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1 INTRODUCTION 

1.1 Purpose of the Document 

This document is the final report on the RTEMS SMP development environment development as 
executed by Spacebel, embedded brains and the University of Padua. 

1.2 Scope of the Document 

This document covers the document item FR Final Report identified in the SoW [AD01]. 

1.3 Readership of the Document 

This document is targeted at ESA Project Manager and Technical Officer in charge of the DE4FLMC 
project. 

1.4 Organisation of the Document 

This document is organised as follows: 

 Chapter 1 is this introduction, 

 Chapter 2 describes the main project objectives, 

 Chapter 3 presents the state and results of the developments of RTEMS SMP and its tools, 

 Chapter 4 takes a look of the state of the art of multi-core real-time systems, 

 Chapter 5 describes briefly the findings on parallel libraries, 

 Chapter 6 reports the results of the Proba demonstrator and the findings, 

 And, chapter 5 presents the project conclusions. 

1.5 Property of the Document 

The copyright in this document is vested in Spacebel, embedded brains and University of Padua. 
This document may be reproduced in whole.. 

1.6 Applicability of the Document 

This document applies to the developments made in the scope of the contract. 

1.7 Applicable Documents 

The following documents are applicable to the project. In the body of the text these documents 
are referenced as listed here below. 

[AD01] Development Environment for Future Leon Multi-Core - Statement of Work 
TEC-SWS/12-530/SoW - Issue 1.1 - 31.05.2012 
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[AD02] SMP Demonstrator - Architectural Design Document 

SPB-DE4FLMC-301-ADD-001 

1.8 Reference Documents 

The following documents provide background reference. In the body of the text these documents 
are referenced as listed here below. 

[RD01] RTEMS-SMP C User’s Guide 
On-Line Applications Research Corporation 

1.9 Conventions 

None. 

1.10 Glossary 

None. 
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1.11 Abbreviations and Acronyms 

 
ADD Architectural Design Document 
ADxy Applicable Document xy 
DE4FLMC Development Environment for Future LEON Multi-Core 
DHS Data Handling System 
ESA European Space Agency 
GR Gaisler Research 
IO Input/Output 
NGMP Next Generation Multi-Processor 
OBC On-Board Computer 
OBSW On Board Software 
OS Operating System 
RDxy Reference Document xy 
RTOS Real Time Operating System 
SDE Software Development Environment 
SMP Symmetric Multi-Processing 
SoW Statement of Work 
SPB Spacebel 
SRD System Requirement Document 
SRS Software Requirements Specification 
SUM Software User Manual 
SW Software 
TBC To Be Confirmed 
TBD To Be Defined 
TBW To Be Written 
TC Telecommand 
TM Telemetry 
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2 MAIN PROJECT OBJECTIVES 
The main project objectives where to develop an RTEMS SMP run-time and development 
environment that allows to exploit multi-core processors using RTEMS SMP, investigate its usability 
for space projects and to explore parallel libraries. 

Estec has decided to issue a parallel contract with Cobham (Aeroflex) Gaisler, OAR Corporation and 
Airbus Defence and Space on one side, Spacebel, embedded brains (EB) and University of Padua 
(UoP) on the other side. 

The Spacebel consortium had put the accent on objectives that were more concentrated on real 
time behaviour, determinism and general usability in typical space applications, especially for 
satellite Data Handling Systems (DHS). 

In the Spacebel consortium, there were several priorities, use cases and roles. 

UoP was in the first place concerned about the fundamentals about scheduling, priority 
management, predictability and worst-case analysis from the academic perspective.  

Embedded brains was primarily concerned about a solid foundation that allows for a best effort 
real-time system that exploit de available resources to a maximal extent. Embedded brains did all 
RTEMS related development work. 

The primary concern of Spacebel was to analyse the usability of the NGMP processor for satellite 
DHS applications using the first core as main processor, and its potential to exploit the capacity of 
the remaining cores for additional payload or instrument controllers or data processors. Spacebel 
managed the project, did investigation on and implementation of the parallel libraries and build a 
representative Proba demonstrator. 
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3 RTEMS SMP 

3.1 Starting Point at Project Begin 

RTEMS is a real-time operating system with more than 20 years in operation which was never 
designed for SMP systems. The previous attempt to get it running on multi-core machines had 
some severe implementation flaws, e.g. usage of test-and-set locks (TAS). Large parts of the 
existing SMP support were rewritten from scratch during the project. 

3.2 Strategy: Single-Core to Multi-Core 

The strategy to get from a single-core operating system so something that reasonably well 
supports multi-core was like this. 

• Evaluate high-level APIs. Select alternatives for APIs not available to or unsuitable for SMP 
systems, e.g. task variables, interrupt or pre-emption disable to ensure mutual exclusion. 
Remove these APIs or add run-time errors or assertions upon use. Avoid these APIs in the 
RTEMS code base and ensure that the test suite passes. 

• Prepare the tool chain. This includes C11 (ISO/IEC 9899:2011) and C++11 (ISO/IEC 
14882:2011) support for the LEON3/4 processor. 

• Evaluate and choose low-level synchronization primitives.  

• Get it running on multi-core with minimal effort.  

• Add new APIs (e.g. partitioned/clustered scheduling).  

• Add profiling to identify bottlenecks.  

• Get rid of bottlenecks step by step.  

3.3 Tool Chain 

Some effort was necessary to get a suitable tool chain for the LEON3/4 processor. The Binutils had 
to support the compare-and-swap (CAS) instruction available for the LEON3/4 processor. The GCC 
had to support the LEON3/4 memory model and atomic operations. This was done in cooperation 
with the community maintaining Binutils and GCC (mainly AdaCore) and Cobham Gaisler. It is 
recommended to use Binutils 2.25 and GCC 4.9.3. 

