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Abstract Multi-core processors are 
increasingly being considered to provide the 
performance required by future safety critical 
systems. In this line, Aeroflex Gaisler has 
developed, in conjunction with the European 
Space Agency, the NGMP, a quad-core 
processor to be used in the future space 
missions of the Agency. Unfortunately, its use 
is not straightforward as it poses various 
challenges at functional and system level. ESA 
is currently leading a study that aims at 
investigating the potential use of the NGMP for 
space on-board processing application [5]. 
This paper presents the outputs of this study, 
which includes an analysis of the use cases of 
the NGMP, the porting of a bare metal 
hypervisor to the NGMP, and the 
benchmarking of the new multi core specific 
hypervisor features.  

Introduction 

The market for Real-Time Embedded Systems 
has experienced an unprecedented growth, 
and is expected to grow for the foreseeable 
future [1][2]. Because of the competition on 
functional value, measured in terms of 
application services delivered per unit of 
product, the embedded industry is faced with 
rising demands for greater performance, 
increased computing power, and stricter cost-
containment. These factors put pressure to 
deliver increasing performance for future 
embedded processors, as well as to reduce 
the number of processing units used in the 
system [3]. 

Such high performance requirements could be 
met by designing more complex processors 
with longer pipelines, out of order execution, 

and higher clock frequency. However, applying 
these solutions to real-time embedded systems 
design is not feasible, because they could 
introduce timing anomalies [4] due to their non-
deterministic run-time behaviours. In addition, 
the high energy requirements of such complex 
processors do not satisfy the low-power 
constraints and the severe cost limitations of 
common embedded systems. Multi-cores offer 
better performance per watt than single-core 
processors, while maintaining a relatively 
simple processor design. Moreover, multi-core 
processors ideally enable co-hosting 
applications with different requirements (e.g. 
high data processing demand and stringent 
time criticality). Co-hosting non-safety and 
safety critical applications on a common 
powerful multi-core processor is of paramount 
importance in the embedded system market, 
allowing to schedule a higher number of tasks 
on a single processor so that the hardware 
utilization is maximized, while cost, size, 
weight and power requirements are reduced. 
This is especially important for the space 
industry where weight reduction is essential. In 
addition, space applications especially benefit 
from simpler cores with lower clock 
frequencies because errors induced from 
cosmic radiation are reduced. 

Even if multi-core processors may offer several 
benefits to embedded systems, their use is not 
straightforward. On the one hand, real time 
embedded systems require guarantees on the 
timing correctness of the system, providing 
strong arguments for the most critical ones 
[11]. On the other hand, it is required to 
prevent that one application could corrupt the 
state of other applications; paying special 



attention in preventing low-criticality 
applications to affect the high-criticality ones. 
This can be accomplished using time and 
space separation techniques; the application of 
such techniques to multi core processor is 
explored in this paper. In addition, the SW 
architects have to reconsider their designs whit 
the introduction of multi-core processors, 
especially in a traditionally conservative 
domain such as the one of space applications. 

The place of multi core within space systems 
has not been defined yet. Depending on the 
application targeted, different design features 
could be required at hardware and/or software 
level. As a preliminary example, certain 
payload data processing algorithms could 
benefit from an efficient parallelisation scheme 
over multiple cores, while several platform 
control applications could be implemented on a 
single multi core processor while being safely 
segregated.  

In this paper we propose different techniques 
to efficiently harness the processing power of 
multi core processor, including time and space 
partitioning techniques for Integrated Modular 
Avionics applications. We describe the porting 
process of the Xtratum hypervisor to the 
NGMP target. We also present in this paper 
the tests, and their associated results, that 
have been implemented to measure the 
performance overheads induced by the use of 
a hypervisor, as well as the use case 
developed to benchmark the newly proposed 
time and space separations techniques against 
traditional ones.  

Harnessing the processing power of multi 
core processor for space applications  

We have identified two kinds of applications 
that can make use of the increased processing 
power offered by multi core processors such 
as the NGMP: data processing applications 
and Integrated Modular Avionics applications 
(IMA). For each of these applications families, 

special techniques must be developed to 
efficiently use multi core architecture.  

