
SYSTEM IMPACT OF DISTRIBUTED MULTICORE SYSTEMS
Mathieu Patte 1, Alfons Crespo3, Marco Zulianello 2,Vincent Lefftz 1,Miguel Masmano3,

Javier Coronel3
1 Astrium SAS, Toulouse, France

2 ESA/ESTEC, Noordwijk, The Netherlands
3 UPV, Valencia, Spain

Abstract Multi-core processors are
increasingly being considered to provide the
performance required by future safety critical
systems. In this line, Aeroflex Gaisler has
developed, in conjunction with the European
Space Agency, the NGMP, a quad-core
processor to be used in the future space
missions of the Agency. Unfortunately, its use
is not straightforward as it poses various
challenges at functional and system level. ESA
is currently leading a study that aims at
investigating the potential use of the NGMP for
space on-board processing application [5].
This paper presents the outputs of this study,
which includes an analysis of the use cases of
the NGMP, the porting of a bare metal
hypervisor to the NGMP, and the
benchmarking of the new multi core specific
hypervisor features.

Introduction

The market for Real-Time Embedded Systems
has experienced an unprecedented growth,
and is expected to grow for the foreseeable
future [1][2]. Because of the competition on
functional value, measured in terms of
application services delivered per unit of
product, the embedded industry is faced with
rising demands for greater performance,
increased computing power, and stricter cost-
containment. These factors put pressure to
deliver increasing performance for future
embedded processors, as well as to reduce
the number of processing units used in the
system [3].

Such high performance requirements could be
met by designing more complex processors
with longer pipelines, out of order execution,

and higher clock frequency. However, applying
these solutions to real-time embedded systems
design is not feasible, because they could
introduce timing anomalies [4] due to their non-
deterministic run-time behaviours. In addition,
the high energy requirements of such complex
processors do not satisfy the low-power
constraints and the severe cost limitations of
common embedded systems. Multi-cores offer
better performance per watt than single-core
processors, while maintaining a relatively
simple processor design. Moreover, multi-core
processors ideally enable co-hosting
applications with different requirements (e.g.
high data processing demand and stringent
time criticality). Co-hosting non-safety and
safety critical applications on a common
powerful multi-core processor is of paramount
importance in the embedded system market,
allowing to schedule a higher number of tasks
on a single processor so that the hardware
utilization is maximized, while cost, size,
weight and power requirements are reduced.
This is especially important for the space
industry where weight reduction is essential. In
addition, space applications especially benefit
from simpler cores with lower clock
frequencies because errors induced from
cosmic radiation are reduced.

Even if multi-core processors may offer several
benefits to embedded systems, their use is not
straightforward. On the one hand, real time
embedded systems require guarantees on the
timing correctness of the system, providing
strong arguments for the most critical ones
[11]. On the other hand, it is required to
prevent that one application could corrupt the
state of other applications; paying special

attention in preventing low-criticality
applications to affect the high-criticality ones.
This can be accomplished using time and
space separation techniques; the application of
such techniques to multi core processor is
explored in this paper. In addition, the SW
architects have to reconsider their designs whit
the introduction of multi-core processors,
especially in a traditionally conservative
domain such as the one of space applications.

The place of multi core within space systems
has not been defined yet. Depending on the
application targeted, different design features
could be required at hardware and/or software
level. As a preliminary example, certain
payload data processing algorithms could
benefit from an efficient parallelisation scheme
over multiple cores, while several platform
control applications could be implemented on a
single multi core processor while being safely
segregated.

In this paper we propose different techniques
to efficiently harness the processing power of
multi core processor, including time and space
partitioning techniques for Integrated Modular
Avionics applications. We describe the porting
process of the Xtratum hypervisor to the
NGMP target. We also present in this paper
the tests, and their associated results, that
have been implemented to measure the
performance overheads induced by the use of
a hypervisor, as well as the use case
developed to benchmark the newly proposed
time and space separations techniques against
traditional ones.

Harnessing the processing power of multi
core processor for space applications

We have identified two kinds of applications
that can make use of the increased processing
power offered by multi core processors such
as the NGMP: data processing applications
and Integrated Modular Avionics applications
(IMA). For each of these applications families,

special techniques must be developed to
efficiently use multi core architecture.

For some scientific missions, such as Gaia or
Euclid, flexibility and on-board reprogramability
of the payload data processing is a
requirement. In theses cases, general purpose
processors are used to implement the data
processing functions.

