics.

Figure 6 shows a snapshot of Paraver, representing the parallel execution time of the tasking
model, considering that the frame is divided in 16 blocks and executed in the Xeon(R) CPU
E5-2670 processor with 16-cores. Each bar in the figure represents the execution time of
each function in one core (the same colour code presented Figure 3 is considered). We can
infer the following conclusion: Despite the execution of each function is well balanced,
dependencies towards subtractPixelSides function (purple bar) serialised completely the
execution of the application, which reduces considerably the parallelism.

New window #1 @ preProcessingFixedPoint-instr-512_omp40.prv

Figure 6. Paraver snapshot of the parallel execution of the space application.

Next section describes a new parallel version of the application to overcome the limitations
observed in Figure 6.

5 Parallelisation Strategy 2

e @ o © 06 06 06 06 06 06 06 0 0 0 0 o

Figure 7. Application's TDG of the new parallelisation strategy in which the #Groups loop is
parallelised.

In order to better use the core resources, we refine the previous parallelisation strategy by
allowing execution in parallel of multiple iterations of the loop bounded by the #Groups
parameter (see Figure 1). To do so, it is assumed that the system has #Groups sensor
readouts ready to be processed by the application. Figure 7 shows the new TDG of the
application, assuming that #Groups equals to 3.

14
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It is important to remark that in order to efficiently reduce the overall application's response
time, a working backlog needs to efficiently fill the cores. The simultaneous execution of
multiple #Group iterations makes one single iteration to be delayed due to interferences
with computation coming from other iterations. However, the overall application's response
time is reduced as will be seen in the next section.

5.1 Performance evaluation

Figure 8 shows the performance speed-up of the new parallelisation strategy. As shown, the
tasking model significantly increases the performance speed-up from 7x of 11x, compared to
the previous parallelisation strategy. The reason is because the depend clause enables to
efficiently synchronise the execution of multiple stages over different sensor readouts, while
correctly fulfilling data dependencies.

11
10 +
9
8 L
o 7 ¢
g 5
n 4 |
3
2 ¢ o
1 Parallelisation strategy 2 —%—
0 ‘  Parallelisation strategy 1 —%—
1 4 16 64 256 1024
# of blocks

Figure 8. Application's performance speed-up of the new parallelisation considering the
tasking and fork-join execution models.

5.2 Analysis of the parallel execution

Figure 9. Paraver snapshot of the execution of new parallel version of the application.

15
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Figure 9 shows a Paraver snapshot of the parallel execution of the new parallelisation
strategy, using the same colour code as the one shown in Figure 3*2. From this figure, we can
observe that the use of the tasking model enables to better balance the parallel execution
among cores, and so better performance can be achieved.

6 Time Predictability of OpenMP

The current specification of OpenMP lacks any notion of real-time scheduling semantics,
such as deadline, period or worst-case execution time (WCET). Nevertheless, the structure
and syntax of an OpenMP program have certain similarities with the DAG-based scheduling
model™™. This section evaluates the response time analysis of the parallel strategy 1 (see
Section 3), considering an Intel(R) Core(TM) i7-4600U CPU running at 2.10GHz and featuring
4 cores.

6.1 OpenMP and DAG- based real-time scheduling

In scheduling theory, the real-time task model, either sporadic or periodic, is a well-known
model to represent real-time systems. In this model, real-time applications are typically
represented as a set of n recurrent tasks t = {t;, 1, .., T, }, each characterized by three
parameters: worst-case execution time (WCET ), period (T) and relative deadline (D). In the
DAG-based scheduling model, the representation of each task (called DAG-task) is enhanced
by representing it with a directed acyclic graph (DAG) G = (V,E), plus a period and a deadline.
Each node u € V denotes a sequential operation or job, characterised by a WCET estimation.
Edges represent dependencies between jobs: if (U, uy) € E then the job u; must complete
its execution before job u, can start executing. In other words, the DAG captures scheduling
constraints imposed by dependencies among jobs, annotated with its WCET estimation.

Clearly the OpenMP tasking model resembles the DAG-based scheduling model: An OpenMP
application corresponds to the DAG-task; nodes in G, i.e. jobs upon which timing analysis is
derived, corresponds to OpenMP tasks; and edges in the G corresponds to dependencies
defined with the depend clause. A method to construct the corresponding OpenMP-DAG
from an OpenMP application is presented *.

6.2 Response time analysis of the space application

In order to evaluate the time predictability of the space application, we compute the
response time upper bound (R“b) (also referred as worst case makespan®®), which determines
the maximum execution time of an application when considering the potential interferences
the application may suffer when allocating all nodes from the DAG in a limited number of
cores (taking into account dependencies).

Ptis important to remark that the time scale in both Paraver snapshots is different, so shorter bar
lengths does not mean shorter execution time of functions.

* Roberto Vargas, Eduardo Quinones and Andrea Marongiu, OpenMP and Timing Predictability: A
Possible Union?, In DATE 2015

* Maria A. Serrano, Alessandra Melani, Roberto Vargas, Andrea Marongiu, Marko Bertogna and
Eduardo Quifiones, Timing Characterization of OpenMP4 Tasking Model, in CASES 2015

15 Roberto E. Vargas, Sara Royuela, Maria A. Serrano, Xavier Martorell, Eduardo Quifiones, A
Lightweight OpenMP4 Run-time for Embedded Systems, in AspDAC 2016
® The makespan of a set of precedence constrained jobs, in our case OpenMP tasks, is defined as the
total length of the schedule, i.e., response-time, of the collection of jobs
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6.2.1 Work-conserving dynamic scheduler

When considering a work-conserving dynamic scheduler'’, as the one implemented in the
OpenMP run-time from GNU-GCC (libgomp, see deliverable D2.1 - Report on the evaluation
of current implementations of OpenMP4 for further details), the response time upper bound
can be computed by means of a schedulability test. In this project we consider the one
derived in * and expressed as follows:

R — len(G) + % (vol(G) — len(@))
In which:

* Gisthe OpenMP-DAG extracted from the OpenMP application;
* len (G)is critical path of G, i.e. the longest chain in G;
* vol(G) is the sum of all WCETs of jobs in G.

The reasoning behind the schedulability test is the following:

* The len(G) factor determines the fastest execution time of the application, assuming an
infinite number of available cores. Under this ideal scenario, nodes not belonging to the
critical path can never interfere its execution, as there is always an available free core.

* The (vol(G) - len(G))/m factor corresponds to the even distribution of the workload not
belonging to the critical path among the m cores available in the targeted architecture.
The evenly distribution is only valid if a work-conserving scheduling strategy is
considered.

* OQverall, a response time upper bound adds to the len(G) factor, the maximum potential
interference coming from the (vol(G) - len(G))/m factor.

