
Parallel Programming Models For Space Systems

• ESA contract 4000114931/15/NL/CBi/GM

• Contractors:

• Barcelona Supercomputing Center (prime)

• Evidence srl

• Funded under the Innovation Triangle Initiative

• 50 kEuro (9 months)

• Originally initiated from TEC-EDM (TO: L. Fossati)

• Transferred to TEC-SWE (TO: M. Verhoef)

• Activity start: 07-2015, finish: 06-2016

• TRL 3-4

Parallel Programming Models
for Space Systems

(ESA Contract No. 4000114391/15/NL/Cbi/GM)

Eduardo Quiñones (BSC), Paolo Gai (Evidence)

TEC-ED & TEC-SW Final Presentation Days
(Noordwijk, the Netherlands)

9th June 2016

Parallel Programming
Models for Space Systems

• Proof of concept Innovation Triangle Initiative (ITI)
project (TRL 3)
– Demonstrate the potential benefits of using the OpenMP

tasking model into the space domain in terms of
programmability, performance and time predictability

• Participants
– Barcelona Supercomputing Center (BSC) (Spain)

• Eduardo Quiñones, eduardo.quinones@bsc.es

– Evidence (Italy)
• Paolo Gai, pj@evidence.eu.com

2

Agenda
1. Introduction: Parallel programming models and

OpenMP
2. Programmability and performance benefits

– Parallelisation experiences with OpenMP: The tasking
and acceleration execution models

– Extensions required on non-POSIX Operating Systems

3. Time Predictability Benefits
– OpenMP and Real-time embedded domain: A Possible

Union?

3

Introduction

Parallel programming models
and OpenMP

4

Parallel programming models

• An API to express application’s parallelism
(e.g. OpenMP, OpenCL)
1. Parallel regions and synchronization mechanisms

to guarantee the correct execution
2. Couples host processor with acceleration devices

in heterogeneous architectures

5

Accelerator
device

Host

Many-core
heterogeneous

architecture

Why should you use them?

• High abstraction level for parallel
programming hiding processor complexities
– Mandatory to exploit the parallel computation

capabilities of many-core architectures

• Become a vital element to provide the desired
level of performance and programmability

• This project focuses on OpenMP

(openmp.org)

6

1. Supported by a large set of parallel architectures
– Portable among parallel platforms

2. Tasking model expresses fine-grained and irregular
– Code within a task executed by a team of threads

• depend describe dependencies among tasks (in, out, inout)

3. Accelerator model offloads code and data to devices
– The code within a target is executed within a device

• Supports the depend clause integrating the acceleration and tasking model

7

Why OpenMP?

Threads

OpenMP
Library

Multi/many-core

Transparent to the programmer

OpenMP
Program
#pragma
omp

OpenMP4.5 (released Nov 2015)

8

#pragma omp parallel num threads(2) {
#pragma omp task {// task TO
 p00 (x=0; y=0;)
 #pragma omp task depend(out:x,y) { p1 }// task T1
 p01
 #pragma omp target depend(in:x) map(to:x) { f1(); }// target task T2
 p02
 #pragma omp target depend(in:y) map(to:y) { f2(); }// target task T3
 p03
}}

1. A new team of 2
threads is created

Accelerator
device

Host

Many-core heterogeneous architecture

2. Tasks are executed
if available threads in
the team

3. f1() and f2()
execute on the
accelerator device
when…

4. … T1 is completed

Performance and programability benefits

Parallelisation experiences of a space application
with OpenMP:

The tasking and accelerator execution model

9

• Pre-processing sampling for infra-red H2RG detectors
– It processes sensor frames of 2048 x 2048 pixels through eight stages

Application Case-study

2048

2048

10

• Divide the frame image in N x N blocks and
process each in parallel (task directive)

11

Parallelisation Strategy 1

2048

2048
task

 task

N=4
(16 blocks)

Parallelisation Strategy 1

• Data dependencies among application stages
limits the level of parallelism

12

Application’s
Task Dependency Graph (TDG)

13

Divide the sensor frame in 4x4 blocks

OpenMP Tasking Model

...
for (i=0; i < 4; i++)
 for (j=0; j < 4; j++)
#pragma omp task depend(inout:frame[i][j])
 subtractSuperBias(i,j);
for (i=0; i < 4; i++)
 for (j=0; j < 4; j++)
#pragma omp task depend(inout:frame[i][j])
 nonLinearityCorrectionPolynomial(i,j);
for (j=0; j < 4; j++)
#pragma omp task depend(in:frame[0][j] \\
 in:frame[1][j] \\
 in:frame[2][j] \\
 in:frame[3][j])
 subtractReferencePixelTopBottom(j);
#pragma omp taskwait
subtractReferencePixelSides();
...