3.4 Low-Level Synchronization 

The low-level synchronization primitives are implemented using C11 or C++11 atomic operations 
so no target specific hand written assembler code is necessary. The prime requirement for low-
level mutual exclusion is FIFO fairness since we are interested in a predictable system and not 
maximum throughput. With this requirement the solution space is quite small. For simplicity the 
ticket lock algorithm was chosen. The API however is capable to support for example Mellor-
Crummey Scott (MCS) locks. This may be interesting in the future for systems with a processor 
count in the rage of 32 or more. A barrier operation was implemented as a sense barrier. The 
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barrier is currently only used in the test suite. Some areas use lock-free synchronization. These are 
the lowest level thread dispatching and context switches, the thread lock (this lock may change in 
case a thread blocks on a resource) and thread priority updates. 

3.5 Early Steps using the Giant Lock 

It is fairly easy to get a single-core operating system running on multi-core. You simply have to 
encapsulate the operating system state and protect it with one global recursive lock - the Giant 
lock. One exception is the lowest level thread dispatching since this is an asynchronous operation 
on multi-core machines. A scheduler decision on the current processor must be carried out on 
other processors using an inter-processor interrupt. This is not an instantaneous procedure and 
thus you may have several thread dispatches in the air. 

A system using a Giant lock however is useless on systems with more than two processors since it 
is the major bottleneck that limits the system performance drastically. A test case tmtests/tmfine01 
was added to measure the performance of some simple use cases, e.g. obtain and release mutex, 
send an event, send a message. 

Let’s consider a simple test case with worker tasks each performing mutex obtain and release 
operations using a private mutex. With up to four active workers each worker has its own 
processor on the NGMP. There is a slight increase in the total operations from one to two 
processors, but it is not doubled. Adding more workers degrades the overall performance. This is 
due to the Giant lock for which all workers fight. 

3.6 Profiling 

To identify the bottlenecks in the system support for profiling of low-level synchronization was 
added. This enables to spend the testing budget efficiently and concentrate on the hot spots. The 
profiling is a build time configuration option and is implemented with an acceptable overhead even 
for production systems. A low-overhead measurement of short time intervals must be provided by 
the hardware. This turned out to be problematic on the NGMP prototype system. The profiling 
information available per-processor is 

• the maximum thread dispatch disabled time,  

• the mean thread dispatch disabled time,  

• the total thread dispatch disabled time,  

• the thread dispatch disabled count,  

• the maximum interrupt delay (needs special hardware support),  

• the maximum interrupt time,  

• the mean interrupt time,  

• the total interrupt time, and  

• the interrupt count.  
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The profiling information available for SMP locks is 

• maximum acquire time,  

• maximum section time,  

• mean acquire time,  

• mean section time,  

• total acquire time,  

• total section time,  

• usage count, and  

• contention count for an initial queue length of 0, 1, 2 and more than 2.  

Profiling reports are generated in XML using the test suite (more than 500 test programs). This 
gives a good sample set for statistics. 

3.7 Partitioned/Clustered Scheduling 

Clustered/partitioned scheduling helps to control the worst-case latencies in the system. The goal 
is to reduce the amount of shared state in the system and thus prevention of lock contention. 
Modern multi-processor systems tend to have several layers of data and instruction caches. With 
clustered/partitioned scheduling it is possible to honour the cache topology of a system and thus 
avoid expensive cache synchronization traffic. It is easy to implement. The problem is to provide 
synchronization primitives for inter-partition synchronization. In RTEMS there are currently three 
means available 

• events,  

• message queues, and  

• the multi-processor resource sharing protocol (MrsP).  

The MrsP is a generalization of the priority ceiling protocol. It uses a helping mechanism which 
allows threads to execute temporarily on a foreign partition in case they get pre-empted by a 
higher priority thread and are an owner of a MrsP semaphore with other threads waiting to get 
ownership. The helping mechanism is implemented in the scheduler and adds a considerable 
complexity to its implementation. An implementation with reasonable worst-case execution times is 
an open topic. 

3.8 Fine Grained Locking 

As a first step fine grained locking was implemented for events, semaphores and message queues. 
Fine grained locking means that each object has its own lock to protect the object state (e.g. the 
thread queue with blocked threads, if the mutex is available or not or the pending messages). In 
case the scheduler is necessary to carry out a block or unblock operation, then a handover to the 
scheduler lock must take place. The semaphores and message queues use thread queues which 
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are a building block for all objects which allow threads to block. So the basic work is done to 
implement fine grained locking for all synchronization objects provided by RTEMS. The results of 
the simple benchmark test tmtests/tmfine01 obtained on the NGMP system show that the fine 
grained locking implementation scales well with the count of active workers and outperforms the 
old implementation also in the one processor case significantly. 

 

 Operations on one Processor 
(Old)  

Operations on one Processor 
(New)  

Change 

Events to Self 44262 82150 86% 

One Mutex per 
Worker 

42520 67998 60% 

Message to Self 32591 58596 80% 

Table 1: Comparison of operations on one processor (50MHz NGMP) 

3.9 Time Keeping 

The nanoseconds extension used to get timestamps below the system tick resolution was broken 
by design on SMP. In addition the usage of an SMP lock to get the timestamps was a performance 
bottleneck. So a completely different implementation was necessary. After an evaluation of existing 
implementations the FreeBSD time counters were selected. They were ported to RTEMS and show 
excellent results. 

A high performance timestamp implementation is vital for the overall system performance. During 
each thread dispatch some timing information is updated using the current uptime. It is also 
necessary for low overhead run-time tracing. 

3.10 Open Source 

RTEMS is available to everyone without registration or other obstacles (git clone 
git://git.rtems.org/rtems.git). There was some work done sponsored by other users during the ESA 
project cycle. They use it for large scale banknote processing, x-ray and particle detectors and high 
performance digital audio broadcast. The work includes the basic SMP scheduler framework, SMP 
support for ARM and PowerPC and the network stack port from FreeBSD 9. 

What is the benefit for ESA? The ARM and PowerPC support helped to speed up development due 
to better debug support (e.g. Lauterbach PowerTrace), more stable targets and different timing 
conditions revealing more bugs. The network stack port from FreeBSD leveraged the prototype 
implementation for fine grained locking. 

3.11 Status 

RTEMS is partially ready for production systems if you know its limitations. It has a solid low-level 
implementation of the following components 

• the low-level synchronization,  
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• thread migration and processor assignment,  

• SMP scheduler framework,  

• partitioned/clustered scheduling,  

• thread queues (building block for objects which may block a thread), and  

• thread-local storage.  