For some scientific missions, such as Gaia or 
Euclid, flexibility and on-board reprogramability 
of the payload data processing is a 
requirement. In theses cases, general purpose 
processors are used to implement the data 
processing functions.  

The commercial embedded world has tackled 
the issue of the implementing data processing 
applications on top of the multi core processors 
by developing two approaches: data 
parallelism and task parallelism. Using the data 
parallelism approach, each core of the 
processor is executing the same processing, 
input data is split among the cores, and each 
set of data is processed independently on each 
core. Using this approach, an existing mono 
core implementation can be reused on multi 
core processor: it’s just duplicated over several 
cores. The drawback of this approach is that 
the cores are loosely synchronized and are 
competing for access to the same hardware 
resources. On the other hand, in the task 
parallelism approach, each core is executing a 
different step of the processing; data is flowing 
from one core to another. Using this approach 
the developer can precisely control the 
execution of the cores and can plan hardware 
resources allocation in order to reduce 
indeterminism. Given the facts that: scientific 
data processing applications are most often 
not the same for one mission to another, that 
space applications are very sensitive to 
indeterminism, and finally that there is a strong 
hardware coupling between the cores of the 
NGMP; we recommend using the task 
parallelism approach to implement space data 
processing applications.  

ESA and the European space industry are 
currently pursuing a roadmap aiming at 
integrating more and more on-board 
applications on a single processing platform. 



The additional processing power of a multi 
core processor could allow for integration of 
even more applications. The two main 
solutions to integrate several applications on a 
single multi core processor developed by the 
industry are the Symmetric Multi Processing 
and the (SMP) and the Asymmetric Multi 
Processing (AMP). Using the SMP solution a 
single Operating System (OS) runs on all the 
cores, each applications is executed in a 
separated process of the OS. This solution 
usually allows for good performance; however 
the development and qualification of an SMP 
OS is a complex and costly process. Moreover, 
all the applications have to use the same OS, 
which can be a constraint in some cases. In 
the AMP scheme, an independent OS is 
executed on each core. This obviously allows 
for running applications using different OS, but 
in this case the space partitioning between the 
applications can be difficult to enforce, as each 
OS has access to the complete memory map. 
For these reasons straightforward SMP or 
AMP solutions are not suited for space IMA 
applications.  

Instead we propose to use a hybrid solution 
based on a lightweight SMP hypervisor kernel 
providing virtualization services to guest 
applications. Each application can run its own 
OS on its virtual processor. The hypervisor 
kernel is able to enforce a strict time and space 
partitioning of the hardware resources. This 
approach has the advantages of allowing a 
smooth transition from mono core IMA space 
applications: indeed hypervisor kernels are 
part of the current roadmap for IMA. An 
application developed to run on top of a mono 
core hypervisor would run transparently on a 
multi core hypervisor, only the hypervisor 
kernel needs to be ported and qualified to the 
multi core processor.  

 

Advanced features for efficient multi core 
processor hypervisor 

We have identified two advanced features of 
the hypervisor kernel that could allow for a 
more efficient use of a multi core processor in 
a time and space partitioning context.  

The first one is the possibility to allocate 
several virtual processing cores to a single 
partition at the same time. This allows 
allocating more processing resource to a given 
partition, for instance a data processing 
partition.  The virtual processing core are 
exported to the partition as raw processing 
resources, it’s the partition responsibility to 
implement the necessary mechanisms to 
handle the concurrency of execution. For that 
purpose, as explained before in this paper, we 
propose using task parallelism techniques.  

The second advanced feature we have 
identified aims at facilitating the 
implementation of Inputs/Outputs tasks in a 
time partitioned system.  

In space systems an I/O task is made of two 
different operations: the management of the 
I/O hardware (interrupt servicing, DMA 
management…) and the actual processing of 
the I/O data (telecommand processing, 
command elaboration…). Implementing the I/O 
hardware management operations in a time 
partitioned system is challenging: either the 
scheduling plan has to be carefully designed in 
order to execute each partition at the required 
time, or the I/O hardware must be made more 
autonomous in order to relieve the partition 
from hardware management. 