The commercial embedded world has tackled
the issue of the implementing data processing
applications on top of the multi core processors
by developing two approaches: data
parallelism and task parallelism. Using the data
parallelism approach, each core of the
processor is executing the same processing,
input data is split among the cores, and each
set of data is processed independently on each
core. Using this approach, an existing mono
core implementation can be reused on multi
core processor: it’s just duplicated over several
cores. The drawback of this approach is that
the cores are loosely synchronized and are
competing for access to the same hardware
resources. On the other hand, in the task
parallelism approach, each core is executing a
different step of the processing; data is flowing
from one core to another. Using this approach
the developer can precisely control the
execution of the cores and can plan hardware
resources allocation in order to reduce
indeterminism. Given the facts that: scientific
data processing applications are most often
not the same for one mission to another, that
space applications are very sensitive to
indeterminism, and finally that there is a strong
hardware coupling between the cores of the
NGMP; we recommend using the task
parallelism approach to implement space data
processing applications.

ESA and the European space industry are
currently pursuing a roadmap aiming at
integrating more and more on-board
applications on a single processing platform.

The additional processing power of a multi
core processor could allow for integration of
even more applications. The two main
solutions to integrate several applications on a
single multi core processor developed by the
industry are the Symmetric Multi Processing
and the (SMP) and the Asymmetric Multi
Processing (AMP). Using the SMP solution a
single Operating System (OS) runs on all the
cores, each applications is executed in a
separated process of the OS. This solution
usually allows for good performance; however
the development and qualification of an SMP
OS is a complex and costly process. Moreover,
all the applications have to use the same OS,
which can be a constraint in some cases. In
the AMP scheme, an independent OS is
executed on each core. This obviously allows
for running applications using different OS, but
in this case the space partitioning between the
applications can be difficult to enforce, as each
OS has access to the complete memory map.
For these reasons straightforward SMP or
AMP solutions are not suited for space IMA
applications.

Instead we propose to use a hybrid solution
based on a lightweight SMP hypervisor kernel
providing virtualization services to guest
applications. Each application can run its own
OS on its virtual processor. The hypervisor
kernel is able to enforce a strict time and space
partitioning of the hardware resources. This
approach has the advantages of allowing a
smooth transition from mono core IMA space
applications: indeed hypervisor kernels are
part of the current roadmap for IMA. An
application developed to run on top of a mono
core hypervisor would run transparently on a
multi core hypervisor, only the hypervisor
kernel needs to be ported and qualified to the
multi core processor.

Advanced features for efficient multi core
processor hypervisor

We have identified two advanced features of
the hypervisor kernel that could allow for a
more efficient use of a multi core processor in
a time and space partitioning context.

The first one is the possibility to allocate
several virtual processing cores to a single
partition at the same time. This allows
allocating more processing resource to a given
partition, for instance a data processing
partition. The virtual processing core are
exported to the partition as raw processing
resources, it’s the partition responsibility to
implement the necessary mechanisms to
handle the concurrency of execution. For that
purpose, as explained before in this paper, we
propose using task parallelism techniques.

The second advanced feature we have
identified aims at facilitating the
implementation of Inputs/Outputs tasks in a
time partitioned system.

In space systems an I/O task is made of two
different operations: the management of the
I/O hardware (interrupt servicing, DMA
management…) and the actual processing of
the I/O data (telecommand processing,
command elaboration…). Implementing the I/O
hardware management operations in a time
partitioned system is challenging: either the
scheduling plan has to be carefully designed in
order to execute each partition at the required
time, or the I/O hardware must be made more
autonomous in order to relieve the partition
from hardware management.

We have therefore identified the need to be
able to schedule the execution of partitions in a
dynamic way: as opposed to a fix static cyclic
scheduling plan that’s usually used to enforce
time partitioning, we propose to schedule the
execution of the partitions according to the
occurrence of I/O events (interrupts) or internal
requests (hypercalls). The system integrator

shall be able to use different scheduling
policies for the different cores of the processor.

Using the two advanced features described
above, we can implement a time partitioned
system in which the management of I/O
operations does not constrain the scheduling
plan or the I/O hardware. Inside each partition,
the I/O hardware management tasks are
separated from the actual I/O data processing
tasks; at least two virtual cores are allocated to
each partition. The I/O data processing tasks
(which represents the bulk of the processing
requirement), are scheduled on one or more
cores of the platform using traditional fix cyclic
scheduling. The I/O hardware management
tasks are scheduled for execution on a core of
the platform using a dynamic scheduling
policy. Inside a partition, I/O data is passed
between the virtual cores using task
parallelism techniques.