It is a suitable as a low-overhead guest system for space and time partitioning and of course as a 
stand alone operating system. 

3.12 Future Work 

Everything is ready to eliminate the Giant lock entirely. This is more or less a simple but somewhat 
labour intensive task. Proper priority queues for partitioned/clustered scheduling (combination of 
FIFO and per scheduler priority queues) are missing. Support for priority boosting is desirable for 
simple priority inheritance mutexes. Implementation of the O(m) independence-preserving protocol 
(OMIP) is highly recommended since this is a generalization of the priority inheritance protocol to 
partitioned/clustered scheduling and can be used for a general purpose mutual exclusion primitive. 
Each scheduler should have its own lock to enable a scalable system. New APIs for objects without 
an identifier to object translation and workspace usage are necessary due to performance reasons. 
In applications with fine grained locking (e.g. the FreeBSD network stack) the identifier to object 
translation turned out to be an unacceptable overhead. 

 
 

 
Restricted Distribution   
© Spacebel s.a. 

  
SPB-DE4FLMC-301-FR-001 

1.0 - 20/04/2015 
 



 

 

RTEMS SMP Final Report 
16 

 

4 A LOOK INTO THE STATE OF THE ART BY UOP 

4.1 Premises 

The on-board software (OBSW) is traditionally designed for single-core processors. As the available 
processor platforms have been single-core up to very recently, there was no point in investigating 
how to generalize software architectures to make them more scalable. 

The situation however is rapidly changing: the trend toward the adoption of multi-core processor 
platforms is evident in most application domains [3], even those that are close for needs and 
practices to the OBSW domain. The fact is then that traditional OBSW architectures, designed and 
implemented with the single-CPU assumption in mind, do not scale. The situation has revived old 
approaches that leverage the inherent parallelism of new-generation platforms (including GPUs) 
without the need to redesign the whole SW. Those approaches however are limited by the amount 
of parallelism that (perhaps hidden to the programmer, but visible to a compiler-level engine) 
actually exists in the current program, and by the amount of resources that can be afforded in 
adjusting the program code to make it more parallel. This approach goes counter the software 
engineering best practice of "enforcing intentions", which suggests that if I want scalability in the 
processing capacity of my program (that is to say, potential for parallel execution), I have to have 
it in my design, not seek it from a compiler regardless. Compilers help, of course, but cannot and 
should not take the placeof software designers. Indeed, using macros to define sections of code 
that can be run in parallel (while relying on the compiler for producing actual parallel code, as in 
e.g. [1]) or using external libraries to explicitly state when to create multiple or parallel instances 
of specific functions, as in e.g. [2], has evident limits of traceability to verifiable design intentions. 

The immediate solution that comes to mind to resist the change of paradigm caused by the advent 
of multi-core processor platforms is to not parallelize the OBSW and rather assign it, monolithically, 
to one specific core, leaving the other cores to running possibly parallel payload SW. Evidently, this 
is a shortterm solution, which postulates that the computational need of future OBSW will not ever 
exceed the capacity of a single core. We know this is not a sound claim: we don’t need to force 
more computational load into the OBSW but we can’t certainly close the door to the opportunity of 
doing more with it. 

Arguably therefore, it is opportune that clean and scalable solutions are devised for OBSW to make 
sound use of the new multi-core processor platforms, if not for the immediate present, for the 
(very) near future. The work conducted in this study aims at providing a possible valid solution to 
this problem in the specific context of a LEON4 processor architecture dressed with the RTEMS 
operating system. The question we addressed was how can we modify RTEMS so that it can 
adequately (for average performance and time predictability) manage a symmetric multiprocessor, 
SMP, such as the LEON4? 

4.1.1 Dilemmas 

A scalable solution, however, must have specific traits in order to be viable for use by the OBSW 
and the payload SW, without postulating their segregation (which is not obvious to achieve in a 
shared-memory multi-core processor with no support for memory management). 

The envisioned solution should: 

• exploit as much as possible the platform capacity. This theoretical issue relates to the choice of 
scheduling algorithm used to manage software execution on the system 
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• allow the application to have a predictable run-time behavior. This theoretical issue relates to 

the tools used to determine whether critical programs can be assured to execute within their 
assigned deadline 

• provide ways for software assigned to different cores to communicate efficiently and 
predictably. This theoretical issue relates to the need of having a sound mechanism to 
synchronize parallel/concurrent software without incurring distributed and unbounded 
overhead 

• be free from untenable performance penalties and overheads. This practical issues relates to 
the need of having a responsive system and it is addressed in the part of this report produced 
by embedded brains. 

4.2 Scheduling algorithm 

In the last few years, a vast body of literature has been produced in the academic world, 
addressing the SMP scheduling problem [4]. Several scheduling algorithms have been proposed 
and most of them came with specific schedulability tests (i.e., means to determine whether a given 
task set can be successfully scheduled using the given scheduling algorithm). It is difficult to assign 
a single rate to a scheduling algorithm, since there are multiple traits of it to consider (e.g., how 
easy it is to implement, how difficult to use its schedulability test is, how much overhead it incurs). 
However, there is a single factor that better than others measures the worth of an algorithm: its 
"schedulable utilization". 

This term captures the rate at which the scheduling algorithm can use the processingcapacity of 
the target platform while ensuring that all deadlines can be met; in other words, the highest 
throughput achievable by the platform (RTOS and processor together) while having a safe and 
sound system: the higher, the better. The best achievable schedulable utilization (optimality) is 
when an algorithm can find a valid schedule providing that the total workload is not greater than 
the total capacity of the platform. Should we really seek optimality? Not really, because in most 
situations the application load will be considerably lower than the total capacity of the system. 
However, using an algorithm with high schedulable utilization does have its benefits: the exceeding 
processing power can be used to enhance the system services or to host additional payload SW, 
thus increasing the ultimate value of the system; or it is possible to downgrade the platform, thus 
saving money for the HW and using less energy while the system is deployed. 

