
System Impact of Distributed
Multicore Systems
December 5th 2012

Software Systems Division & Data Systems Division

Final Presentation Days

Mathieu Patte (Astrium Satellites)

Alfons Crespo (UPV)

Outline
 Context, objectives and state of the art

 Xtratum porting on NGMP
 Approach
 Main issues
 Scheduling policies
 Configuration file
 Evaluation

 Demonstration application

 Guidelines and way forward

Study’s context and objectives

 First multi core platform for space are available

 Need to analyze the impacts at system level of
the switch to multi core

 Identify first use cases for multi core processor
and recommend best practices

Multi core processors use in spacecrafts

 Platform:
 No actual needs in current reference architecture
 Emerging need: Integrated Modular Avionics for Space

 Payload:
 More processing power, means more powerful flexible

payload data processing units
 Main users: scientific missions

Multi core architecture survey

 Multi core means shared resources
competition for access to shared resources (memory)

 Key element is memory architecture
 Multi level cache
 Advanced cache coherency management techniques

(inclusive, exclusive caches)
 Layered buses, crossbar switches
 Multi port cache/memory controller

NGMP architecture assessment

 NGMP main features:
 Independent L1 caches, shared L2 cache
 Shared bus to L2 competition between the cores
 IOMMU allows partitioning I/O hardware resources
 Hardware Support for ASMP
 No hardware support for virtualization

Software techniques on multi core
 Symmetric Multi Processing:

 One single OS is managing all the cores
 Pros: performance
 Cons: all applications have to use the same OS, complex OS

to qualify

 ASymmetric Multi Processing:
 Different OS on different cores
 Pros: OS diversity
 Cons: all the OS needs to be qualified, space separation

difficult to enforce

Software techniques for multi core (cont’d)

 SMP hypervisor:
 Lightweight SMP kernel providing virtualization services
 Pros: each application can run its own OS
 Cons: performance is lower than native SMP

Parallelism programming model

 Data parallelism: same code, different bits of data

Parallelism programming model (cont’d)

 Task parallelism: different code, same data

XtratuM: Approach

 XtratuM was initially designed for monocore
architectures: LEON2 and LEON3

 It offers virtual machines (vCPU) to execute
partitions

XtratuM: Hypervisor Multicore
approach

12

Hypervisor based system permits
to build partitioned systems
where partitions :

•Are Temporal and Spatial isolated

•Can have different level of
criticality

•Use the appropriated OS for each
application

•Requires an Independent validation

•Take advantage of the multicore to
execute mono-core OSs in a
multicore platform

XtratuM: Hypervisor based
Multicore approach

13

Hypervisor based Multicore Software architectures
can provide a more flexible AMP or SMP view

XtratuM: Multi-core hypervisor

14

Several schemes are
possible

•Monocore partitions on different
real CPUs

•Monocore partitions on the
same/different real CPUs

•Mono/Multi-core partitions

XtratuM: Issues related to
Multicore

 Impact of Multicore on the services
provided by the hypervisor:

 Interrupts; Partition management; Health Monitor;

 Virtualised resources
 Clock and Timers
 Interrupt management (Set up/use the

multiprocessor interrupt controller with extended
ASMP)

 IPI’s management (Emulate IPIS through
interrupts)

 Memory management

 Scheduling
 Main aspect to be analysed

XtratuM: Issues related to
Multicore

 Virtual CPUs:
 Inclusion of the virtual CPU (vCPU) concept
 Each partition has one or more vCPUs (multi-core)
 Each vCPU has a local partition control table
 The clock is shared among the vCPUs

 New hypercalls are required tp deal with vCPUs
 Get status
 Start-up/resume/suspend/halt vCPU

 XML extension
 Each partition shall define the number of VCPUs

supported
 Each slot shall indicate the VCPUID (omission means

VCPUID=0)

XtratuM: Scheduling Policies

- Each core can be scheduled with a defined scheduling
policy

- Specified in the configuration file
- i.e.: 3 cores under a cyclic scheduling; 1 core FPS

 Several scheduling policies
- Basic scheduling policy: Cyclic scheduling
- Alternative scheduling policies (IO activities)

- Fixed Priority Scheduling

Cyclic
scheduling

FPS

XtratuM: Plan management in
Multicore

 Definition of Scheduling Plans
 Multiple schedules
 Plan switch: system partition

XtratuM: Multicore Scheduling
Plan

 Plan specification: configuration file
 <Processor id="0" frequency="50Mhz">
 <CyclicPlanTable>
 <Plan id="0" majorFrame="400ms">
 <Slot id="0" start="0ms" duration="200ms" partitionId="0”
vCpuId="0"/>
 <Slot id="1" start="200ms" duration="200ms"
partitionId="0” vCpuId="1"/>
 </Plan>
 …………..
 </CyclicPlanTable>
 </Processor>

 <Processor id="1" frequency="50Mhz">

 <FixedPriority>

 <Partition id="0" vCpuId=“1" priority="10"/>
 <Partition id="2" vCpuId="0" priority="5"/>

 </FixedPriority>
 </Processor>

<PartitionTable>
 <Partition id="0" name="Partition1" flags="system" console="Uart” noVCpus="4">
...

