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Study’s context and objectives

 First multi core platform for space are available

 Need to analyze the impacts at system level of 
the switch to multi core 

 Identify first use cases for multi core processor 
and recommend best practices



 

Multi core processors use in spacecrafts

 Platform: 
 No actual needs in current reference architecture
 Emerging need: Integrated Modular Avionics for Space

 Payload:
 More processing power, means more powerful flexible 

payload data processing units
 Main users: scientific missions



 

Multi core architecture survey

 Multi core means shared resources 
competition for access to shared resources (memory)

 Key element is memory architecture
 Multi level cache
 Advanced cache coherency management techniques 

(inclusive, exclusive caches)
 Layered buses, crossbar switches
 Multi port cache/memory controller



 

NGMP architecture assessment

 NGMP main features:
 Independent L1 caches, shared L2 cache
 Shared bus to L2  competition between the cores
 IOMMU allows partitioning I/O hardware resources
 Hardware Support for ASMP 
 No hardware support for virtualization



 

Software techniques on multi core
 Symmetric Multi Processing:

 One single OS is managing all the cores
 Pros: performance
 Cons: all applications have to use the same OS, complex OS 

to qualify

 ASymmetric Multi Processing: 
 Different OS on different cores 
 Pros: OS diversity
 Cons: all the OS needs to be qualified, space separation 

difficult to enforce



 

Software techniques for multi core (cont’d)

 SMP hypervisor:
 Lightweight SMP kernel providing virtualization services
 Pros: each application can run its own OS
 Cons: performance is lower than native SMP



 

Parallelism programming model

 Data parallelism: same code, different bits of data

 



 

Parallelism programming model (cont’d)

 Task parallelism: different code, same data

 



 

XtratuM: Approach

 XtratuM was initially designed for monocore 
architectures: LEON2 and LEON3

  It offers virtual machines (vCPU) to execute 
partitions



 

XtratuM: Hypervisor Multicore 
approach

12

Hypervisor based system permits 
to build partitioned systems 
where partitions :

•Are Temporal and Spatial isolated

•Can have different level of 
criticality

•Use the appropriated OS for each 
application

•Requires an Independent validation

•Take advantage of the multicore to 
execute mono-core OSs in a 
multicore platform



 

XtratuM: Hypervisor based 
Multicore approach

13

Hypervisor based Multicore Software architectures 
can provide a more flexible AMP or SMP view



 

XtratuM: Multi-core hypervisor
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Several schemes are 
possible

•Monocore partitions on different 
real CPUs

•Monocore partitions on the 
same/different real CPUs

•Mono/Multi-core partitions



 

XtratuM: Issues related to 
Multicore

 Impact of Multicore on the services 
provided by the hypervisor:

 Interrupts; Partition management; Health Monitor; 

 Virtualised resources
 Clock and Timers
 Interrupt management (Set up/use the 

multiprocessor interrupt controller with extended 
ASMP)

 IPI’s management (Emulate IPIS through 
interrupts)

 Memory management

 Scheduling
 Main aspect to be analysed



 

XtratuM: Issues related to 
Multicore

 Virtual CPUs:
 Inclusion of the virtual CPU (vCPU) concept 
 Each partition has one or more vCPUs (multi-core) 
 Each vCPU has a local partition control table
 The clock is shared among the vCPUs

 New hypercalls are required tp deal with vCPUs
 Get status 
 Start-up/resume/suspend/halt vCPU 

 XML extension
 Each partition shall define the number of VCPUs 

supported 
 Each slot shall indicate the VCPUID (omission means 

VCPUID=0)



 

XtratuM: Scheduling Policies

- Each core can be scheduled with a defined scheduling 
policy

- Specified in the configuration file
- i.e.:  3 cores under a cyclic scheduling; 1 core FPS

 Several scheduling policies 
- Basic scheduling policy: Cyclic scheduling
- Alternative scheduling policies (IO activities)

- Fixed Priority Scheduling

Cyclic 
scheduling

FPS



 

XtratuM: Plan management in  
Multicore

 Definition of Scheduling Plans
 Multiple schedules
 Plan switch: system partition



 

XtratuM: Multicore Scheduling 
Plan

 Plan specification: configuration file
 <Processor id="0" frequency="50Mhz">
        <CyclicPlanTable>
          <Plan id="0" majorFrame="400ms">
            <Slot id="0" start="0ms" duration="200ms" partitionId="0” 
vCpuId="0"/>
     <Slot id="1" start="200ms" duration="200ms" 
partitionId="0” vCpuId="1"/>
          </Plan>
         …………..
       </CyclicPlanTable>
  </Processor>

  <Processor id="1" frequency="50Mhz">
        --------
        <FixedPriority>

  <Partition id="0" vCpuId=“1" priority="10"/>
  <Partition id="2" vCpuId="0" priority="5"/>

        </FixedPriority>
   </Processor>

<PartitionTable> 
  <Partition id="0" name="Partition1" flags="system" console="Uart” noVCpus="4"> 
... 