6.2.2 Static scheduler

When the scheduler is statically defined, the core in which each node executes is predefined
at system design. The use of static approaches is required in critical real-time embedded
systems, such as avionics or automotive.

The response time minimization problem of DAG-based applications on parallel
architectures is known to be NP-hard, and so sub-optimal static allocation approaches have
been proposed *. The following priority rules have been shown to perform well in the
context of parallel scheduling:

* longest Processing Time (LPT): the job with the longest WCET is selected;

* Shortest Processing Time (SPT): the job with the shortest WCET is selected;

* Largest Number of Successors in the Next Level (LNSNL): the job with the largest number
of immediate successors is selected;

* largest Number of Successors (LNS): the job with the largest number of successors
overall is selected;

* lLargest Remaining Workload (LRW): the job with the largest workload to be executed by
its successors is selected.

6.2.3 Timing analysis of nodes in DAG

In order to derive the WCET estimation of each node in the OpenMP DAG (required to
compute the response time), we measure the execution time of each OpenMP task in

17 . . . .

In a work-conserving scheduler, ready jobs are always executed if free cores are available.
Bk E Raheb, C. T. Kiranoudis, P. P. Repoussis, and C. D. Tarantilis. Production scheduling with
complex precedence constraints in parallel machines. Computing and Informatics, 24(3), 2012.
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isolation, i.e. without suffering any software and hardware interferences, and increase it by
a safety margin of 40%. This safety margin has been computed by observing the execution
time variation of each node under execution scenarios with different level of interferences™.
It is important to remark that in order to derive a trustworthy response time analysis, it
would be required to compute the WCET estimation with a more accurate and sound timing
analysis method. The objective of this section however, is to demonstrate the applicability of
response time analysis methods to OpenMP applications, rather than investigating
trustworthy WCET analysis methods for parallel computation.

6.2.4 Response time upper-bound

Table 2 shows the response time (in milliseconds) of the dynamic and static scheduling
approaches presented above. Moreover, the Table also shows the actual execution time of

Actual . Sub-optimal static schedulers
. Work-conserving
Execution .
time dynamic scheduler | | pt SPT | LNSNL | LNS LRW
96 130.71 117.33 | 119.86 | 117.36 117.36 11801

the application, executed on the multi-core platform considered in this Section.

Table 2. Response time analysis of the space application (in miliseconds).

Actual . Sub-optimal static schedulers
. Work-conserving
Execution .
time dynamic scheduler | |pT | spT | LNSNL | LNS LRW
96 130.71 117.33 | 119.86 | 117.36 117.36 11801

When considering a work-conserving dynamic scheduler, the response time upper-bound
presented above is only 29% higher that the observed execution time. In case of static
schedulers, the response time upper-bound is even tighter, being only 19% higher than the
observed execution time. Overall, we conclude that OpenMP tasking model can be
effectively timing analyse.

It is important to remark that the response time analysis does not take into consideration
the run-time overhead. In fact, the purpose of this analysis is to demonstrate that OpenMP
applications can be effectively analysed. Therefore, a more accurate and sound response
time analysis is required to be investigated.

7 Exploring heterogeneous parallel execution

The latest specification of OpenMP (4.5, released on November 2015) introduces a new and
powerful acceleration execution model (by means of the target directive), to support
heterogeneous parallel computing, enabling OpenMP to exploit the huge performance
opportunities of many-core heterogeneous platforms implementing distributed memory.

In order to explore the performance opportunities of a many-core heterogeneous
architecture, in our case a Kalray MPPA processor architecture, we have developed a new
parallel version of the application incorporating the target directive. The strategy adopted

% Gabriel Fernandez, Javier Jalle, Jaume Abella, Eduardo Quifiones, Tullio Vardanega and Francisco J
Cazorla, Resource Usage Templates and Signatures for COTS Multicore Processors, in DAC 2015
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is to transfer to the accelerator devices of the selected architecture, a set block of frames to
be processed in parallel. The purpose of this exercise is not to derive the most efficient
parallelisation of the application, but to demonstrate the parallelisation opportunities
brought by the OpenMP acceleration model.

~
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Figure 10. MPPA-256 processor architecture composed of 4 I/O subsystem (host) and 16
clusters (device).

Figure 10 shows a blocking diagram of the MPPA many-core architecture. The MPPA
architecture incorporates 4 host subsystems (I/O in MPPA nomenclature) composed of a 4-
core processor each (cores in the 1/O are named resource managers or RM), and a many-
core fabric composed of 16 acceleration devices (clusters in MPPA nomenclature) featuring
16-cores each connected to a 2MB on-chip memory (cores in the clusters are named
processing elements or PM). This imposes a limitation on the data transfer and processes
within a cluster, as only the sensor frame processed by the application occupies 8 MB.

Table 3 shows the memory requirements of input (/N), and input/output (/INOUT) data
dependencies required to compute each application stage, under the following execution
conditions:

¢ The column labelled as Full Frame shows the overall memory needed to store each
data structure when the full frame is considered at each stage (sequential version).

¢ The column labelled as 64-block Frame shows the memory requirements of each
stage when processing in parallel 1, 2 and 4 blocks, assuming that the frame is
divided in 64 blocks (parallel version). Notice that the size of some of the data
structures reminds the same when considering different number of blocks.

* The column labelled as Blocks per stage shows the overall memory requirements to
execute a subset of stages within a cluster, assuming that 2 and 4 blocks are
simultaneously available in memory. This column uses the green and red colors to
indicate when memory data structures that fits and do not fit respectively within the
cluster local memory.

As shown, the memory requirements to process in parallel functions detect-Saturation,
subtractSuperBias, nonLinearityCorrection among 4 blocks is around 1 MB, fitting within a
cluster memory. In case of functions detectCosmicRay, linearLeastSquares-Fit and
calculateFinalSignal-Frame, 4 blocks cannot be processed in parallel as it requires 3 MB, and
so only 2 can be processed, requiring 1.5 MB of memory.

The subtractPixelTopBotton function fits within a cluster, requiring a complete column of the
frame of 1 MB to execute. It is important to remark that 4 extra blocks are required to be
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transferred to the cluster in which this function executes, i.e. 8 blocks correspond to a set of
complete columns.

In case of subtractReferencePixelSides function, it cannot be executed within a cluster as it
requires the full frame, and so it executes on the |0.

Table 3. Overall memory requirements of each application stage on the full frame and on
each block, assuming that the frame is divided in 64 blocks.

