System Impact of Distributed Multicore Systems

December 5th 2012

Software Systems Division & Data Systems Division

Final Presentation Days

Mathieu Patte (Astrium Satellites)

Alfons Crespo (UPV)

Outline

Context, objectives and state of the art

Xtratum porting on NGMP

- Approach
- Main issues
- Scheduling policies
- Configuration file
- Evaluation
- Demonstration application
- Guidelines and way forward

Study's context and objectives

- First multi core platform for space are available
- Need to analyze the impacts at system level of the switch to multi core
- Identify first use cases for multi core processor and recommend best practices

Multi core processors use in spacecrafts

Platform:

- No actual needs in current reference architecture
- Emerging need: Integrated Modular Avionics for Space

Payload:

- More processing power, means more powerful flexible payload data processing units
- Main users: scientific missions

Multi core architecture survey

Multi core means shared resources →competition for access to shared resources (memory)

Key element is memory architecture

- Multi level cache
- Advanced cache coherency management techniques (inclusive, exclusive caches)
- Layered buses, crossbar switches
- Multi port cache/memory controller

NGMP architecture assessment

NGMP main features:

- Independent L1 caches, shared L2 cache
- Shared bus to L2 \rightarrow competition between the cores
- IOMMU allows partitioning I/O hardware resources
- Hardware Support for ASMP
- No hardware support for virtualization

Software techniques on multi core

- Symmetric Multi Processing:
 - One single OS is managing all the cores
 - Pros: performance
 - Cons: all applications have to use the same OS, complex OS to qualify
- ASymmetric Multi Processing:
 - Different OS on different cores
 - Pros: OS diversity
 - Cons: all the OS needs to be qualified, space separation difficult to enforce

Software techniques for multi core (cont'd)

SMP hypervisor:

- Lightweight SMP kernel providing virtualization services
- Pros: each application can run its own OS
- Cons: performance is lower than native SMP

Parallelism programming model

Data parallelism: same code, different bits of data

Parallelism programming model (cont'd)

Task parallelism: different code, same data

XtratuM: Approach

- XtratuM was initially designed for monocore architectures: LEON2 and LEON3
- It offers virtual machines (vCPU) to execute partitions

XtratuM: Hypervisor Multicore approach

Hypervisor based system permits to build partitioned systems where partitions :

Are Temporal and Spatial isolated

•Can have different level of criticality

- •Use the **appropriated OS** for each application
- Requires an Independent validation
- •Take advantage of the multicore to execute mono-core OSs in a multicore platform

XtratuM: Hypervisor based Multicore approach

Hypervisor based Multicore Software architectures can provide a more flexible AMP or SMP view

de vai ència

XtratuM: Multi-core hypervice

Several schemes are possible

Monocore partitions on different real CPUs

Monocore partitions on the same/different real CPUs

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

XtratuM: Issues related to Multicore

- Impact of Multicore on the services provided by the hypervisor:
 - Interrupts; Partition management; Health Monitor;

Virtualised resources

- Clock and Timers
- Interrupt management (Set up/use the multiprocessor interrupt controller with extended ASMP)
- IPI's management (Emulate IPIS through interrupts)
- Memory management

Scheduling

Main aspect to be analysed All the space you need

Atratum: Issues related to Multicore

Virtual CPUs:

- Inclusion of the virtual CPU (vCPU) concept
- Each partition has one or more vCPUs (multi-core)
- Each vCPU has a local partition control table
- The clock is shared among the vCPUs
- New hypercalls are required tp deal with vCPUs
 - Get status
 - Start-up/resume/suspend/halt vCPU

XML extension

- Each partition shall define the number of VCPUs supported
- Each slot shall indicate the VCPUID (omission means VCPUID=0)

XtratuM: Scheduling Policies

- Each core can be scheduled with a defined scheduling policy
 - Specified in the configuration file
 - i.e.: 3 cores under a cyclic scheduling; 1 core FPS

Cyclic

scheduling

- Several scheduling policies
 - Basic scheduling policy: Cyclic scheduling
 - Alternative scheduling policies (IO activities)
 - Fixed Priority Scheduling

FPS

Multicore

Definition of Scheduling Plans

- Multiple schedules
- Plan switch: system partition

XtratuM: Multicore Scheduling Plan

Plan specification: configuration file

```
<Processor id="0" frequency="50Mhz">
     <CyclicPlanTable>
      <Plan id="0" majorFrame="400ms">
        <Slot id="0" start="0ms" duration="200ms" partitionId="0"
vCpuld="0"/>
           <Slot id="1" start="200ms" duration="200ms"
partitionId="0" vCpuId="1"/>
                                                           Cyclic CPU-0
                                                        Plan-0
      </Plan>
                                                            Cvclic
    </CyclicPlanTable>
                                                              CPU-0
                                                            Cyclic
                                                        Plan-1
 </Processor>
                                                            FPS
                                                              CPU-1
                                                                        MAF
 <Processor id="1" frequency="50Mhz">
                                                            Cyclic CPU-0
                                                        Plan-2
                                                              CPU-1
     <FixedPriority>
          <Partition id="0" vCpuId="1" priority="10"/>
          <Partition id="2" vCpuld="0" priority="5"/>
     </FixedPriority>
  </Processor>
```