XtratuM: IOMMU description

 Similar to the MMU but at the AMBA bus level
I/O.

 Provides capabilities for:
 Protecting I/O pages (4KB-512KB page-size)
 Translating I/O pages (4KB-512KB page-size)

 Solves the problem DMA memory protection
problem

 Statically defined

XtratuM: IO-MMU: Configuration

 Configured statically during XML stage:
<XMHypervisor ... >
...
 <IoMmu>
 <AhbMst id="0" partitionId=“0" busRouting="processor" vendorId="0xc" deviceId="0x0f" />
 <AhbMst id="1" partitionId="1" busRouting="memory" vendorId="0xc" deviceId=“0x1f" />
 </IoMmu>
</XMHypervisor>

 Where

 Id: master ahb id; identifies the Master configuration register

 PartitionId: bit [3:0] (GROUP) GRIOMMU Master configuration register

 BusRouting: bit [4] (BS) GRIOMMU Master configuration register

 VendorId: bits [31:24] (VENDOR) GRIOMMU Master configuration register

 DeviceId: bits [23:12] (DEVICE) GRIOMMU Master configuration register

XtratuM: Test Suites

 Functional tests adapted from mono-core
 CNES tests for LEON2 and LEON3

 Spatial & temporal isolation; Partition Mngmt;
Interrupt Mgmt; Health Monitor; IPC; ….

 SIMDS functional requirements
 Boot Mngmt; Cache; Scheduling; IO; IPC; IRqs,; ….

 Performance evaluation
 Dhrystone benchmark
 CoreMark benchmark
 IPC measurements

HAPS-54 Board

LEON4

4 Cores @ 50MHz

XtratuM: Performance
Evaluation

 Dhrystone on native HW vs Dhrystone on a XM
partition

 CoreMark on native HW vs CoreMark on a XM
partition

 Use 1 core
 In the Partitioned target the benchmark is

completed in 1 slot

 CoreMark on a XM partition
 Executed with different slot durations

XtratuM: Performance Evaluation

 CoreMark on a XM partition
 Executed on several cores

XtratuM: Performance Evaluation

Demonstration application
 Simple application: MD5 computation of incoming

SpW packets

 Benchmark different I/O management techniques
 Cyclic scheduling on one core

 Cyclic scheduling and I/O partition

Demonstration application (con’t d)
 Benchmark different I/O management techniques

 Cyclic scheduling and fixed priority scheduling

Demonstration application results

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 2.5 3 3.5 4 4.5 5 5.5 6 6.5
 97.5

 98

 98.5

 99

 99.5

 100

o
ut

p
ut

 d
a

ta
 r

a
te

 in
 M

b
/s

A
va

ila
b

le
 c

o
m

p
ut

a
tio

n
tim

e
 o

n
d

yn
a

m
ic

 s
ch

e
d

ul
in

g
 c

o
re

 in
 p

e
rc

e
nt

input data rate in Mb/s

dynamic scheduling
Available computation time (secondary axis)

I/O partition
cyclic scheduling

Guidelines and way forward

 Multi core architecture
 Minimize hardware coupling (need for system level

simulation to asses the best techniques)
 Optimize hardware for virtualization
 Improve hardware debug facilities (real time tracing)
 Provide comprehensive simulation environment

Guidelines and way forward (con’t d)
 Hypervisor software

 Improve development and validation environment
 Provide a multithreading API to partition programmers
 Improve fixed priority scheduling policy to ensure better

timing isolation (priority server)

 Flexible data processing use case
 Use task parallelism programming model
 Possible integration of data processing tasks with instrument

control tasks using IMA

Guidelines and way forward (con’t d)

 IMA on multi core
 Multi core can ease IMA implementation
 Use direct I/O allocation (IOMMU)
 Use fixed priority scheduling to implement interrupt handlers

or allocate one core for the I/O partition
 Modify RTOS to support concurrent execution of interrupt

handlers
 Hardware coupling can impact time partitioning!

Conclusions
 Demonstration of multi core techniques on NGMP

 SMP hypervisor
 Direct I/O allocation with IOMMU
 VCPUs and fixed priority scheduling for interrupt handlers

 Multi core can efficiently be used for IMA and
flexible data processing

 Prerequisites:
 Multithreading software support (at hypervisor or RTOS level)
 Multi core hardware improvements
 Multi core WCET and scheduling analysis tools
(ProArtis, ProCXim)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