Memory requirements

In/Out data per Stage 64-block Frame Blocks per stages
Full Frame 1block 2blocks 4 blocks | 2 blocks 4 blocks
2. detectSaturation 136 KB 272 KB 544 KB
IN currentFrame[N][N][BS][BS] 8 MB 128 KB 256 KB 512 KB
IN saturationLimit[] 64 bytes 64 bytes 64 bytes 64 bytes
INOUT saturationFrame[N][N][BS][BS/32] 512 KB 8 KB 16 KB 32 KB
3. subtractSuperBias 256 KB 512 KB 1MB 528 KB + 1MB +
INOUT currentFrame[N][N][BS][BS] 8 MB 128kB  256kB  512KB | bytes 32 KB +
INoUT biasFrame[N][N][BS][BS] 8 MB 128 KB 256 KB 512 KB 320 bytes
4. nonLinearityCorrectionPolynomial 128 KB 256 KB 512 KB
INouT currentFrame[N][N][BS][BS] 8 MB 128 KB 256 KB 512 KB
IN coeffOfNonLinearityPolynomial[][] 256 bytes | 256 bytes 256 bytes 256 bytes

5. subtractReferencePixelTopBottom

1 MB (1 col
INOUT currentFrame[N][N][BS][BS] 8 MB 1MB S

composed of 8 blocks)

6. subtractReferencePixelSides 8 MB (complete matrix

G EaEas O () e e

INOUT currentFrame[N][N][BS][BS] 8 MB 8 MB )
7. detectCosmicRay 832 KB 1,62MB 3,25 MB
IN currentFrame[N][N][BS][BS] 8 MB 128KB  256KB 512 KB
IN sumXYFrame[N][N][BS][BS] 16 MB 256KB 512 KB 1 MB
IN sumYFrame[N][N][BS][BS] 16 MB 256 KB 512 KB 1MB
INoUT offsetCosmicFrame[N][N][BS][BS] 8 MB 128 KB 256 KB 512 KB
INoUT numberOfFramesAfterCosmicRay[N][N 4 MB 64 KB 128 KB 256 KB
8. progressivelinearLeastSquaresFit 776 KB 1,5 MB 3 MB
IN currentFrame[N][N][BS][BS] 8 MB 128 KB 256KB 512 KB 1,5 MB 3 MB
INouT sumXYFrame[N][N][BS][BS] 16 MB 256 KB 512 KB 1MB 144 KB 288 KB
INOUT sumYFrame[N][N][BS][BS] 16 MB 256KB 512 KB 1 MB
IN offsetCosmicFrame[N][N][BS][BS] 8 MB 128 KB 256 KB 512 KB
IN saturationFrame[N][N][BS][BS/32] 512 KB 8 KB 16 KB 32 KB
9. calculateFinalSignalFrame 512 KB 1MB 2 MB
IN sumXYFrame[N][N][BS][BS] 16 MB 256 KB 512 KB 1MB
INOUT sumYFrame[N][N][BS][BS] 16 MB 256KB 512 KB 1 MB

Figure 11 shows the distribution of functions among the different clusters (devices) and 10
(host) in a simplified version of the TDG processing 16 blocks, rather than 64.
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Figure 11. Parallel distribution of the application within the MPPA architecture.

7.1 Evaluation on the MPPA

Table 4 shows the execution time (in seconds) when running each of the execution phases
described in Figure 11 (cluster execution phases 1, 2 and 3, and the /0 execution phase) into
a single 10 core (labelled as Sequential Time), and when spawning each execution phase
among multiple clusters (labelled as Parallel Time).

As shown the execution time drastically decreases, when the application is executed in
parallel within clusters. Overall, we achieve a performance speed-up of 8.3x. Clearly, the 10
execution phase, concretely the subtractPixelTopBotton function, seriously impacts the
parallel execution time as already identified in Figure 6. In fact, this function represents the
50% of the overall execution. The table also presents the performance speed-up of each
cluster execution phase, with speed-ups ranging from 11.41x to 22.17x.

Table 4. Performance speed-up of the pre-processing sampling application when executing
on a MPPA 256 processor architecture, considering the parallelisation strategy devised in
Section 3.

Sequential Time Parallel Time S
(seconds) (seconds)
CLUSTER-Phase 1 69.180 3.120 22.17x
CLUSTER-Phase 2 16.641 1.458 11.41x
I0-Phase 17.360 17.360 1x
CLUSTER-Phase 3 175.799 11.641 15.10x
Overall computation time 278.980 33.579 8.3x

8 Conclusions

In this document, we have evaluated the OpenMP tasking and acceleration execution model
from a programmability, performance and time predictability point of view.

Regarding programmability, we have presented three parallelisation strategies for a pre-
processing sampling application for infra-red H2RG detectors targeting both, homogeneous
and heterogeneous parallel architectures, and demonstrating the capabilities of the
OpenMP tasking and acceleration execution models.
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Regarding performance, the parallelisation strategies using the OpenMP tasking model
(named as strategies 1 and 2) have been evaluated from an average performance point of
view, providing a speed-up of 7x and 11x respectively, on a 16-core homogeneous general
purpose processor architecture (two Intel(R) Xeon(R) CPU E5-2670 processor, featuring 8
cores each). The parallelisation strategy using the accelerator model have been evaluated
only from a average performance point of view on the 256 MPPA many-core heterogeneous
architecture256 MPPA form Kalray, providing a speed-up of 8.3x.

Finally, regarding time-predictability, the OpenMP tasking parallelisation strategy 1 has been
evaluated from a worst-case response time point of view on a 4-core homogeneous general
purpose architecture (an Intel(R) Core(TM) i7-4600U), considering dynamic and static
allocation approaches, providing a response-time upper-bound which is 29% and 19%
respectively higher with respect to the average execution time.

Overall, we conclude that OpenMP is a very convenient parallel programming model for
real-time embedded systems in general, and space systems in particular.
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Annex Il - D2.1. Report on the evaluation of
current implementations of OpenMP

Paolo Gai, Eduardo Quinones
{pj@evidence.eu.com, eduardo.quinones@bsc.es}

June 2016

Dissemination level: All information contained in this document is public

Parallel Programming Models for Space Systems
(ESA Contract No. 4000114391/15/NL/Cbi/GM)

Abstract

This report evaluates libgomp, the current OpenMP4 run-time implementations from GNU

GCC in terms of: (1) run-time overhead, (2) memory usage and (3) required operating system
services.
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1 Introduction

Parallel programming models are a key element to efficiently exploit the parallel
performance opportunities of multi-core architectures such as the NGMP GR740 considered
in this project. Moreover, with the advent of many-core heterogeneous architectures (e.g.
the 256 MPPA processor, also evaluated in this project), the use of parallel programming
becomes mandatory to tame the complexity of programming such complex parallel
architectures.

This project focuses on OpenMP, a parallel programming widely used in high-performance
and general-purpose domain that addresses key issues in practical programmability parallel
systems:

* It provides mature tasking execution model to support highly dynamic and irregular
parallelism, augmented with features to express data dependencies among.