We have therefore identified the need to be 
able to schedule the execution of partitions in a 
dynamic way: as opposed to a fix static cyclic 
scheduling plan that’s usually used to enforce 
time partitioning, we propose to schedule the 
execution of the partitions according to the 
occurrence of I/O events (interrupts) or internal 
requests (hypercalls).  The system integrator 



shall be able to use different scheduling 
policies for the different cores of the processor.  

Using the two advanced features described 
above, we can implement a time partitioned 
system in which the management of I/O 
operations does not constrain the scheduling 
plan or the I/O hardware. Inside each partition, 
the I/O hardware management tasks are 
separated from the actual I/O data processing 
tasks; at least two virtual cores are allocated to 
each partition. The I/O data processing tasks 
(which represents the bulk of the processing 
requirement), are scheduled on one or more 
cores of the platform using traditional fix cyclic 
scheduling. The I/O hardware management 
tasks are scheduled for execution on a core of 
the platform using a dynamic scheduling 
policy. Inside a partition, I/O data is passed 
between the virtual cores using task 
parallelism techniques.  

Using this approach for managing I/O 
operations in time partitioned systems has 
several advantages. First it releases the 
constraints on the scheduling plan, thus 
reducing the number of required context 
switches and improving the performance. 
Second, it allows using any kind of generic 
hardware. Another solution to solve this 
problem could have been to move the 
execution of all I/O hardware management 
operations inside one single partition which 
would be scheduled for execution all the time 
on one core of the platform; however this 
solution necessitates that all partitions sub 
contract the management of their I/O hardware 

to the I/O partition. Using the dynamic 
scheduling solution, each partition can manage 
its own hardware without interaction or 
coupling with the other partitions.  

Figure 1 is illustrating en example in which 
three partitions are scheduled using a cyclic 
scheduling plan on CPU0 of the platform, while 
the I/O hardware management tasks of each of 
these partitions are executed on a different 
virtual CPU inside the partition’s context on a 
different CPU using a dynamic scheduling 
policy.   

Virtualization layer: XtratuM 

XtratuM is a hypervisor for embedded real-time 
systems that initially was developed for x86 
processor and ported to LEON2[12] and 
LEON3[13]. Starting from this porting, XtratuM 
has been adapted to be executed on the 
LEON4 multi core processor. The adaptation 
design has followed the next criteria: 

• A hypervisor is a software layer that 
offers a virtual machine near the real 
one. From this point of view, the 
design has been focused to provide as 
many virtual CPUs as the hardware 
provides.  

• The hypervisor mimics the hardware 
behaviour. The hypervisor, as the 
hardware does, offers one virtual CPU 
initialised to the partitions and they are 
responsible of the initialisation of other 
virtual CPUs when needed. 

• Partitions can be mono or multi core. 
The hypervisor does not force to have 
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Figure 1 - Multi core partitions and dynamic scheduling 



multi core partitions (multi core 
operating systems). A mono-core 
partition can be executed without the 
knowledge of the underlying multi core 
hardware. 

• Separation concerns among virtual 
and real CPUs. A partition using a 
virtual CPU can allocate it in any of the 
real CPUs. 

• Real CPUs can be scheduled under 
different scheduling policies. The 
system integrator can decide the more 
appropriated scheduling policy for the 
real CPUs. Some CPUs can be 
scheduled under a cyclic scheduling 
policy and others can be scheduled 
under a priority-based scheduling. 

Next figure shows an example of three 
partitions using different cores and the 
mapping between the virtual and real CPUs. 

 

   

Figure 2 Virtal CPUs mapping 

Taking into account these criteria the main 
adaptation of XtratuM to LEON4 includes the 
following aspects  

• XtratuM offers as many virtual CPUS as the 
hardware provides. Partitions can be mono 
or multicore. 

• Each virtual CPU in each partition has its 
own internal state. Services  to start, stop, 
reset, suspend and resume a virtual CPU 
have been added. 

• Interrupt management per virtual CPU 

• IOMMU support, the system integrator can 
allocate an I/O interface to one partition, all 
the memory accesses performed by this     
I/O interface will be translated by the 
IOMMU so that the physical memory area 
used is solely the partition’s one; therefore 
ensuring space partitioning of the memory 
accesses performed by the I/O interfaces. 