Analyzing all possible scheduling algorithms proposed in the state of the art is out of the scope of 
this document. Comprehensive reports exist, which can easily be consulted by those interested. We 
therefore limit ourselves to briefly discuss the general categories into which the known scheduling 
algorithms can be subdivided: global, hybrid and partitioned scheduling. 
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4.2.1 Global scheduling 

 

Figure 1: Global algorithm schema. 

Global schedulers rely on centralized control: there is one entity that manages all available cores. 
The specific trait of a global scheduler is that task migration is allowed without restrictions across 
all cores. As depicted in Figure 1, such a scheduler can be seen as a global ordered queue and a 
dispatching mechanism that, at given times, takes m elements from the queue and places them 
into the m available cores. The order of the queue and the dispatching mechanism can be 
generalization of uniprocessor algorithm (e.g., G-EDF, the global version of Earliest Deadline First, 
[5]) or based on paradigms specific of SMP platforms (e.g., p-fair [6]). Since the scheduler is in 
charge of all the cores at the same time, global schedulers are in principle capable of reaching high 
utilization since, as the runtime workload increases, it can redirect it to any available core. 
Technically, we say that global algorithms can be work conserving. 

However, the possibility for the tasks to execute in any core can potentially lead to an inordinate 
number of migrations. No known global scheduler has been shown able to avoid (or at least 
sufficiently mitigate) the negative effects of the migration problem. 

4.2.2 Partitioned scheduling 

 

Figure 2: Partitioned algorithm schema. 
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Partitioned schedulers are similar to the schedulers used for asymmetric multiprocessors: each core 
has its own scheduler and tasks can not migrate across cores [7]. Whereas in AMPs, cores may 
even use different instruction sets, on SMPs, there is no physical obstacle that prevents a task from 
migrating, it is just a logical constraint placed by the scheduler. Since each core represents a 
stand-alone scheduling problem, it is necessary to decide where each task will execute. The task-
to-core allocation problem is analogous to the well-known bin-packing problem, which has no 
general solution and can only be addressed – in finite time – by best-effort heuristics. In spite of 
that problem, the use of partitioned scheduling can benefit the tools and the experience coming 
from the uniprocessor world, so that the balance may still be positive. 

4.2.3 Hybrid scheduling 

Hybrid schedulers share very little among themselves in terms of common traits. Indeed, all 
algorithms that are neither global neither partitioned fall in this category. They generally leverage 
new (i.e., SMP-specific) ideas in which tasks are allowed to migrate, but with some restrictions of 
variable strength and amplitude. 

As an example, there exist algorithms that explicitly select a subset of tasks that are allowed to 
migrate, while all other tasks are pinned to specific cores (e.g., QPS [8]), and other algorithms 
define logical servers (as static aggregate of tasks) that become the actual object of scheduling 
(e.g., RUN [9]), without assigning tasks to cores. The main focus for hybrid algorithms is to find a 
way to provide a very high schedulable utilization while incurring a low number of migrations. 

 

Figure 3: Clustered algorithm schema. 

An interesting hybrid algorithm, as seen in Figure 3 is the generalization of both the global and the 
partitioned approach: the clustered approach [10]. The main idea of the clustered approach is to 
reduce the scheduling problem into several smaller global scheduling problems: tasks are 
partitioned and assigned to a cluster of cores, and for each cluster there is an independent cluster-
level global algorithm. With this approach the partitioning problem is relaxed, migrations are more 
controlled (a task can migrate only in a specific subset of cores), and in some platforms the 
memory topology can be honored (some cores share L2 cache and form a core-cluster, some core-
clusters share a L3 cache, etc.).  
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4.2.4 Our solution 

When it comes to considering run-time overhead and time predictability, global scheduling 
algorithms are clearly not the best solution: inordinate migrations and an efficient way (free from 
giant locks) to compute a scheduling decisions for the whole platforms are still a problem. Today’s 
global algorithms are still not ready to be used for critical systems. Moreover, global algorithms 
worsen the already difficult problem of time predictability on multi-core processors. In multi-core 
processor platforms in fact, parallelism plays against predictability because of the presence of 
numerous shared HW resources: CPUs are independent, but other HW resources are not (e.g., L2 
caches, memory bus, memory controller) and their parallel use causes hard-to-evaluate contention 
delays. Migrations and frequent global scheduling decisions just increase the stress on the HW 
(e.g., bus contention for migration, cache disruption when resuming execution). 

Hybrid schedulers can offer interesting solutions, but there is not yet enough expertise for their 
actual use. They lack a solid and exhaustive practical evaluation: most hybrid schedulers, if ever 
evaluated, are evaluated through simulations. Moreover they lack a complete set of support tools 
as those developed for uniprocessor schedulers (e.g., schedulability tests, optimization, protocols 
for access to shared resource, sound ways to account for the scheduler overhead).  

In the current scenario, for state of the art and technology baseline, it appears that the best 
solution is to use partitioned scheduling in conjunctionwith fixed-priority schedulers (P-FP). In 
addition to preserving all the relevant uniprocessor knowledge, it should also lead to a predictable 
runtime behaviour that should be similar (with respect to delays and overhead) to the one 
observed in single-core platforms. 

Interestingly, implementing P-FP in the retargeting of RTEMS for an SMP asks for a full-redesign of 
RTEMS. Indeed, even if RTEMS already uses uniprocessor scheduling, the requirements to 
implement it for an SMP are quite different: memory is now being shared among parallel cores and 
there is no single RTOS-and-executable bundle per core; hence, all kernel data structures must be 
centralized. As a first approach, a giant lock can be used to synchronize all kernel procedures, but 
in order to have an efficient OS, it must be removed. An interesting observation is that using a 
partitioned scheduler is similar to using processor affinities with only two constraints: the affinities 
do never change and each task is affine to exactly one processor. Processor affinities when used in 
an arbitrary way (APA) are not a valid solution for critical systems: there is still insufficient 
knowledge that can be used to safely ascertain the stability of the system [11]. In fact, APA is just 
a theoretical concept stating that tasks have a predefined pool of processors in which they can 
execute. Before using it for real, major decisions must be made to define the runtime behavior of 
the scheduler. 

• Weak APA invariant: running tasks never migrate. This is sub-optimal and hardly improves over 
the partitioning scheduler: it can slightly increase the throughput of the system, but it buys the 
overhead due to manage (possibly overlapping) clusters of processors and the difficulty of 
determining the schedulability of the system. 