* It provides an acceleration execution model to efficiently couple the parallel execution
occurring in the host and devices.

Deliverable D1.1. Report on parallelisation experiences for the space application evaluates
the use of OpenMP is real-time systems considering three key metrics: programmability,
performance speed-up and time predictability, and demonstrates that OpenMP is a very
convenient parallel programming model to be used in real-time embedded domain in
general, and in the space domain specifically.

This deliverable focus on evaluating the implementation of the OpenMP run-time. That is,
current implementations of OpenMP have not been designed taking into account the
potential execution environment constrains existing in embedded domains due to limited by
hardware resources, operating systems (OS) or application requirements. This is the case,
for example, of on-board space systems targeting the NGMP GR740 processor, the RTEMS-
SMP OS and applications with a limited working set.

Instead, current implementations, e.g. libgomp from GCC or nanos++ from OmpSs, target
general-purpose processors based on linux-like OS. The corresponding run-time implements
large and complex data structures, which result in an important run-time overhead that
must be compensated with large working set applications. There is therefore a necessity to
implement efficient lightweights OpenMP run-times in which the overhead is reduced to the
bare minimum.

The rest of the document is organized as follows. Section 2 describes the current
implementations of the OpenMP software stack. Section 3 evaluates the efficiency, in terms
of performance and memory usage, of current OpenMP run-time implementations. Section
4 describes the OSs used in the embedded domain, and proposed a set of new OS services
required to execute OpenMP. Finally, conclusions are presented in Section 8.

2 The OpenMP software stack

This project considers the OpenMP implementation provided by GNU GCC, known as
GOMP?®. GOMP is composed of four main components®* (see Figure 12):

20 Gec GOMP, https://gcc.gnu.org/projects/gomp/
2! Diego Novillo, "OpenMP and automatic parallelization in GCC", Proceedings of the GCC

Developers Summit, 2006
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1. Compiler, in charge of validating correct syntax
and semantics of OpenMP directives and
clauses as defined by the OpenMP
specification, and emitting the corresponding
call to the OpenMP run-time API.

|#pragma omp task { foo(); }

Front-end Compiler

v

|GOMP7task(m, (void *) foo);

2. API run-time, in charge of providing the run-
time services required to implement OpenMP Libgomp run-time

directive and clauses. High-level
(platform independent)

3. A high-level library (named libgomp),

containing the APl implementation of all user- Low-level

level functions specified by the OpenMP (platform dependent)
standard, as well as the GCC-specific functions ¥

to implement the semantics of the various Operating System
directives. This library uses an internal abstract ‘ Threads H Memory H Synchronization
notion of low-level constructs for threading

and synchronization.
Figure 12. OpenMP software Stack.
4. A low-level library, providing the actual

implementation of the higher-level constructs
on the target platform, usually relying on available services provided by the operating
system (OS).

Next sections discusses the libgomp run-time, evaluating the performance overhead and
memory usage, and discusses on the OS services required to execute it.

3 Evaluation of the OpenMP Run-time

The OpenMP tasking model provides a very convenient abstraction for describing fine-grain
and irregular parallelism, in which the run-time is in charge of scheduling tasks to threads?.
Unfortunately, the management of tasks introduces an extra overhead in the run-time
library, which may diminish the benefits brought by parallel execution, when the number of
tasks managed at run-time is too high. Next section evaluated the run-time overhead and
memory usage of the tasking model.

3.1 Tasking model overhead

Figure 13 shows the performance speed-up of the pre-processing sampling application for
infra-red H2RG detectors considered in this project, applying the parallelisation strategy 2 in
which #Groups loop iterations are executed in parallel (see Section 4 of deliverable D1.1.
Report on parallelisation experiences of the space application for further details), and
executing with two OpenMP run-time libraries: libgomp from GCC GNU and Nanos++ from
OmpSs®. In order to better understand this figure it is important to consider Table 5
(already presented in deliverable D1.1), which relates the number of blocks in which the
sensor frame is divided, with the number of tasks created, and the size of each block
processed by tasks.

*?See deliverable D1.1 - Report on parallelisation experiences of the space application, for further
information

2 OmpSs is a parallel programming model compatible with OpenMP and developed by BSC whose
objective is to investigate on asynchronous parallelism and heterogeneity (devices like GPUs). The
framework is composed of the source-to-source compiler Mercurium compiler and the nanos++
runtime system.
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Table 5. Number of created tasks at run-time and size of the sub-frame processed by each
task, when dividing the sensor frame in blocks.

Number of blocks | Created tasks Block size
1 31 2048x2048
4 114 1024x1024
16 436 512x512
64 1704 256x256
256 6736 128x128
1024 26784 64x64

As shown, nanos++ obtains the peak performance when each task operates over an input
working set of 512x512 elements (436 tasks are created, see Table 1). Instead, libgomp
enables tasks to operate over a smaller working set (256x256 elements), while still
increasing performance.

12

Libgomp —+—
Nanos++ —>¢—

10 ¢

SpeedUp
[0}

100 1000 10000
# of tasks

Figure 13. Performance speed-up of the space application when executing with two
OpenMP4 runtimes: libgomp and nanos++.

In order to ensure that tasks are executed in the correct order as imposed by the depend
clause, libgomp and nanos++ build the TDG at run-time for a twofold reason: (1) the TDG
depends on the tasks that are instantiated (and so executed), which is determined in turn by
the control flow graph (CFG); and (2) the addresses of the data elements upon which
dependencies are build, are known at run-time.

Hence, when a new task is created, its in and out dependencies are matched against those
of the existing tasks. To do so, each task region maintains a hash table that stores the
memory address of each data element contained within the out and inout clauses, and
the list of tasks associated to it. The hash table is further augmented with links to those tasks
depending on it, i.e. including the same data element within the in and inout clauses. In
this way, when a task completes, the run-time can quickly identify its successors, which may
be ready to execute.

As shown in Figure 1, libgomp makes a more efficient use of the hash-table than nanos++ as
the number of tasks increases. The reason is because nanos++ allows defining dependencies
between two arrays in which their elements are partially overlapped, introducing an extra
overhead when the number of tasks is very high. This property further facilitates
programmability, as it is not require identifying which exact elements overlap, but simply
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defining a dependency between arrays. However, the programmability benefits are
diminished by the performance degradation when small working sets are considered.

Overall, in order to exploit fine-grain parallelism in which tasks can operate over small
working sets, it is fundamental to develop lightweight run-times with very small
performance overhead.

3.2 Memory Consumption

Building the TDG at run-time requires storing the hash tables in memory until a taskwait
or a barrier directive is encountered. Since dependencies can only be defined between
sibling tasks, when such directives are encountered, all tasks in their binding region are
guaranteed to finish. Removing the information of a single task at completion would result
too costly, because dependent tasks are tracked in multiple linked lists in the hash table. As
a result, the memory consumption may significantly increase as the number of instantiated
tasks between two synchronization directives increase as well.