The adaptation also has a strong impact in the 
XtratuM behaviour. While in previous 
adaptations, XtratuM was not preemptible, in 
multi core this approach is not valid. It is 
required that each CPU can use the hypervisor 
in a concurrent way. From this point of view, a 
redesign of the internals has been needed. 

Other aspect that has been strongly influenced 
by the multicore approach is the scheduling 
policy. Following the ARINC-653 approach, the 
basic scheduling policy is the cyclic 
scheduling. However, in order to add flexibility 
several scheduling policies can be specified in 
the configuration file. The main assumptions 
are: 

• A scheduling policy can be attached to 
each physical core.  

• Several scheduling policies can coexist 

• All cores scheduled under cyclic scheduling 
share the MAF. 

• Other policies are: Fixed priority scheduling. 

• A multi-core partition can execute two 
threads in different cores under different 
policies.  

These features permit to implement a fast IO 
communications. A multi-core partition can 
allocate a thread to core under a cyclic 
scheduling and other thread to a core under 



FPS. It allows to react very fast to interrupts 
and receive/send messages from the same 
partition context without need of additional 
delays. 

Performance tests of the hypervisor and 
demonstrator application 

The performance overhead induced by the 
hypervisor with respect to bare metal 
performance was assessed by running multiple 
partitions, each running its own copy of the 
standard CoreMark™ benchmark. The 
measured performance overhead depends on 
the frequency of context switches between 
partitions. In the most demanding scenarios for 
which the scheduling plan was built to trigger a 
partition context switch every 10 ms, the 
performance overhead is lower than 3%.  

In order to test the proposed advanced 
features of the hypervisor, we implemented a 
demonstrator application. The application is 
made of two independent partitions. The first 
partitions is implementing a synthetic data 
processing task that receives a continuous 
stream of SpaceWire packets, compute a MD5 
digest of the packets and send back the digest 
over the same SpaceWire link. The second 
partition is implementing a data management 

task, which receives a continuous stream of 
SpaceWire packets, store these packets, and 
upon reception of a specific packet starts the 
retransmission of all previously stored packets.  

An independent SpaceWire interface is 
allocated to each partition. Thanks to the 
support of the IOMMU unit of the NGMP by the 
Xtratum hypervisor, each partition is able to 
program DMA transfers to/from its SpaceWire 
interface in its own virtual memory address 
space. For each partition, the SpaceWire 
management tasks are separated from the 
main partitions task and executed on a 
different virtual CPU, which is in turn 
scheduled for execution on a dedicated CPU of 
the platform using dynamic schedule plan. 

Using the embedded SpaceWire router of the 
NGMP we were able to precisely measure the 
performance of each partition. Indeed the 
SpaceWire router allows duplicating the 
incoming SpaceWire flux to a partition, sending 
one copy of the flux to monitoring equipment in 
order to track precisely the input data flux of 
the partition.  

The tests have been run on a FPGA 
development platform, with the NGMP clocked 
at 50 MHz. The first results obtained are 

Figure 3 Performance of the synthetic data processing partition without dynamic scheduling 
(left) and with (right) 



depicted on . We see that when using 
advanced hypervisor features we can improve 
the performance of the synthetic data 
processing partition by 30%. The combined 
use of the DMA capabilities of the SpaceWire 
interface of the NGMP, which can be fully 
exploited thanks to the IOMMU support, and 
the smart use of the dynamic scheduling 
scheme, has allowed us handling input packet 
frequencies as high as 2.4 KHz.  

Figure 3

Conclusion 

Efficiently harnessing the processing power of 
multi core processor for space applications is 
not an easy task, and will require quite some 
modifications to existing architecture. In this 
paper we identified several techniques that go 
in this direction. The advanced hypervisor 
features that were defined and developed 
through the course of this study are a first step. 
As a next step, task parallelism API should be 
ported on top of the Xtratum hypervisor so that 
execution parallelism can be easily and 
efficiently managed inside partitions.  
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