
System Impact of Distributed
Multicore Systems
December 5th 2012

Software Systems Division & Data Systems Division

Final Presentation Days

Mathieu Patte (Astrium Satellites)

Alfons Crespo (UPV)

Outline
 Context, objectives and state of the art

 Xtratum porting on NGMP
 Approach
 Main issues
 Scheduling policies
 Configuration file
 Evaluation

 Demonstration application

 Guidelines and way forward

Study’s context and objectives

 First multi core platform for space are available

 Need to analyze the impacts at system level of
the switch to multi core

 Identify first use cases for multi core processor
and recommend best practices

Multi core processors use in spacecrafts

 Platform:
 No actual needs in current reference architecture
 Emerging need: Integrated Modular Avionics for Space

 Payload:
 More processing power, means more powerful flexible

payload data processing units
 Main users: scientific missions

Multi core architecture survey

 Multi core means shared resources
competition for access to shared resources (memory)

 Key element is memory architecture
 Multi level cache
 Advanced cache coherency management techniques

(inclusive, exclusive caches)
 Layered buses, crossbar switches
 Multi port cache/memory controller

NGMP architecture assessment

 NGMP main features:
 Independent L1 caches, shared L2 cache
 Shared bus to L2  competition between the cores
 IOMMU allows partitioning I/O hardware resources
 Hardware Support for ASMP
 No hardware support for virtualization

Software techniques on multi core
 Symmetric Multi Processing:

 One single OS is managing all the cores
 Pros: performance
 Cons: all applications have to use the same OS, complex OS

to qualify

 ASymmetric Multi Processing:
 Different OS on different cores
 Pros: OS diversity
 Cons: all the OS needs to be qualified, space separation

difficult to enforce

Software techniques for multi core (cont’d)

 SMP hypervisor:
 Lightweight SMP kernel providing virtualization services
 Pros: each application can run its own OS
 Cons: performance is lower than native SMP

Parallelism programming model

 Data parallelism: same code, different bits of data

Parallelism programming model (cont’d)

 Task parallelism: different code, same data

XtratuM: Approach

 XtratuM was initially designed for monocore
architectures: LEON2 and LEON3

 It offers virtual machines (vCPU) to execute
partitions

XtratuM: Hypervisor Multicore
approach

12

Hypervisor based system permits
to build partitioned systems
where partitions :

•Are Temporal and Spatial isolated

•Can have different level of
criticality

•Use the appropriated OS for each
application

•Requires an Independent validation

•Take advantage of the multicore to
execute mono-core OSs in a
multicore platform

XtratuM: Hypervisor based
Multicore approach

13

Hypervisor based Multicore Software architectures
can provide a more flexible AMP or SMP view

XtratuM: Multi-core hypervisor

14

Several schemes are
possible

•Monocore partitions on different
real CPUs

•Monocore partitions on the
same/different real CPUs

•Mono/Multi-core partitions

XtratuM: Issues related to
Multicore

 Impact of Multicore on the services
provided by the hypervisor:

 Interrupts; Partition management; Health Monitor;

 Virtualised resources
 Clock and Timers
 Interrupt management (Set up/use the

multiprocessor interrupt controller with extended
ASMP)

 IPI’s management (Emulate IPIS through
interrupts)

 Memory management

 Scheduling
 Main aspect to be analysed

XtratuM: Issues related to
Multicore

 Virtual CPUs:
 Inclusion of the virtual CPU (vCPU) concept
 Each partition has one or more vCPUs (multi-core)
 Each vCPU has a local partition control table
 The clock is shared among the vCPUs

 New hypercalls are required tp deal with vCPUs
 Get status
 Start-up/resume/suspend/halt vCPU

 XML extension
 Each partition shall define the number of VCPUs

supported
 Each slot shall indicate the VCPUID (omission means

VCPUID=0)

XtratuM: Scheduling Policies

- Each core can be scheduled with a defined scheduling
policy

- Specified in the configuration file
- i.e.: 3 cores under a cyclic scheduling; 1 core FPS

 Several scheduling policies
- Basic scheduling policy: Cyclic scheduling
- Alternative scheduling policies (IO activities)

- Fixed Priority Scheduling

Cyclic
scheduling

FPS

XtratuM: Plan management in
Multicore

 Definition of Scheduling Plans
 Multiple schedules
 Plan switch: system partition

XtratuM: Multicore Scheduling
Plan

 Plan specification: configuration file
 <Processor id="0" frequency="50Mhz">
 <CyclicPlanTable>
 <Plan id="0" majorFrame="400ms">
 <Slot id="0" start="0ms" duration="200ms" partitionId="0”
vCpuId="0"/>
 <Slot id="1" start="200ms" duration="200ms"
partitionId="0” vCpuId="1"/>
 </Plan>
 …………..
 </CyclicPlanTable>
 </Processor>

 <Processor id="1" frequency="50Mhz">

 <FixedPriority>

 <Partition id="0" vCpuId=“1" priority="10"/>
 <Partition id="2" vCpuId="0" priority="5"/>

 </FixedPriority>
 </Processor>

<PartitionTable>
 <Partition id="0" name="Partition1" flags="system" console="Uart” noVCpus="4">
...