Such memory consumption is not a problem in general-purpose systems, in which large
amounts of memory are available. However, this is not the case in the newest many-core
embedded architectures. For example, the MPPA processor integrates 16 clusters of 16-
cores each, with a 2 MB on-chip private memory per cluster. Despite the overall size of the
MPPA memory is 32 MB, clusters only have access to their private memory. The rest of
memory is accessible through DMA operations (with a significant performance penalization),
and so it is highly recommended that the complete program (including the OpenMP run-
time library) resides within the private memory.

Figure 14 shows the memory consumed by libgomp at run-time when applying the
parallelisation strategy 1, and new parallel version in which the taskwait directives have
been replaced by fake dependencies that emulate the exact same functionality, with the
objective of artificially increasing the memory requirements of the hash-table, by
maintaining it until the end of the program (labelled as dummyDeps). The memory usage has
been extracted using Valgrind Massif [14] tool, which allows profiling the heap memory
consumed by the run-time in which the TDG structure is maintained.

12000 ; : :
Parallelisation strategy 1 - dummyDeps
10000 Parallelisation strategy 1 —¥— 1
8000 A
T 6000 | :
4000 + 1
2000 + |
0 ¥ 2z sz *—X %
1 4 16 64 256 1024
# of blocks

Figure 14. Heap memory consumption due to maintain the TDG data structure at run-time.

As the number of instantiated tasks increases, the memory consumed by the run-time
increases as well. However such increment is very small in case of the Parallelisation
strategy 1, since the taskwait directive releases the hash-table structures from time to
time. This is not the case when the taskwait directive is replaced by fake dependencies,

28



Parallel Programming Models for Space Systems BSC - Evidence
ESA Contract No. 4000114391/15/NL/Cbi/GM

as it is shown in the dummyDeps curve, in which the memory used rapidly increases as the
number of instantiated tasks increases as well.

Figure 15 shows the performance speed-up obtained for each of the parallel versions
analysed in Figure 14. As expected the extra dependencies introduced by dummyDeps harms
the performance speed-up.
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Figure 15. Performance speed-up of the three parallelisation strategies when the number of
instantiated tasks increases.

4 Services to support OpenMP low-level run-time

The libgomp run-time is fully supported on Linux, which essentially implements a wrapper
around the POSIX threads library®* (with some target-specific optimizations for systems
supporting lighter weight implementations such as the use of locking primitives
implemented with atomic instructions and futex system calls), and provides support for
thread-local storage. In fact, with few exceptions, most of the synchronization mechanisms
implemented in libgomp are "simply" a direct mapping to the underlying POSIX routines.

Therefore, any OS supporting POSIX APl already provides (in principle) the set of
functionalities required to support the OpenMP software stack. One example is RTEMS®
that indeed, already supports the OpenMP programming model ?°. Deliverable D3.1. Report
on the applicability of OpenMP4 on multi-core and many-core space platforms, discusses on
the support that RTEMS provides on OpenMP.

This section evaluates the services that a non-compliant POSIX OS requires to support
OpenMP. OS not supporting POSIX are commonly minimal OSs used in constrained critical
real-time systems such as avionics and automotive domain, implementing tiny and
specialized API. Among them, we can find ERIKA Enterprise’’, a minimal OS developed by
partner Evidence that provides hard real-time guarantees. This report considers ERIKA in the
explanation to better illustrate our ideas.

24 pOSIX Threads, https://en.wikipedia.org/wiki/POSIX_Threads
> RTEMS RTOS, https://www.rtems.org

?® OpenMP RTEMS project, https://devel.rtems.org/wiki/OpenMP

*” Erika Enterprise RTOS, http://erika.tuxfamily.org
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4.1 Minimal OS vs. POSIX pthreads

The structure of the free and commercial OS existing in the market is heavily influenced by
the OS API they implement, especially those OS targeting real-time (RTOS). If we want to
make a classification, we can roughly divide them in three areas described below.

4.1.1 POSIX compliant RTOS

In this area, we include all the RTOS and general-purpose systems implementing the POSIX
specification, either in its complete form or in a reduced form (such as the IEEE 1003.13
PSE51 specification).

The main characteristic of this class of kernels is the availability for the user of a number of
API|, that include an “almost” complete libC (PSE51 kernels may lack a subset of the
specification), and at least the pthread API.

As a reference number, a system implementing a complete PSE51 kernel will include the
implementation of a few hundred functions, with a code footprint of at least 50 KB. Among
those functions, we want to cite the dynamic creation of threads, mutex, semaphores, etc.,
as well as the dynamic creation of signal handling, memory allocation, and device drivers
accessed often by means of a device file-system.

Linux and RTEMS are part of this group of kernels.

4.1.2 Dynamic RTOS

In this context, with Dynamic RTOS we intend a minimal RTOS that tries to implement a rich
set of primitives in a custom way, often mimicking their POSIX “big cousins".

Among the primitives offered by those kernels, we cite thread/semaphores/message queues
dynamic creation, (sometimes) a tiny memory allocator, and a set of device drivers to
directly access the microcontroller peripherals. The scheduler is typically a priority
scheduler, sometimes with limited support for round robin threads (as opposed by the more
complex POSIX real-time scheduler available in the bigger kernels).

These kernels often are available for small microcontrollers, and their target is to provide
flexibility of programming (thanks to the rich API) with a reasonable footprint (in the order
of 5-20 Kb).

Examples of this group of RTOS are FreeRTOS, emb0S, MQX, ChibiOS, and others.

4.1.3 Static RTOS

With a Static RTOS we intend a further reduction in flexibility in the operating system API,
meant to target low cost and hard real-time scenarios. The typical example of this group is
the automotive standard APlI OSEK/VDX as well as its extension made in AUTOSAR OS.

This class of kernels are tiny schedulers, which implements an APl composed by a few tens
of functions. They basically implement a minimal fixed priority scheduler with immediate
priority ceiling support, plus periodic activation and limited support for blocking primitives.
Memory allocation is not available, and dynamic creation of objects is forbidden (all the
configuration is handled using special configuration languages, parsed by specific
configuration tools).

Another notable feature available is that the system can implement a single stack
configuration, with threads sharing their stack thanks to a run-to-completion semantic. This
allows a further reduction on the memory footprint, which is typically in the range of 2to 5
KB.
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An example of this class of kernels is ERIKA Enterprise, analysed in this project, and which is
shortly described in the next subsection.