...
subtractSuperBias();
nonLinearityCorrectionPolynomial();
subtractReferencePixelTopBottom();
subtractReferencePixelSides();
...

Original version

Parallel version

14

Application’s
Performance Speed-up

• Experiments on two Intel(R) Xeon(R) CPU E5-2670
processor, featuring 8 cores each and 20 MB L3

• OpenMP implemention from GNU-GCC (libgomp)

15

Twofold reason:
1. The run-time overhead due

to a high number of tasks
2. The small data set upon

which tasks operate

Performance Speed-up Analysis
• Why only 7x in a 16-core architecture?

16

(Paraver tracing tool1)

1 http://www.bsc.es/computer-sciences/performance-tools/paraver

Tasking Model:
Parallelisation Strategy 2

...
for (k=0; k > 3; k++)
 for (i=0; i < 4; i++)
 for (j=0; j < 4; j++)
#pragma omp task depend(inout:frame[k][i][j])
 nonLinearityCorrectionPolynomial(k,i,j);
for (k=0; k > 3; k++)
 for (j=0; j < 4; j++)
#pragma omp task depend(in:frame[k][0][j] in:frame[k][1][j] \\
 in:frame[k][2][j] in:frame[k][3][j] \\
 out:frame[k])
 subtractReferencePixelTopBottom(k,j);
for (k=0; k > 3; k++)
#pragma omp task depend(inout:frame[k])
 subtractReferencePixelSides(k);
...

Application’s Performance Speed-up

18

(Paraver tracing tool1)

1 http://www.bsc.es/computer-sciences/performance-tools/paraver

5 image frames processed
simultaneously

Tasking Model: 4-core Leon3
• Processor implemented on a FPGA running at 80 Mhz

featuring a Leon3
• RTEMS v4.12 + enable-smp flag (not easy to discover that

required) + GCC 6.0.0
• RTEMS APIs and OpenMP directives cannot be mixed

– RTEMS part separated from the OpenMP part in two source files
– Replaced the standard main entry point by the RTEMS Init task

19

Tasking Model:
Run-time Overhead

• The run-time overhead may completely dominate
when the workload computed by tasks is small
– Data dependencies are managed through a complex data

structure (hash table)

Nanos++1 captures dependencies
among overlapped portions of
arrays, introducing extra overhead
when the number of tasks is very
high

1 A run-time targeting HP domain,
 https://pm.bsc.es/nanox

20

Tasking Model:
Run-time Overhead

• The size of the hash table may significantly increase
when using the depend clause intensively
– dummyDeps replaces the taskwait directive with fake

dependencies

21

Acceleration Model:
256 MPPA Kalray

• 4 host subsystems (I/Os) featuring 4-core each
• 16 acceleration devices (clusters) featuring 16-cores

each connected to a 2MB on-chip memory
– The sensor frame already occupies 8 MB

22

Computation distribution
• Application memory requirements when dividing 8

MB frame in 64 blocks (8x8)

23

Application Function Sequential Parallel

detectSaturation 8.5 MB
1MB

(4 frame blocks) subtractSuperBias 16 MB

nonLinearityCorrection 8 MB

subtractPixelTopBotton 8 MB 1 MB
(8 frame blocks)

subtractPixelSides 8 MB 8 MB
(complete frame)

detectCosmicRay 52 MB
1.5 MB

(2 frame blocks) linearLeastSquaresFit 48.5 MB

calculateFinalSignalFrame 32 MB

Accelerator
device

Host

Many-core heterogeneous
architecture

2 MB per Cluster

OpenMP target directive

for(i=0;i<8;i++)
 for(j=0;j<8;j+=4)
#pragma omp target map(tofrom:frame[i][j],frame[i][j+1],frame[i][j+2],frame[i][j+3])
 depend(out:frame[i][j],frame[i][j+1],frame[i][j+2],frame[i][j+3])
 nowait {
 detectSaturation (i,j); subtractSuperBias(i,j); nonLinearityCorrectionPolynomial(i,j);
}
for(i=0;i<8;i++)
#pragma omp target map(tofrom:frame[i][0],frame[i][1],frame[i][2],frame[i][3]
 tofrom:frame[i][4],frame[i][5],frame[i][6],frame[i][7])
 depend(in:frame[i][j],frame[i][1],frame[i][2],frame[i][3]
 in:frame[i][4],frame[i][5],frame[i][6],frame[i][7])
 nowait
 subtractReferencePixelTopBottom(j);
#pragma omp taskwait
subtractReferencePixelSides();
...