• Strong APA invariant: running tasks can migrate to make room for higher priority tasks that 
have no other available processor where to execute. This is a powerful property that is, 
however, very difficult to exploit: its power stems from the fact that affinities can create 
partially overlapping clusters of processors where different tasks can execute. This leads to 
maintaining at run time a dynamic-sized set of tasks that can interfere with each processor, 
possibly reducing the load on overloaded processors. However, considering today’s body of 
knowledge, there are several major downsides with the strong APA invariant: there is no easy 
way to determine the best possible assignment of affinities to tasks such that the throughput is 
maximised; APA can in fact induce long chains of migrations, and the overhead to compute the 
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scheduling decision can be non-negligible. Indeed, also modern general-purpose OSes do not 
completely adhere to this paradigm: for example, the Linux kernel uses a relaxed version of 
the strong APA invariant, to decrease the computational cost when performing scheduling 
decisions and to limit the number of migrations. 

4.3 Communications 

Independently from the scheduling algorithm used, it is important to determine and offer a sound 
way to let tasks communicate: while in a multi-core environment there is the actual need to use 
mechanisms that can handle actual parallelism, and there is more than just concurrency (in 
contrast with single-core environments). As an immediate extension from the general AMP, events 
and messages can be successfully used without a complete re-design. However, messages and 
events in an SMP are best used as a simple synchronization method, where there is no or little data 
to transfer. Indeed, as memory is shared among cores, it is hardly an option to not offer a way to 
share it in a safe way, so as to allow several tasks to share a possibly large amount of data without 
requiring it to travel as a message. Sharing memory normally means using semaphores to regulate 
access to it. Semaphores in multi-core processors are delicate. For low level synchronization, where 
the critical sections are expected to be short and error-free, ticket locks can suffice, offering a 
light-weight and fair synchronization method [12]. However, for application-level critical sections 
they cannot be used since they could prevent dispatching for long periods. 

In the literature, several semaphore-based high-level protocols have been devised for 
multiprocessors. In fact, only two of them have optimal characteristics: OMIP (O(m) 
Independence-preserving Protocol) [13]) and MrsP (Multiprocessor resource sharing Protocol) [14]. 
Optimality for semaphore-based protocols in the scope of multiprocessors is really desirable: 
having tasks execute on different processors using the same semaphores leads to a considerable 
increment in the length of the per-processor worst-case critical length, since in the worst case a 
semaphore must be able to serialize parallel requests coming from different processors. This 
increment can be suffered not only from tasks using the semaphore, but also from unrelated tasks: 
optimal protocols are a must so that this problem is avoided or tightly upper bounded. 

• MrsP (Figure 4) is built upon the uniprocessor SRP (the generalisation of the priority ceiling 
protocol) [15], and makes use of spinning in place of suspension, together with a helping 
mechanism. The helping mechanism assumes that the tasks holding the semaphore can 
progress the critical section using the spinning cycles of another task waiting for the same 
semaphore, thus speeding up the release of semaphore. An effective helping mechanism is to 
let the task holding the resource migrate where a waiting task is currently spinning. 
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Figure 4: MrsP schema 

• OMIP (Figure 5) uses a complex hierarchy of queues, is suspension based and designed to suit 
clustered systems. In fact, in the partitioned case, this protocol behaves similarly to MrsP. Its 
helping mechanism requires tasks to migrate tasks. 

 

Figure 5: OMIP schema 
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4.3.1 Our solution 

Even if OMIP has promising traits, it is important to note that, from the perspective of critical 
systems, the advantage of having tasks suspend while waiting for a semaphore, with the 
consequent runtime improvement on the average responsiveness of the system (assuming that the 
OMIP hierarchy of queues can be managed efficiently), cannot presently be exploited inside known 
schedulability tests. 

The implementation of MrsP was our first choice in this study, in preference to OMIP, because: 

1. it is specifically tailored for partitioned schedulers; 

2. it was developed expressly to achieve a graceful extension of uniprocessor’s response time 
analysis, which is a very expressive and sound tool to access schedulability; 

3. it is relative simple design should not produce much overhead. 
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5 PARALLEL LIBRARY STUDY 

5.1 Spacebel Approach 

Spacebel’s basic needs for the parallel libraries were to investigate to exploit the processing power 
of the various processing cores while maintaining a correct behaviour of the DHS. Therefore, the 
image processing part of the SWAP instrument has been isolated from the Proba software as to 
allow for several parallelisation strategies. 

5.1.1 Analysis of Existing Libraries 

Substantial energy has been spent on analysing parallel libraries such as OpenMP and Cilk Plus. 

The first conclusions concerned a series of constraints about the existing libraries: 

• They are optimised for target processor architectures, using complex multi-stack structures, 
while having no tested run-times for relatively unpopular Sparc architectures. 

• Try to avoid and bypass OS as much as possible, thereby making them less portable.  

• Some libraries have compiler support. We did however not manage to build a gcc compiler that 
supports OpenMP, RTEMS and the C11 atomic extensions. It shows that gcc support for Sparc 
might become a problem in the coming years. 

• Tend to use active polling as the main goal is to accelerate one single application by exploiting 
the hardware as much as possible without any real consideration for potential other system 
work. The latter is no problem in a Linux environment where application tasks have limited 
priority, in a flight system, the need is to exploit de hardware to improve what could be 
considered background work in respect to the main DHS job. 

• The complexity caused by the various optimisations lead to systems that are not only 
problematic to port but equally difficult to validate. 

• Overall, the investigated libraries show clearly a lack of maturity and proper validation tools 
that would allow using them in embedded systems 

Moreover, as we concluded that porting and integrating an existing library in the demonstrator was 
not possible at all in the programmatic of the project, we decided to go to the basics, meaning 
prototyping structures as proposed by the ongoing JTC1/SC22/WG14 – C CPLEX (C parallel 
language extensions) study group.  