4.2 Erika Enterprise

ERIKA Enterprise is the first open source RTOS which has been certified OSEK/VDX
compliant. The kernel is available under the GPL2+Linking Exception, and is currently mainly
maintained by Evidence and the ReTiS Lab at the website: http://erika.tuxfamily.org

ERIKA Enterprise strictly follows the OSEK/VDX automotive standard. This standard is meant
for the automotive market and therefore aims at reducing memory consumption (i.e.,
footprint, typically of a few KBs), run-time latencies and error-prone conditions. For these
reasons, most configuration settings (including the total number of threads and their
priorities) are statically defined at compile-time through a specific configuration file (named
OIL file). Moreover, unlike Linux, the set of services provided by the RTOS is very small and
simple compared to the one defined by the POSIX standard.

In addition to the OSEK/VDX standard, ERIKA Enterprise supports additional research
schedulers such as EDF, IRIS, and hierarchical schedulers.

ERIKA Enterprise is currently being used in production in various automotive applications
(for gasoline injection, gearboxes, parking sensors, electric motors) by companies such as
Magneti Marelli, Vodafone Automotive, Piaggio, and others. Moreover, ERIKA Enterprise is
currently used by various research projects (most of them unrelated to Evidence) including:
P-SOCRATES (FP7), PROXIMA (FP7), HERCULES (H2020), ARAMIS, AMALTHEA (ITEA),
INCOBAT, EDAS, and others.

The internal implementation of ERIKA Enterprise divides the kernel code in two main parts,
one named “CPU”, which is related to the implementation of a hardware abstraction layer,
including context change, interrupt handling routines, and other architecture dependent
code, and a “kernel” layer, which implements the scheduling policies following the
OSEK/VDX API. The kernel currently supports more than 10 CPU architectures (from small 8
bitters to 32 bit multicores for automotive), including the following: AVR 8bit, MSP430, ARM
Cortex MO/3/4 and R4, Altera Nios Il, Lattice Mico32, EnSilica esi-RISC, Freescale S12,
Microchip dsPIC, PIC24, and PIC32, Renesas RX200, X86, Infineon Tricore AURIX 26x, 27,
29x, PowerPC €200 z0, z4, z6, z7 (various single and multicore chips supported) and the
many-core accelerator fabric (cluster part) of the 256 MPPA. ERIKA supports more than 15
compilers, including GCC, Diab, Hightec, IAR, Cosmic, Tasking variants on specific
microcontrollers.

ERIKA Enterprise supports multicores by means of a static partitioning of threads into cores
(this is similar to what done by the AUTOSAR OS specifications). In other words, threads are
statically assigned to cores at compile time. The OS objects are visible in all cores, in a way
that a primitive acting on an object allocated on another core (e.g., a task activation of a task
allocated on another core) results in a multicore interrupt plus a minimal communication
performed using spin locks.

As for the spin locks, they are implemented (depending on the version of the OS) either
without policy or using a FIFO policy with the G-T algorithm?®. As the kernel implements a
partitioned strategy, there is limited usage of the spin locks in the kernel code, which is
basically limited to the inter-processor interrupt handling and to an initial barrier at kernel
start-up.

28 Gary Graunke and Shreekant Thakkar. Synchronization Algorithms for Shared Memory

Multiprocessors. IEEE Computer, 23(6):60-69, June 1990.
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4.3 ERIKA Enterprise and libgomp

In order to support libgomp on top of an OS such ERIKA Enterprise, it is required to work on
two components: the lower-level library component and the OS (see Figure 12). The former
maps the high-level OpenMP constructs to the OS services; the latter ensures that the OS
exports the minimal set of services needed by a libgomp run-time environment.

To do so, there exist two main approaches to practically implement the OpenMP semantics
in a non-POSIX OS like ERIKA Enterprise:

Dynamic creation of threads at run-time. This approach is flexible but expensive in
terms of both memory usage and execution time®. In a resource-constrained
environment like embedded, this approach may easily run out of memory with run-time
overheads diminishing fine-grained parallelism. Moreover, this approach is not in line
with the static structure of a minimal OS like ERIKA Enterprise.

Static creation of threads. This approach enables the creation of lightweight threads
(typically as many as the number of processors) at system start-up, and “docks” them
on a “pool” of idle workers.

4.4 A proposal of the services required

Assuming an implementation based on thread pools (with static creation), our preliminary
investigation has identified the following missing services that an OS such an ERIKA
Enterprise must implement to support the OpenMP semantics:

* Thread management primitives for creating, activating and joining a job.

* Synchronization for a data structure representing a spinlock and related primitives for
locking/unlocking; and data structures representing a condition variable and related
primitives for waiting/notifying.

* For what concerns memory management primitives, we can rely on typical primitives
(i.e., malloc and free) provided by the standard libc.

In the specific case of ERIKA Enterprise, these primitives required a reimplementation of the
kernel layer, to support the OpenMP needs. The memory management primitives are not
used internally by the kernel primitives, and they have limited usage in the OpenMP layer.
We did not do a complete evaluation of the usage of the memory primitives during this
project, however an initial implementation of them has been performed as part of the FP7
P-SOCRATES Project®®. A complete evaluation of the memory usage primitives is left as part
of future work.

Next, we provide a possible signature of the system calls to be incorporated in the OS. Even
if we take into account ERIKA Enterprise, the approach is generic enough to be adopted with
small changes for the other RTOSs of the same size.

StatusType Createlob (JobType* Jobld,
int Taskld,
int JobPrio,
void (*JobRoutine)(void*),
void* JobArg,
int StackSize);

2\, V. Dimakopoulos, P. E. Hadjidoukas, and G. C. Philos, “A microbenchmark study of
OpenMP overheads under nested parallelism”, IWOMP 2008
0 www.p-socrates.eu

32



Parallel Programming Models for Space Systems BSC - Evidence
ESA Contract No. 4000114391/15/NL/Cbi/GM

Where:

* Jobld is an output argument containing the unique identifier used to refer to the job.

* Taskld is an input argument containing the identifier of the static task of the RTOS that
will execute the function.

* JobPrio is an input argument containing the propriety of the job.

* JobRoutine is the function to be executed.

* JobArg is the argument to be passed to the function JobRoutine.

* StackSize represents the stack size allocated for the job.

When Createlob is called, the task descriptor data structures are created by the OS. Initially,
newly-created tasks are configured to be in a suspended state. The tasks can then be
activated using Activatelob:

StatusType Activatelob (JobType Jobld);

When a task is activated, it starts executing the function associated with the including job.
Joinlob is used to wait for job completion: this function returns when all the tasks associated
with the job are completed, i.e. have returned from JobRoutine.

StatusType JoinJob (JobType Jobld);

The low-level synchronization primitives designed and implemented within ERIKA for
integration with the OpenMP runtime library are described in the following.

void SpinLockObj (SpinLockObjType* SpinLockObjRef);
void SpinUnlockObj (SpinLockObjType* SpinLockObjRef);

These primitives have a direct implementation over the spin lock primitives available in the
CPU layer of ERIKA (see Section 3.2).