Using this approach for managing I/O
operations in time partitioned systems has
several advantages. First it releases the
constraints on the scheduling plan, thus
reducing the number of required context
switches and improving the performance.
Second, it allows using any kind of generic
hardware. Another solution to solve this
problem could have been to move the
execution of all I/O hardware management
operations inside one single partition which
would be scheduled for execution all the time
on one core of the platform; however this
solution necessitates that all partitions sub
contract the management of their I/O hardware

to the I/O partition. Using the dynamic
scheduling solution, each partition can manage
its own hardware without interaction or
coupling with the other partitions.

Figure 1 is illustrating en example in which
three partitions are scheduled using a cyclic
scheduling plan on CPU0 of the platform, while
the I/O hardware management tasks of each of
these partitions are executed on a different
virtual CPU inside the partition’s context on a
different CPU using a dynamic scheduling
policy.

Virtualization layer: XtratuM

XtratuM is a hypervisor for embedded real-time
systems that initially was developed for x86
processor and ported to LEON2[12] and
LEON3[13]. Starting from this porting, XtratuM
has been adapted to be executed on the
LEON4 multi core processor. The adaptation
design has followed the next criteria:

• A hypervisor is a software layer that
offers a virtual machine near the real
one. From this point of view, the
design has been focused to provide as
many virtual CPUs as the hardware
provides.

• The hypervisor mimics the hardware
behaviour. The hypervisor, as the
hardware does, offers one virtual CPU
initialised to the partitions and they are
responsible of the initialisation of other
virtual CPUs when needed.

• Partitions can be mono or multi core.
The hypervisor does not force to have

CPU0

CPU1

P0 P1 P2

P3

P0 P1 P2 P0 P1 P2

I0

P3

I0 I1 I2

P3 P3

I2

P3 P3

I0 + I1

Figure 1 - Multi core partitions and dynamic scheduling

multi core partitions (multi core
operating systems). A mono-core
partition can be executed without the
knowledge of the underlying multi core
hardware.

• Separation concerns among virtual
and real CPUs. A partition using a
virtual CPU can allocate it in any of the
real CPUs.

• Real CPUs can be scheduled under
different scheduling policies. The
system integrator can decide the more
appropriated scheduling policy for the
real CPUs. Some CPUs can be
scheduled under a cyclic scheduling
policy and others can be scheduled
under a priority-based scheduling.

Next figure shows an example of three
partitions using different cores and the
mapping between the virtual and real CPUs.

Figure 2 Virtal CPUs mapping

Taking into account these criteria the main
adaptation of XtratuM to LEON4 includes the
following aspects

• XtratuM offers as many virtual CPUS as the
hardware provides. Partitions can be mono
or multicore.

• Each virtual CPU in each partition has its
own internal state. Services to start, stop,
reset, suspend and resume a virtual CPU
have been added.

• Interrupt management per virtual CPU

• IOMMU support, the system integrator can
allocate an I/O interface to one partition, all
the memory accesses performed by this
I/O interface will be translated by the
IOMMU so that the physical memory area
used is solely the partition’s one; therefore
ensuring space partitioning of the memory
accesses performed by the I/O interfaces.

The adaptation also has a strong impact in the
XtratuM behaviour. While in previous
adaptations, XtratuM was not preemptible, in
multi core this approach is not valid. It is
required that each CPU can use the hypervisor
in a concurrent way. From this point of view, a
redesign of the internals has been needed.

Other aspect that has been strongly influenced
by the multicore approach is the scheduling
policy. Following the ARINC-653 approach, the
basic scheduling policy is the cyclic
scheduling. However, in order to add flexibility
several scheduling policies can be specified in
the configuration file. The main assumptions
are:

• A scheduling policy can be attached to
each physical core.

• Several scheduling policies can coexist

• All cores scheduled under cyclic scheduling
share the MAF.

• Other policies are: Fixed priority scheduling.

• A multi-core partition can execute two
threads in different cores under different
policies.

These features permit to implement a fast IO
communications. A multi-core partition can
allocate a thread to core under a cyclic
scheduling and other thread to a core under

FPS. It allows to react very fast to interrupts
and receive/send messages from the same
partition context without need of additional
delays.

Performance tests of the hypervisor and
demonstrator application

The performance overhead induced by the
hypervisor with respect to bare metal
performance was assessed by running multiple
partitions, each running its own copy of the
standard CoreMark™ benchmark. The
measured performance overhead depends on
the frequency of context switches between
partitions. In the most demanding scenarios for
which the scheduling plan was built to trigger a
partition context switch every 10 ms, the
performance overhead is lower than 3%.