5.1.2 Implementations by Spacebel 

It should be noted that the primary goal of Spacebel was to investigate the overall Proba DHS gain 
and behaviour by delegating some of the SWAP image processing to various cores. It would have 
been nice indeed to have the possibility to extend artificially the payload processing load as to 
stress the system to a maximum. This would however have required a more detailed demonstrator, 
test procedures and analysis tools. 

The following test cases have been analysed: 
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• A series of matrix conversions that are split in 4 quadrants 

• Proba SWAP image processing where each image has been split in several tiles to allow for 
parallel processing while maintaining the overall processing work roughly constant. 

The limited set of matrix test cases resulted in some surprising results that are summarised in the 
table below. It separates the average communication cost and the matrix calculation cost per 
quadrant. For recall, the tests have been run without the caches enabled as the proper cache 
initialisation was not available at test time and is not automatically done by RTEMS. 

 
Costs in µs GR712 NGMP 1 

worker 
NGMP 3 
workers 

Comms 106 149 284 
Matrix 560 74 537 

Table 2: Comparison of parallel matrix conversions 

The conclusion here is that the lack of cache limits enormously the potential system gain. Both 
processors have a similar communication costs between cores, the 200MHz NGMP single core 
performs 8 to 9 times better on the matrix, but loses all its advantages when 4 cores are 
participating. We suspect that, besides the lack of cache, the various synchronisations and locking 
was seriously delayed because of the single Giant Lock in RTEMS. 

On the parallel libraries for SWAP data processing, we made two different implementations: 

• The first one with shared data structures for work distribution and the workers were 
waiting on a work semaphore, getting job information, processing and signalling the 
results to the requester. 

• The second one was a “discrete” implementation where the main application sends a 
message to each worker containing the requested processing job and waits till all the 
requested jobs have been completed. 

Both solutions above provided quite comparable Proba demonstrator performance results and 
analysis of the overall software did not really provided the needed to analyse the details of the 
various components. Therefore, the final Proba demonstrator campaign has been limited to the the 
discrete implementation. 

On the Proba SMP demonstrator, results and conclusions are quite different, mainly due to the 
more coarse grain granularity of the image processing. The distributing on the several NGMP cores 
generates an 2,4 % CPU overhead, while on the GR712, it adds 28 % overhead. The differences 
are attributed to the far more efficient 128-bit bus that loads in one access a complete cache line, 
which is quite important for applications that process larger data sets. 

The first observation is that communication cost is much higher than expected and scales not well 
at all. This is probably much aggravated by the fact that there are several protected regions in the 
data structures, which makes it even worse. It is an example where the Giant Lock used in the 
current version of RTEMS SMP can quickly degrade the system as more cores get involved. 

It is very clear that the matrix computation creates a very high interference on the shared memory 
bus. To be able to perform a better analysis, code should be more instrumented to maintain more 
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detailed statistics and worst case behaviour. One should normally expect that worker 1 should 
process the fourth frame. It looks as if they are done by the second worker, so some system 
asymmetry makes that worker 2 performs the fourth frame: not sure if this is caused by priorities 
on the memory bus, unfair queuing on the message queue or semaphores. 

There is however a lot to be learned from the implementation. 

A mono-processor design that is correct on paper, doesn’t scales always well on a multi-core 
system. The more there are protected zones and synchronisation points, the more the performance 
degrades as “system” activity increases. 

RTEMS SMP in its current form is usable provided the Giant Lock, and hence the services that rely 
on it, are avoided. This situation should be substantially improved when RTEMS SMP will use a 
finer grain locking mechanism and when a more efficient inter-processor queuing mechanism is 
implemented that allows for a better decoupling of the cores. Typically, a mechanism that allows 
for simultaneous writing and reading on a queue would already help a lot. 

When looking in the code of other parallel libraries, such as in Cilk, Go, OpenMP, the (nested) 
blocks used in Grand Central Dispatch from Apple, it becomes quickly clear that none of them 
simply inherit the approaches as traditionally used in RTOS environments; they are the result of 
careful thinking and incremental development and tuning as to exploit fully the hardware 
capabilities. The best way to demonstrate this is to look into http://lmax-
exchange.github.io/disruptor/files/Disruptor-1.0.pdf that shows that basically all habits have to be 
questioned and revisited. On the other hand, there exist many dozens of parallel languages and 
application libraries, which demonstrates clearly that there is no single best solution. 

5.1.3 Conclusions 

So basically, with some RTEMS improvements (and extensions) and tuning, it is believed that the 
parallel library overhead could be reduced to the 50 µs range while using up to 4 cores. It might be 
possible to reduce that further with another 50 % when completely rethinking and developing from 
the ground up. 

Before spreading out an application over several cores, a number of questions need be asked: 

• The costs of parallelisation amounts easily to 50 µs, so the parallel tasks should take more 
than 100 µs before it is worth it, 

• Parallel processing efficiency is very much related to the used bus bandwidth and cache 
efficiency, where the NGMP excels.  

Anyway, further evaluation and analysis makes only sense if the basic RTEMS mechanisms are 
updated to exploit its partitioning (and uncontended locks) along with fine grain locking. 

Finally, another aspect needs to be considered for space platform controllers; by delegating non 
time critical processing work to other cores, we can gain substantial processing head-room and 
potentially determinism on the main processor. 
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6 PROBA DEMONSTRATOR 

6.1 Approach 

The test approach consists in executing a timeline in which series of TCs start or activate the 
functionalities of the demonstrator at a specified time. In term of functionalities, they are mainly 
linked to the PROBA-2 applications (image acquisition, processing and compression). In this sense, 
each timeline is a scenario in which the expected results (explicitly described in the plan) are 
compared with the values obtained via TM. 

The test cases are executed automatically but the major part of the verification is done manually. 

Several types of requirement are verified in the tests; performance, interface, initialisation or 
functional requirements are verified. 

Along the test campaign, the demonstration software remains the same for each scenario but it 
differs depending on the execution target. 

The complete software architecture has been overhauled to make it more modular and most 
importantly, to allow to assign the processor core to each of the software components. This means 
that we can position any Proba DHS component on any core of the processor just by configuration. 