Besides locks, low-level ERIKA primitives also provide WAIT/SIGNAL synchronization, which
operate on a BlockableValueTypeRef data type:

void InitBlockableValue(BlockableValueTypeRef BlockableValueRef,
TypeValue Value);

This function initializes the BlockableValueRef instance for use with WAIT/SIGNAL API, and
sets its initial value to Value (unsigned 32bit).

StatusType WaitCondition(BlockableValueTypeRef BlockableValueRef,

WaitCondType WaitCond,
TypeValue RightValue,
BlockPolicyType BlockPolicy);

WaitCondition implements a blocking operation on a given condition. Each field is described
as follows:

*  WaitCond represents the condition operator; the accepted values are:
- VALUE_EQ
— VALUE_NOT_EQ
— VALUE_LT
— VALUE_GT
— VALUE_LT_OR_EQ
— VALUE_GT_OR_EQ
* RightValue is the value used on the right hand side (RHS) of the condition check
expression.
* The BlockPolicy parameter is used to specify the wait policy:

33



Parallel Programming Models for Space Systems BSC - Evidence
ESA Contract No. 4000114391/15/NL/Cbi/GM

— BLOCK_NO (WAIT_BUSY) the condition is checked in a busy waiting loop;

— BLOCK_IMMEDIATELY (WAIT_SLEEP) the condition is checked once. If the check fails
(and no other tasks are available for execution) the processor enters sleep mode
until the condition is reached. A specific signal is then used to wake-up the
processor.

— BLOCK_OS (WAIT_TO_OS) informs the OS that the ERIKA task (i.e., the OpenMP
thread mapped to that task) is voluntarily yielding the processor. The OS can then
use this information to implement different scheduling policies. For example, the
task can be suspended and a different task (belonging to a different job) can be
scheduled for execution. When a task is suspended, a reference is pushed into a
gueue accessible as a field in the BlockableValue structure. The blocked task are
unblocked when the BlockedValue is signalled.

Once the wait condition has been reached, the proper signalling response must be issued.

StatusType SignalValue(BlockableValueTypeRef BlockableValueRef,
TypeValue Value);

This function posts a new Value into the BlockableValue referenced by BlockableValueRef.
When this function is called, all the tasks waiting on the associated BlockableValue are
notified. The notified tasks can verify again that their wait condition is satisfied. If this is not
the case, they are blocked again (in the WaitCondition function body, where the condition is
checked).

4.5 Estimation of hardware resources

In order to evaluate the impact that these new functions would have on the memory
footprint, we consider again the ERIKA Enterprise as a baseline, due to its minimal footprint
ranging between 1KB and 4 KB. Maintaining the memory footprint to the bare minimum is
an important requirement in these type of OSs. Concretely, we have estimated the memory
requirements needed to implement these additional services have considering a thread pool
implementation, and a single ELF for multi-core support (which is implemented as part of
the ERIKA3 implementation effort).

Table 2 presents the additional memory consumption in terms of extra memory used and
code footprint of including the required OS services into ERIKA Enterprise to support
OpenMP execution, with a reference to the Kalray MPPA architecture considered in this
project.

Table 2. Extra memory used and code footprint of including the required OS services into
ERIKA Enterprise to support OpenMP execution.

Description Additional memory

Code footprint 1024 — 2048 bytes

RAM usage 128 bytes for each core

5 Conclusions

In this document, we have evaluated current OpenMP implementation in terms of run-time
overhead and memory usage, and the OS services required to be executed in an embedded
constrained environment.
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Regarding the run-time overhead, we have evaluated two OpenMP implementations
(nanos++ and libgomp). Our evaluations show that the performance benefits of parallel
computation diminishes when tasks operates over blocks smaller than 512x512 in case of
nanos++ and 256x256 in case of libgomp. Moreover, an intensive usage of dependencies
may make the memory consumption to significantly increase.

Regarding the OS services required to execute the OpenMP run-time, we have first classified
current RTOS in three different categories (POSIX compliant, dynamic RTOS and static RTOS),
depending on the targeted embedded environment. For those RTOS targeting the highest
critical systems (static RTOS), we have proposed a set of OS services which a minimum code
footprint and memory requirements that enables the execution of OpenMP programs in
critical real-time environments.

Overall, we conclude that: (1) the OpenMP run-time can be supported on static RTOS, and
(2) the OpenMP run-time can diminish the performance benefits brought by parallel
computation, and so investigations on low-overhead and lightweight OpenMP run-times is
desirable.
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Parallel Programming Models for Space Systems
(ESA Contract No. 4000114391/15/NL/Cbi/GM)

Abstract

This report describes the experiences of compiling RTEMS operating system and OpenMP for
a quad-core LEON3 and a NGMP GR740 processor architectures. Moreover, this report
evaluates the performance speed-up of the two OpenMP parallel versions of the pre-
processing sampling application considered in this project (and devised in deliverable D1.1)
on the two processor architectures.
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1 Introduction

Multi-core systems are considered as the solution to cope the performance requirements of
current and future real-time (RT) embedded systems. In the space domain, the use of multi-
core processor architecture is motivated by the development of the NGMP GR740 from
Cobham-Gaisler, a quad-core 32-bit fault-tolerant LEON4FT SPARC V8 processor. In this
same direction towards the adoption of multi-core, the latest versions of RTEMS operating
system includes SMP (symmetric multi-processor) capabilities to support to execute on a
shared memory homogeneous multi-core architecture such as the GR740. However, the
appropriate parallel programming models to fully exploit the performance capabilities of the
NGMP are not yet adopted in the space domain.

OpenMP is a well-known parallel programming model in the high-performance domain for
shared memory architectures that implements a very powerful tasking model, to efficient
exploit fine grain and irregular parallelism. Deliverable D1.1 - Report on parallelisation
experiences for the space application, evaluates the OpenMP tasking models from a
programmability, performance and time predictability point of view, considering a general-
purpose processor architecture (Intel-based).

In this report we present our experiences of compiling the OpenMP tasking model on a
space platform composed of the RTEMS SMP OS and two LEON-based multi-core
architecture, i.e. a quad-core LEON3 and a NGMP GR740, considering the two OpenMP
parallel versions of the pre-processing sampling application presented in deliverable D1.1.

The rest of the document is organized as follows: Section 2 presents the experiences of
building RTEMS SMP with the GNU-GCC implementation of OpenMP. Section 3 presents the
performance evaluation of the space application executed on two LEON-based multi-core
architectures: a quad-core LEON3 and a NGMP GR740. Finally, conclusions are presented in
Section 4.