 

XtratuM: IOMMU description

 Similar to the MMU but at the AMBA bus level 
I/O. 

 Provides capabilities for:
 Protecting I/O pages (4KB-512KB page-size)
 Translating I/O pages (4KB-512KB page-size)

 Solves the problem DMA memory protection 
problem

 Statically defined



 

XtratuM: IO-MMU: Configuration

 Configured statically during XML stage:
<XMHypervisor ... >
...
  <IoMmu>
     <AhbMst id="0" partitionId=“0" busRouting="processor" vendorId="0xc" deviceId="0x0f" />
     <AhbMst id="1" partitionId="1" busRouting="memory"  vendorId="0xc" deviceId=“0x1f" />
  </IoMmu>
</XMHypervisor>

 Where

 Id: master ahb id; identifies the Master configuration register

 PartitionId: bit [3:0] (GROUP) GRIOMMU Master configuration register

 BusRouting: bit [4] (BS) GRIOMMU Master configuration register

 VendorId: bits [31:24] (VENDOR) GRIOMMU Master configuration register

 DeviceId: bits [23:12] (DEVICE) GRIOMMU Master configuration register



 

XtratuM: Test Suites

 Functional tests adapted from mono-core
 CNES tests for LEON2 and LEON3

 Spatial & temporal isolation; Partition Mngmt; 
Interrupt Mgmt; Health Monitor; IPC; ….

 SIMDS functional requirements
 Boot Mngmt; Cache; Scheduling; IO; IPC; IRqs,; ….

 Performance evaluation
 Dhrystone benchmark
 CoreMark benchmark
 IPC measurements

HAPS-54 Board

LEON4

4 Cores @ 50MHz



 

XtratuM: Performance 
Evaluation

 Dhrystone on native HW vs Dhrystone on a XM 
partition

 CoreMark on native HW vs CoreMark on a XM 
partition

 Use 1 core
 In the Partitioned target the benchmark is 

completed in 1 slot



 

 CoreMark on a XM partition
 Executed with different slot durations

XtratuM: Performance Evaluation



 

 CoreMark on a XM partition
 Executed on several cores

XtratuM: Performance Evaluation



 

Demonstration application
 Simple application: MD5 computation of incoming 

SpW packets

 Benchmark different I/O management techniques
 Cyclic scheduling on one core

 Cyclic scheduling and I/O partition



 

Demonstration application (con’t d)
 Benchmark different I/O management techniques

 Cyclic scheduling and fixed priority scheduling



 

Demonstration application results
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Guidelines and way forward

 Multi core architecture
 Minimize hardware coupling (need for system level 

simulation to asses the best techniques)
 Optimize hardware for virtualization
 Improve hardware debug facilities (real time tracing)
 Provide comprehensive simulation environment



 

Guidelines and way forward (con’t d)
 Hypervisor software

 Improve development and validation environment
 Provide a multithreading API to partition programmers
 Improve fixed priority scheduling policy to ensure better 

timing isolation (priority server)

 Flexible data processing use case
 Use task parallelism programming model 
 Possible integration of data processing tasks with instrument 

control tasks using IMA



 

Guidelines and way forward (con’t d)

 IMA on multi core
 Multi core can ease IMA implementation
 Use direct I/O allocation (IOMMU) 
 Use fixed priority scheduling to implement interrupt handlers 

or allocate one core for the I/O partition 
 Modify RTOS to support concurrent execution of interrupt 

handlers
 Hardware coupling can impact time partitioning!



 

Conclusions
 Demonstration of multi core techniques on NGMP

 SMP hypervisor
 Direct I/O allocation with IOMMU
 VCPUs and fixed priority scheduling for interrupt handlers

 Multi core can efficiently be used for IMA and 
flexible data processing

 Prerequisites: 
 Multithreading software support (at hypervisor or RTOS level)
 Multi core hardware improvements
 Multi core WCET and scheduling analysis tools
(ProArtis, ProCXim) 
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