In order to test the proposed advanced
features of the hypervisor, we implemented a
demonstrator application. The application is
made of two independent partitions. The first
partitions is implementing a synthetic data
processing task that receives a continuous
stream of SpaceWire packets, compute a MD5
digest of the packets and send back the digest
over the same SpaceWire link. The second
partition is implementing a data management

task, which receives a continuous stream of
SpaceWire packets, store these packets, and
upon reception of a specific packet starts the
retransmission of all previously stored packets.

An independent SpaceWire interface is
allocated to each partition. Thanks to the
support of the IOMMU unit of the NGMP by the
Xtratum hypervisor, each partition is able to
program DMA transfers to/from its SpaceWire
interface in its own virtual memory address
space. For each partition, the SpaceWire
management tasks are separated from the
main partitions task and executed on a
different virtual CPU, which is in turn
scheduled for execution on a dedicated CPU of
the platform using dynamic schedule plan.

Using the embedded SpaceWire router of the
NGMP we were able to precisely measure the
performance of each partition. Indeed the
SpaceWire router allows duplicating the
incoming SpaceWire flux to a partition, sending
one copy of the flux to monitoring equipment in
order to track precisely the input data flux of
the partition.

The tests have been run on a FPGA
development platform, with the NGMP clocked
at 50 MHz. The first results obtained are

Figure 3 Performance of the synthetic data processing partition without dynamic scheduling
(left) and with (right)

depicted on . We see that when using
advanced hypervisor features we can improve
the performance of the synthetic data
processing partition by 30%. The combined
use of the DMA capabilities of the SpaceWire
interface of the NGMP, which can be fully
exploited thanks to the IOMMU support, and
the smart use of the dynamic scheduling
scheme, has allowed us handling input packet
frequencies as high as 2.4 KHz.

Figure 3

Conclusion

Efficiently harnessing the processing power of
multi core processor for space applications is
not an easy task, and will require quite some
modifications to existing architecture. In this
paper we identified several techniques that go
in this direction. The advanced hypervisor
features that were defined and developed
through the course of this study are a first step.
As a next step, task parallelism API should be
ported on top of the Xtratum hypervisor so that
execution parallelism can be easily and
efficiently managed inside partitions.

Reference documents

1] ARC Advisory Group. Process Safety
System Worldwide Outlook. Market Analysis
and Forecast through, 2012.

[2] P. Clarke, Automotive chip content growing
fast, says Gartner (9/6/2010).
http://www.eetimes.com/electronics-
news/4207377/Automotive-chipcontent-
growing-fast.

[3] MERASA, EU-FP7 Project:
www.merasa.org.

[4] T. Lundqvist and P. Stenstrom, “Timing
anomalies in dynamically scheduled
microprocessors,” in RTSS, 1999.

[5] ESA contract 4200023100, System Impact
of Distributed Multi-core Systems.

[6] ESA contract: 22279/09/NL/JK, Next
generation multipurpose microprocessor.

[7] ESA contract: 4000100764, IMA for space

[8] ESA contract: 22280/09/NL/LvH, Securely
Partitioning Spacecraft Computing Resources

[9] J. Andersson, J. Gaisler, and R. Weigand,
“Next generation multipurpose
microprocessor,” in DASIA, 2010.

[10] NGMP Preliminary Datasheet Version 1.6,
August 2011

http://microelectronics.esa.int/ngmp/LEON4-
NGMP-DRAFT-1-6.pdf.

[11] ESA contract 4000102623, Multi core OS
Benchmarks

[12] A. Crespo, I. Ripoll, M. Masmano, P.
Arberet, and J.J. Metge. “XTRATUM: an open
source hypervisor for TSP embedded systems
in aerospace”. DASIA 2009. DAta Systems In
Aerospace., May. Istanbul 2009.

[13] T. Pareaud, L. Planche, D. Mylonas, V.
Kolias, N. Pogkas, A. Crespo, I. Ripoll, M.
Masmano, J. Windsor and K. Eckstein.
“Securely Partitioning Spacecraft Computing
Resources:Validation of a Separation Kernel”.
DASIA 2011. DAta Systems In Aerospace.,
May. Malta 2011.

http://microelectronics.esa.int/ngmp/LEON4-NGMP-DRAFT-1-6.pdf
http://microelectronics.esa.int/ngmp/LEON4-NGMP-DRAFT-1-6.pdf