2 Experiences on building RTEMS + OpenMP

2.1 RTEMSv4.11 + GCC4.9.3

We initially started compiling RTEMS v4.11, as it was the most stable version at that time
(January 2016). We cross-compiled RTEMS v4.11 with GCC 4.9.3 (supporting OpenMP v4.0),
including the built-in support for SparcV8 LEON3, using the RTEMS Source Builder (RSB).

Due to the limited access to a multi-core LEON board, we performed the initial evaluations
with the Tsim LEON simulator environment provided by Cobham-Gaisler, and compatible
with SparcV8 ISA, to validate the functional correctness of the compilation. However, note
that the Tsim simulator does not support parallel execution.

The initial problem we faced was the incompatibility of defining OpenMP directives into
RTEMS tasks, including the RTEMS entry point task named init, resulting in the following run-
time error "1ibgomp: could not create thread pool destructor". After a
deep analysis of libgomp source code (the GNU GCC OpenMP run-time), we fixed the error
by adding the following two macros into the application:

#tdefine CONFIGURE_MAXIMUM_POSIX_KEY_VALUE_PAIRS 10
#tdefine CONFIGURE_MAXIMUM_POSIX_KEYS 10

These macros enabled the run-time to allocate the resources required by the OpenMP
execution environment. Despite the error was not shown anymore, libgomp was stalled in a
deadlock situation, concretely in the run-time sem_post semaphore.
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The same error was observed when using pthreads only (and so compiling with pthread
rather than fopenmp flag). We tested an application spawning 2 threads and 1 RTEMS task.
While the two threads ran regularly, the RTEMS task was not executed.

The same test cases (with both OpenMP directives and pthreads) executed correctly when
no RTEMS tasks were created (this can be done by specifying the "main" or "Posix_Init"
functions as application entry point, and so avoiding the creation of any RTEMS task).

The RTEMS documentation specifies that when compiling with the -fopenmp flag, the
rtems.h file cannot be included in the application. In order to validate it, we performed a test
in which some RTEMS API calls that required the inclusion of rtems.h, and compiled using -
pthread and -fopenmp flags, and no problems were detected. We cannot exclude however,
that more complex application using a different set of APl could not be able to run under
these conditions.

2.2 Experiences on RTEMS v4.12 + GCC 6.0.0

After contacting with RTEMS developers, they recommended us to abandon v4.11 and start
evaluating v4.12, despite not being a stable version under constant development with the
master branch frequently updated (developments on 4.11 branch seemed to be
dormant/stopped).

The same steps done to compile RTEMS 4.11 were followed to compile RTEMS 4.12, but
building on top of GCC6.1.1, which supports the latest version of OpenMP 4.5. As usual, we
cross-compiled the tool-chain for sparcV8 LEON3 with the help of RSB. We performed the
same experiments as in version 4.11, and the same error appeared, i.e. the incompatibility
of OpenMP directives and RTEMS tasks.

We had access for a limited amount of time to a quad-core LEON3 board. A single core was
detected by both RTEMS and OpenMP APIs, and so no parallel computation was performed.

2.3 Experiences on RTEMS v4.12 + GCC 6.1.1 + enable-smp flag

After discussions with RTEMS developers and colleagues from ESA, we discovered the
existence of the undocumented flag --enable-smp when configuring RTEMS. Table 1 contains
the commit version of the RTEMS Source Builder (RSB) and the RTEMS OAR master branch.

Table 6. RTEMS Source Builder (RSB) and the RTEMS OAR master branch information used.

RTEMS Source Builder (RSB) RTEMS OAR master branch
Commit 3dad4d0e5ce50909d4fe45168d6d6a82e | c6556e2ecc6b80f981bb210d541544124
bc119f92 b7f59df
Date Mon May 30 15:07:41 2016 +0200 Wed Jun 1 14:38:05 2016 +0200
Author Sebastian Huber <sebastian.huber@embedded-brains.de>

When using this flag, applications cannot mix RTEMS APIs with OpenMP directives. In order
to overcome this, we separated the RTEMS part from the OpenMP part in two separated
source files. Moreover, we had to replace the standard int main () entry point, by the
RTEMS Init task in order to make it run.
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3 Evaluation on the pre-processing sampling application on
space processor architectures: a quad-core Leon 3 and a
NGMP GR740

Table 7 shows the performance speed-up of the two parallelisation strategies devised for
the pre-processing sampling application (see deliverable D1.1 - Report on parallelisation
experiences of the space application for further details) when executing on a quad-core
LEON3 processor architecture implemented on a FPGA running at 80 Mhz, and a GR-CPCI-
GR740 Quad-Core LEON4FT Development Board® running at 250 Mhz. The parallelisation
considers that the frame is divided in 64 blocks.

Table 7. Performance speed-up of the two parallelisation strategies presented in D1.1, when
executing on a quad-core LEON3 and a NGMP GR740 processor architectures.

Multl-cor.'e processar Seql'xentlal Parallelisation Parallel Time
architecture Time — (seconds) Speed-up
(seconds) gy

1 76.543 3.7x
4-core Leon3 284.863

2 74.357 3.8x

1 25.222 3.55x
NGMP GR740 89.599

2 24.178 3.7x

In both processor architectures, the two strategies present a very similar performance
speed-up due to the small number of cores available in the architecture. This is not the case
of the results presented in deliverable D1.1 (Figures 6 an 9) in which the second strategy
outperforms significantly the first (i.e. 11x and 7x respectively). The reason is because
speed-ups shown in D1.1 consider a much more powerful processor architecture featuring
16 cores, which enables the second strategy to take fully benefit of the extra parallelism.

In case of the LEON3 and NGMP architectures instead, their four cores are already fully
utilize with the first strategy, and so not getting much benefit if the level of parallelism
increases.

4 Conclusions

This document evaluates the GNU-GCC implementation of the OpenMP tasking model, used
to parallelised a pre-processing sampling application, on a space platform composed of the
RTEMS SMP OS and two LEON-based multi-core architectures: a quad-core LEON3 and a
NGMP GR740.

We demonstrate that the OpenMP tasking model is fully compatible with the latest version
of RTEMS SMP (see Table 1) and the two LEON-based multi-core architectures, obtaining a
performance speed-up of 3.8x and 3.7x respectively (being closed to the ideal speed-up, i.e.
4x) and so efficiently exploiting the parallel performance opportunities of both multi-core
platforms.

Overall, we conclude that the OpenMP parallel programming model is a good candidate to
be adopted in the space domain.

* http://www.gaisler.com/index.php/products/boards/gr-cpci-gr740
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We would like to remark that the results presented in this deliverable were not planned for
this ITI contract, going beyond of what was stated in the Statement of Work document.
Moreover, the results presented in this document have increased targeted TRL of this
contract, from 3 to 4.
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