<PartitionTable>

All the Partition id="0" name="Partition1" flags="system" consoler

XtratuM: IOMMU description

- Similar to the MMU but at the AMBA bus level I/O.
- Provides capabilities for:
 - Protecting I/O pages (4KB-512KB page-size)
 - Translating I/O pages (4KB-512KB page-size)
- Solves the problem DMA memory protection problem
- Statically defined

XtratuM: IO-MMU: Configuration

Configured statically during XML stage:

```
<XMHypervisor ... >
...
<IoMmu>
<AbbMst id="0"
```

- Where
 - Id: master ahb id; identifies the Master configuration register
 - PartitionId: bit [3:0] (GROUP) GRIOMMU Master configuration register
 - BusRouting: bit [4] (BS) GRIOMMU Master configuration register
 - Vendorld: bits [31:24] (VENDOR) GRIOMMU Master configuration register
 - DeviceId: bits [23:12] (DEVICE) GRIOMMU Master configuration register

XtratuM: Test Suites

Functional tests adapted from mono-core

- CNES tests for LEON2 and LEON3
 - Spatial & temporal isolation; Partition Mngmt; Interrupt Mgmt; Health Monitor; IPC;

SIMDS functional requirements

Boot Mngmt; Cache; Scheduling; IO; IPC; IRqs,;

Performance evaluation

- Dhrystone benchmark
- CoreMark benchmark
- IPC measurements

HAPS-54 Board LEON4 4 Cores @ 50MHz

Evaluation

- Dhrystone on native HW vs Dhrystone on a XM partition
- CoreMark on native HW vs CoreMark on a XM partition
- Use 1 core
- In the Partitioned target the benchmark is
 - Opposite of in
Dhrystone1Clot
Native HWXM PartitionNumber of iterations100000100000Time20061492006315Performance Lost (%)0,008%

CoreMark	Native HW	XM Partition
Number of iterations	1200	1200
Time	15436453	15604193
Performance Lost (%)		1,087%

Clock Management (1sec) 2

WindowOverflowTrap	2235
WindowUnderflowTrap	2235
Clock Management (1sec)	14

XtratuM: Performance Evaluation

CoreMark on a XM partition

Executed with different slot durations

Slot duration	No Slots	Time (s)	Perf. Lost	CoreMark/MHz
30 sec	1	15,604194		1,538048
1000	16	15,606633	0,0156%	1,537808
500	32	15,609788	0,0358%	1,537497
100	157	15,634318	0,1931%	1,535085
10	1592	15,918195	2,0123%	1,507709

XtratuM: Performance Evaluation

CoreMark on a XM partition

Executed on several cores

Core id	Time(s)	Perf. Lost	
Core 0	15,60663		
Core 0	15,60967	0,0195%	
Core 1	15,60968	0,0195%	
Core 0	15,61191	0,0338%	
Core 1	15,61185	0,0334%	
Core 2	15,61186	0,0335%	

Demonstration application

- Simple application: MD5 computation of incoming SpW packets
 - Benchmark different I/O management techniques

de vai ència

Demonstration application (con't d)

- Benchmark different I/O management techniques
 - Cyclic scheduling and fixed priority scheduling

de valència

Demonstration application results

Guidelines and way forward

Multi core architecture

- Minimize hardware coupling (need for system level simulation to asses the best techniques)
- Optimize hardware for virtualization
- Improve hardware debug facilities (real time tracing)
- Provide comprehensive simulation environment

Guidelines and way forward (con't d)

Hypervisor software

- Improve development and validation environment
- Provide a multithreading API to partition programmers
- Improve fixed priority scheduling policy to ensure better timing isolation (priority server)

Flexible data processing use case

- Use task parallelism programming model
- Possible integration of data processing tasks with instrument control tasks using IMA

Guidelines and way forward (con't d)

IMA on multi core

- Multi core can ease IMA implementation
- Use direct I/O allocation (IOMMU)
- Use fixed priority scheduling to implement interrupt handlers or allocate one core for the I/O partition
- Modify RTOS to support concurrent execution of interrupt handlers
- Hardware coupling can impact time partitioning!

Conclusions

Demonstration of multi core techniques on NGMP

- SMP hypervisor
- Direct I/O allocation with IOMMU
- VCPUs and fixed priority scheduling for interrupt handlers
- Multi core can efficiently be used for IMA and flexible data processing

Prerequisites:

- Multithreading software support (at hypervisor or RTOS level)
- Multi core hardware improvements
- Multi core WCET and scheduling analysis tools
- (ProArtis, ProCXim)