Cluster
execution

I/O execution

Cluster
execution

Cluster execution

4 blocks sent

8 blocks sent

24

Application’s
Performance Speed-up

Cluster
Phase1

I/O - Phase

Cluster
Phase 3

Cluster - Phase 2

25

OpenMP on a non-POSIX OS
• We evaluated the support that OpenMP libgomp

run-time requires on non-POSIX OS
• ERIKA Enterprise

http://erika.tuxfamily.org
– Open-source automotive certified kernel
– Minimal memory consumption (footprint of few KBs), run-

time latencies and error-prone conditions
– Configuration settings statically defined at compile-time
– The set of services provided is very small and simple

compared to POSIX standard

26

http://erika.tuxfamily.org/

OpenMP on a non-POSIX OS
• We identified a minimal set of low-level primives to

support an embedded and lightweight libgomp
– Thread management primitives for job management
– Synchronization primitives
– Memory management primitives (standard libc)

• Additional footprint very limited

Extra Code footprint Extra RAM usage per core
1024 – 2048 bytes 128 bytes for each core

27

Time Predictability Benefits

OpenMP and Real-time embedded domain:
A Possible Union?

28

OpenMP and Real-time Systems?
• DAG-based real-time scheduling models

– System composed of a set of periodic directed
acyclic graph (DAG) tasks: G=(V, E)

• vi in V is a job characterised with WCET
• (vi, vj) in E means vj cannot start until vi finishes

• OpenMP tasking model resembles the DAG-based
representation

 29

v1

v3 v2

v4

OpenMP DAG-based real-time

OpenMP application DAG-task (G)

task directive Jobs in V
Synchronization directives ,task

creation, control flow Edges in E

Constructing the OpenMP-DAG

30

#pragma omp task { // TO
 p00
 #pragma omp task depend(out:x,y) {p1}// T1
 p01
 #pragma omp task depend(in:x) {p2} // T2
 p02
 #pragma omp task depend(in:y) {p3} // T3
 p03
}

OpenMP-DAG1

T3

P00

P1

P2

P3

P01

P02

P03

T0

T1

T2

1 Compiler methods to construct OpenMP-DAG from
an OpenMP application available in

- Roberto E. Vargas, Sara Royuela, Maria A. Serrano, Xavier Martorell,
Eduardo Quiñones, A Lightweight OpenMP4 Run-time for Embedded
Systems, in AspDAC 2016

- P-SOCRATES FP7 project (www.p-socrates.eu)

http://www.p-socrates.eu

Time Predictable OpenMP-DAG
• Timing characterization of nodes in DAG (OpenMP

tasks)
– Account for the potential execution time variation that

hardware interferences can possibly introduce
• No interferences: Tasks execute in isolation in one core
• “Some” level of interferences1: Tasks execute in parallel

interfering among each other
• The “maximum” level of interferences2: Tasks execute with

benchmarks designed to stress hardware resources (opponents)

1 Gabriel Fernandez, Javier Jalle, Jaume Abella, Eduardo Quiñones, Tullio Vardanega and Francisco J Cazorla,
Resource Usage Templates and Signatures for COTS Multicore Processor, In DAC 2015
2 Mikel Fernandez, Roberto Gioiosa, Luca Fossati, Marco Zulianello, Eduardo Quiñones, Francisco J. Cazorla,
Assessing the Suitability of the NGMP Multi-core Processor in the Space Domain, in EMSOFT 2012

31

Time Predictable OpenMP-DAG
• Computation of application’s worst case response

time bound
– Static allocation approaches based on sub-optimal

heuristics1
– Work-conserving dynamic schedulers (as implemented in

the Libgomp OpenMP run-time)2

1 K. E. Raheb, C. T. Kiranoudis, P. P. Repoussis, and C. D. Tarantilis. Production scheduling with
complex precedence constraints in parallel machines, In Computing and Informatics 2012