6.1.1 SWAP reference image 

The demonstrator implements the main manager of PROBA-2 SWAP payload (SWAP manager is 
above the DHS layer). The SWAP manager handles the acquisition of SWAP images and it manages 
the instrument mode and a fortiori the instrument itself. On demand, the acquired images can be 
processed and compressed in JPEG. Therefore, JPEG algorithm must be fed with data in 
accordance first SWAP specification and the specification of JPEG algorithms (which is a bit 
particular in PROBA-2). 

For this purpose, a reference image is used to feed SWAP manager and the JPEG algorithm. The 
reference image comes from the formal validation tests of PROBA-2 OBSW. For the record, at the 
time of PROBA-2 qualification and development, no SWAP image material exists. Therefore, a 
couple of reference images have been chosen for the tests.  

6.1.2 Test Scenario Approach 

All the test cases, the sources, the configurations are stored under SVN configuration. A clean 
checkout from SVN is performed and then, before the test campaign itself, the image is rebuilt via 
Makefile depending on the test platform. 

The execution of the test cases is automated via scripts. The timeline and the image are loaded in 
the RAM memory of the target. When the loading is completed, the software is started at the entry 
point specified by the test script. All formal tests have been run on GR712 and NGMP 200 MHz on 
mono and multi-core configurations as to be able to compare relative performance and 
synchronisation cost. 

 
 

 
Restricted Distribution   
© Spacebel s.a. 

  
SPB-DE4FLMC-301-FR-001 

1.0 - 20/04/2015 
 



 

 

RTEMS SMP Final Report 
29 

 
At the end of the execution, the TMs are dumped from the target and the TM are decoded 
automatically and the results depicted manually against the plan and the expected results. At the 
same time, the resulting CPU load per task is dumped in a log file. 

The resulting image slices are manually recombined and verified against the original processing 
results. 

While various combinations of DHS components on various cores have been tested, only the 
configurations that run the main components on the first core and the image processing worker 
threads on the other cores resulted in a consistent success rate on all configurations. Runs with 
cache disabled failed as well as the resulting performance was no longer sufficient to satisfy the 
test requirements. 

All formal test using the two latest RTEMS toolkit releases finally run OK. 

6.2 Demonstrator CPU Reports 

While the previous tests contain a quite exhaustive functional testing, we are interested to have 
more information about load balancing and the cost of distribution. Therefore, most tests have 
been added informally to be able to compare with mono core versions. 

6.2.1 Basic CPU Usage Analysis 

For recall: GR712 at 48 MHz and using SDRAM, NGMP at 200 MHz. 

Comparisons have been made with identical RTEMS SMP, compilers and demonstration software. 
RTEMS SMP is however slightly different from GR712 and NGMP due to other memory mapping 
and BSP. For the demonstrator, it was rather problematic to do comparisons between the classic 
RTEMS and RTEMS SMP in a mono-core configuration.  

The differences between mono and multi-core execution are only caused by placing (through 
affinity) the worker components on other cores and by adding a BGDn task on each core that has a 
worker thread to replace basically the idle task and to be able to measure the idle time.  

The BGDn tasks contain a loop forever that put the CPU in power down mode. This allows to verify 
that the power down mode works correctly, but more importantly that the processor is woken-up 
as needed. 

Enabling caching on the NGMP is not done by default in the RTEMS SMP configuration. The 
demonstrator failed when doing tests without the cache being enabled on the NGMP because of 
missed deadlines, so results have not be formally reported. 

Enabling NGMP cache increases image processing speed with a factor of 12,5. On the DHS, speed 
improvement is only an average factor of 5, probably because the DHS uses many RTEMS calls 
that take less profit from the caches. 

This leads however to a first interesting global conclusion: isolating long processing tasks in non-
interrupted cores results in better exploiting the available processing power. 
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6.2.1.1 Single Core versus Multi-core 

Boot time increases as the first core needs to be properly initialised before the other cores are 
enabled. For the demonstrator, time since the last CPU usage reset increased with 20 milliseconds 
on the GR712, 114 milliseconds on the NGMP. 

De following lists details the additional time needed when switching from a mono-core to a multi-
core processor: 

 
Task GR712 NGMP 

EVNT -4 % -10,2 % 

WRKn 4,6 % 8,85 % 

SCHD -4,44 % -4,73 % 

TCHD 4,14 % 1,88 % 

TMTC 4,07 % 1,15 % 

HK 5,23 % -1,36 % 

OBSR 2,27% 1,35% 

OBSS 1,12% -0,53% 

MONI 5,02% 15,17% 

DAM 2,04% 0,30% 

SWDM -0,39% 8,54% 

SWIM 27,75% 2,35% 

MIMC 1,92 % 0,01% 

SYSM 4?46 % 18,43 % 

Separating DHS, that contains many small tasks that are using relatively intensively RTEMS, and 
the computing intensive worker tasks show almost an identical aggregate CPU throughput. On the 
GR712, the workers require 5 % more time on the second core, which is good considering the fact 
that all data has to be reloaded in cache and that some of the parallel processing data structures 
are protected by semaphores. On the NGMP, the total time of the workers on the three cores 
increases only with 8 %. 

Basically, on average, the DHS part of the demonstrator loses 3 to 4 % performance, which we 
think we can attribute to the fact that all RTEMS activities have to go through the giant lock, 
combined with potential semaphore contentions in the worker threads and cache snooping 
artefacts. While the average performance drop is similar on both systems, there is however a 
significant different performance drop for specific tasks. 

Monitoring and Sysmanager drop 15 to 20 % in performance on a multi-core NGMP processor, and 
only 4 to 5 % when switching from mono GR712 to multi-GR712. It is most probably related to the 
fact that the Sysmanager and Monitoring do a tremendous amount of semaphore locking, so it can 
most probably be attributed to the fact that NGMP loses some of its performance gain when doing 
system work that involves several cores. 
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To the contrary, SWIM has only a 2,4 % performance penalty on the NGMP when switching to 
multi-core, while it drops 28 % on the GR712. This seems related to the fact that SWIM reads all 
image data, while the workers on the other core are invalidating and caching the same data. Here 
we can conclude that the NGMP 128 bit data bus helps the cache management significantly, and 
hence providing a better balanced system.  