XtratuM: IOMMU description

 Similar to the MMU but at the AMBA bus level
I/O.

 Provides capabilities for:
 Protecting I/O pages (4KB-512KB page-size)
 Translating I/O pages (4KB-512KB page-size)

 Solves the problem DMA memory protection
problem

 Statically defined

XtratuM: IO-MMU: Configuration

 Configured statically during XML stage:
<XMHypervisor ... >
...
 <IoMmu>
 <AhbMst id="0" partitionId=“0" busRouting="processor" vendorId="0xc" deviceId="0x0f" />
 <AhbMst id="1" partitionId="1" busRouting="memory" vendorId="0xc" deviceId=“0x1f" />
 </IoMmu>
</XMHypervisor>

 Where

 Id: master ahb id; identifies the Master configuration register

 PartitionId: bit [3:0] (GROUP) GRIOMMU Master configuration register

 BusRouting: bit [4] (BS) GRIOMMU Master configuration register

 VendorId: bits [31:24] (VENDOR) GRIOMMU Master configuration register

 DeviceId: bits [23:12] (DEVICE) GRIOMMU Master configuration register

XtratuM: Test Suites

 Functional tests adapted from mono-core
 CNES tests for LEON2 and LEON3

 Spatial & temporal isolation; Partition Mngmt;
Interrupt Mgmt; Health Monitor; IPC; ….

 SIMDS functional requirements
 Boot Mngmt; Cache; Scheduling; IO; IPC; IRqs,; ….

 Performance evaluation
 Dhrystone benchmark
 CoreMark benchmark
 IPC measurements

HAPS-54 Board

LEON4

4 Cores @ 50MHz

XtratuM: Performance
Evaluation

 Dhrystone on native HW vs Dhrystone on a XM
partition

 CoreMark on native HW vs CoreMark on a XM
partition

 Use 1 core
 In the Partitioned target the benchmark is

completed in 1 slot

 CoreMark on a XM partition
 Executed with different slot durations

XtratuM: Performance Evaluation

 CoreMark on a XM partition
 Executed on several cores

XtratuM: Performance Evaluation

Demonstration application
 Simple application: MD5 computation of incoming

SpW packets

 Benchmark different I/O management techniques
 Cyclic scheduling on one core

 Cyclic scheduling and I/O partition

Demonstration application (con’t d)
 Benchmark different I/O management techniques

 Cyclic scheduling and fixed priority scheduling

Demonstration application results

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 2.5 3 3.5 4 4.5 5 5.5 6 6.5
 97.5

 98

 98.5

 99

 99.5

 100

o
ut

p
ut

 d
a

ta
 r

a
te

 in
 M

b
/s

A
va

ila
b

le
 c

o
m

p
ut

a
tio

n
tim

e
 o

n
d

yn
a

m
ic

 s
ch

e
d

ul
in

g
 c

o
re

 in
 p

e
rc

e
nt

input data rate in Mb/s

dynamic scheduling
Available computation time (secondary axis)

I/O partition
cyclic scheduling

Guidelines and way forward

 Multi core architecture
 Minimize hardware coupling (need for system level

simulation to asses the best techniques)
 Optimize hardware for virtualization
 Improve hardware debug facilities (real time tracing)
 Provide comprehensive simulation environment

Guidelines and way forward (con’t d)
 Hypervisor software

 Improve development and validation environment
 Provide a multithreading API to partition programmers
 Improve fixed priority scheduling policy to ensure better

timing isolation (priority server)

 Flexible data processing use case
 Use task parallelism programming model
 Possible integration of data processing tasks with instrument

control tasks using IMA

Guidelines and way forward (con’t d)

 IMA on multi core
 Multi core can ease IMA implementation
 Use direct I/O allocation (IOMMU)
 Use fixed priority scheduling to implement interrupt handlers

or allocate one core for the I/O partition
 Modify RTOS to support concurrent execution of interrupt

handlers
 Hardware coupling can impact time partitioning!

Conclusions
 Demonstration of multi core techniques on NGMP

 SMP hypervisor
 Direct I/O allocation with IOMMU
 VCPUs and fixed priority scheduling for interrupt handlers

 Multi core can efficiently be used for IMA and
flexible data processing

 Prerequisites:
 Multithreading software support (at hypervisor or RTOS level)
 Multi core hardware improvements
 Multi core WCET and scheduling analysis tools
(ProArtis, ProCXim)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