2 Maria A. Serrano, Alessandra Melani, Roberto Vargas, Andrea Marongiu, Marko Bertogna and
Eduardo Quiñones, Timing Characterization of OpenMP4 Tasking Model, in CASES 2015

32

Time Predictability of the
infra-red application

• Extract the OpenMP-DAG of parallelisation
strategy 1 with 16 blocks

• WCET computed measuring tasks in isolation (no
interferences) and adding a 40% (safety margin)
– 4-core Intel Core i7-4600U at 2.1 GHz

• Run-time and OS overhead not considered

Measured
execution time

Dynamic
Scheduler Static Allocation

96 131
LPT SPT LNSNL LNS LRW

117 120 117 117 118

(in milliseconds)

Time Predictable OpenMP-DAG
• Computation of system’s worst case response time

bound
– OpenMP tasking model resembles the DAG-based limited

preemption scheduler1

1 Maria A. Serrano, Alessandra Melani, Marko Bertogna and Eduardo Quiñones, Response-Time
Analysis of DAG Tasks under Fixed Priority Scheduling with Limited Preemptions, in DATE 2016

OpenMP DAG-based Limited preemption

OpenMP application Real-time task

Task-parts Non-preemptive regions
Task Scheduling Points Preemption points

http://people.ac.upc.edu/equinone/docs/2016/date1_2016.pdf

Summary and Conclusions
• OpenMP can be effectively used to developed future

parallel real-time embedded systems
– Easy to program and express parallelism
– Good performance and time predictable
– Supported by a large set of parallel architecture

• Performance speed-up of an OpenMP parallel
version of the space application
– 11x on a 16-core Intel(R) Xeon(R) CPU E5-2670
– 3.8x on a quad-core Leon3
– 8.3x on a 256 MPPA Kalray (heterogeneous architecture)

35

Summary and Conclusions

• Evaluate the run-time overhead in terms of
speed-up degradation and memory usage

• Investigate the use of OpenMP (libgomp) in
non-supported POSIX OS

• Evaluate the response time analysis of the
application under
– Work-conserving dynamic scheduler
– Static allocation approaches

36

Future work:
OpenMP in space

1. The timing analysis of OpenMP not completed
– No sound and trustworthy timing analysis method to compute the

WCET of jobs in the DAG
• The run-time overhead must be take into consideration

– Current timing and scheduling techniques only assumes
homogeneous architectures
• Scheduling techniques for efficient (and predictable) host/device computation and

data transfer are missing
• The construction of the OpenMP-DAG does not include the accelerator model

2. Response time analysis of system composed of multiple
OpenMP applications

3. Efficient and lightweight OpenMP run-time for embedded
applications

37

Acknowledgments

• FP7 P-SOCRATES project,
www.p-socrates.eu

• Sebastian Huber, from Embedded-brains
• ESA colleagues: Luca Fossati, Marcel Verhoef,

Athanasios Tsiodras

38

http://www.p-socrates.eu

	ppm4ss_intro
	Parallel Programming Models For Space Systems

	ESA_final-presentation
	Parallel Programming Models �for Space Systems �(ESA Contract No. 4000114391/15/NL/Cbi/GM)
	Parallel Programming �Models for Space Systems
	Agenda
	Slide Number 4
	Parallel programming models
	Why should you use them?
	Why OpenMP?
	OpenMP4.5 (released Nov 2015)
	Slide Number 9
	Application Case-study
	Parallelisation Strategy 1
	Parallelisation Strategy 1
	Application’s �Task Dependency Graph (TDG)
	OpenMP Tasking Model
	Application’s �Performance Speed-up
	Performance Speed-up Analysis
	Tasking Model:�Parallelisation Strategy 2
	Application’s Performance Speed-up
	Tasking Model: 4-core Leon3
	Tasking Model:�Run-time Overhead
	Tasking Model:�Run-time Overhead
	Acceleration Model:�256 MPPA Kalray
	Computation distribution
	OpenMP target directive
	Application’s �Performance Speed-up
	OpenMP on a non-POSIX OS
	OpenMP on a non-POSIX OS
	Slide Number 28
	OpenMP and Real-time Systems?
	Constructing the OpenMP-DAG
	Time Predictable OpenMP-DAG
	Time Predictable OpenMP-DAG
	Time Predictability of the �infra-red application
	Time Predictable OpenMP-DAG
	Summary and Conclusions
	Summary and Conclusions
	Future work:�OpenMP in space
	Acknowledgments