6.2.1.2 GR712 versus NGMP 

When isolating the DHS related figures from the image data processing figures, we come to the 
conclusion that: 

The NGMP at 200 MHz is naturally much faster that the GR712: 

• 4,25 times faster on DHS related activity, 

• 4,41 times faster for payload data processing. 

So basically, the NGMP scales very well with its clock speed increase. The fact that the cores have 
to share the same memory is very well compensated for by the 128 bit wide bus that fills up a 
cache line in one single access cycle. 

6.2.2 Conclusions on RTEMS SMP on Multi-core Processors 

The demonstrator approach allowed for a quick feeling about the multi-core potential. The results 
show that the additional processing capability, which is more important than we expected, 
probably outweighs the uncertainty caused by the much more complex interactions and 
interferences caused by the shared memory bus. The project confirmed our hope that multi-core 
processors running RTEMS SMP have the potential to use such a system where each core is 
dedicated to a certain job without being impacted too much by the other core. 

The demonstrator has been structured in such a way that it is in principle, easy to reallocate tasks 
to another core without changing the software. In practise however, there are many protected 
regions used in the DHS design; this tight coupling makes that moving such tightly coupled task to 
another core makes that the gained performance will be outweighed by the additional RTEMS 
communication overhead and subsequent non determinism and system complexity. 

But before investigating further, especially in the light of determinism and worst case analysis, it 
might be better to improve first a number of essential aspects. 

• Refine the RTEMS “Giant lock”, as in Linux, into deeper and more specialised locks that 
suffer from much less contention. This should allow avoiding involving other cores unless 
strictly needed.  

• Design the software in such a way that they are loosely coupled between cores, for 
example by message passing. The current demonstrator inherited several protected areas 
using semaphores; very efficient in mono core systems, a source of potentially unbounded 
response times in multi-core systems. 

Further investigation around the RTEMS message queuing functionality, using parallel library matrix 
conversions (but unfortunately with cache disabled), showed that on average, the GR712 bi-core 
needs around 100 µs to send a message to a queue and resynchronise, the NGMP in a bi-core 
configuration needs 149 µs. Problem however is when 3 cores are waiting on the same queue: 
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average communication costs raises to 250 to 330 µs. So that confirms a number of our 
anticipations: 

• One to many communications are having a raising overhead as more cores are involved 
and become less predictable. 

• The RTEMS message queuing functionality scales not very well for multi-core usage and 
might need a complete revision. 

For the latter point, we think that having an additional RTEMS simple queueing service might be a 
good idea: 

• No need for priority, time-out, very long messages, no suspension when writing on a full 
queue 

• Might be limited to point to point, 

• Could be designed to allow simultaneous writing and receiving, so better decoupling and 
much shorter locking (the current version is most probably locked for the whole operation, 
a kick-off of the receiving end might be the only operation requiring a lock) 

• So overall, this type of operation could most probably be reduced to a predictable couple 
of tens of µseconds. 

In the long run, it should be possible to have critical RTEMS SMP based systems that run almost 
without contention between cores. Further test cases are needed to investigate then the worst 
case scenarios. It might be a good idea to investigate further core decoupling for several reasons 
as discussed in the following section. 

Overall thread dispatch disable durations in the order of hundreds µs have been observed, 
although this should decrease rapidly as fine grain locking and partition isolation improves. At first 
glance, interrupt disable times seems better, but this needs further instrumentation and testing, by 
preference with real IO activity as drivers are very often the source of interrupt locking. 

6.3 Programmatic Conclusions 

We feel that the meaning and advantages of partitions is understood differently by different actors. 

For Spacebel, a partition is something that is functional wise is completely decoupled from another 
partition; something that happens in one partition should never impact significantly the behaviour 
from another partition (except the shared memory timing interference). To improve such partition 
isolation, RTEMS should not only move towards finer grain locking, but each partition scheduler 
should have its own locks, its own timer interrupt, probably a better and independent watchdog 
driver, ... 

While we lose some level of determinism at the microscopic level, on the macroscopic level, we can 
gain significant overall system complexity reduction, thereby gaining in system determinism, 
validation, maintenance and reuse. The potential core “shielding” by dedicating tasks and 
interrupts to a specific core opens the door for a better partitioning approach with the best 
compromises concerning the various constraints. So by loosely coupled cores and RTEMS SMP, we 
increase significantly the system capability without the exponential complexity explosion. 
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Basically, a DHS OBSW is a complex piece of code with hundreds of thousands lines of code that 
are difficult to maintain and validate. Proper time segregation of such a partitioned system allows 
adding ancillary system components that can be validated in a separate way. It is true that in that 
case, space isolation is only be design and not enforced, but allows nevertheless to approach the 
advantages of an TSP/IMA system without its constraints. This is especially true if we want to 
further build on the various field proven DHS systems. 

The next logical steps would be to have MMU support in RTEMS for improved space partitioning. 
Alternatively, it might be a good idea to isolate a number of cores using a Time and Space 
Partitioning hypervisor. This would provide an evolutionary growth path for better partitioned 
systems without having to rework completely the “trusted and proven” data handling systems that 
are flying today. 
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7 PROJECT CONCLUSIONS 
Spacebel has been impressed by the work and dynamics of all the team members, including Estec 
and Aeroflex Gaisler (AG). AG was very impressive doing all final integration and test work. 

The 200MHz NGMP multiplies the available performance for the DHS with a factor of 4 to 5, while 
the other cores give some spare processing power of 2 to 3 additional cores without necessarily 
impacting dangerously the dynamic behaviour of the first core. 

If RTEMS SMP partition isolation can be improved along with loosely inter-partitioning coupling, we 
would not hesitate to recommend the GR740 platform running RTEMS SMP.  

By restraining the scope of RTEMS SMP to one single partition (and core), a first 
validation/qualification campaign could be started to get already a qualified baseline. This is 
typically a case where a qualified baseline, along with its procedures should be published in the 
public domain, so that RTEMS evolutions could be introduced and qualified in an incremental way. 
Avoiding orphan qualified versions might seem more economic in the short term, it is certainly a 
better solution in the long run. 

It needs still some analysis and study work to investigate how RTEMS SMP can be qualified on 
multi-core system without exponentially increasing the efforts. 
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