
 
 

1/54                                                             RFQ- 3-13153/10/NL/JK Multicore OS Benchmark 

 

 
 

 
Final Report 

 
 

Document Information 

Author 
Francisco J. Cazorla, Roberto Gioiosa, Mikel Fernandez, Eduardo 
Quiñones 

Contributors Marco Zulianello, Luca Fossati 

Reviewer Jaume Abella 

Keywords  
 



 
 

2/54                                                             RFQ- 3-13153/10/NL/JK Multicore OS Benchmark 



 
 

3/54                                                             RFQ- 3-13153/10/NL/JK Multicore OS Benchmark 

Table of Contents 
1  Introduction ..................................................................................................................... 5 

1.1  Project Abstract ............................................................................................................ 5 
1.2  Background of the CAOS team .................................................................................... 6 
1.3  Document Structure ...................................................................................................... 7 

2  Project Objectives ........................................................................................................... 8 

2.1  State of the art .............................................................................................................. 8 
2.2  Requirements ............................................................................................................... 9 
2.3  Expected Output ......................................................................................................... 10 

3  Project overview ........................................................................................................... 11 

3.1  Task 1: Study of the literature and requirements definition ........................................ 11 
3.2  Task 2: Benchmark implementation ........................................................................... 12 
3.3  Task 3: Benchmark dry-run ........................................................................................ 12 

4  Design and Implementation ......................................................................................... 13 

4.1  The ML510 Board: setting it up and the tool chain ..................................................... 13 
4.2  The loads: microbenchmarks ..................................................................................... 16 

4.2.1  CPU micro-benchmark (CPU) ......................................................................... 16 
4.2.2  Load-instruction micro-benchmarks ................................................................ 16 
4.2.3  Store-instruction based micro-benchmark (L2st) ............................................. 17 

4.3  The loads: Mimicking benchmark ............................................................................... 18 
4.3.1  Parameters to consider .................................................................................... 18 
4.3.2  Benchmark Design .......................................................................................... 19 
4.3.3  Setups .............................................................................................................. 20 

4.4  The loads: CoreMark and EEMBC ............................................................................. 21 
4.4.1  EEMBC AutoBench ......................................................................................... 21 
4.4.2  CoreMark ......................................................................................................... 22 
4.4.3  CoreMark configurations .................................................................................. 24 

4.5  The loads: ParSeC ..................................................................................................... 24 
4.6  Execution infrastructure .............................................................................................. 25 

4.6.1  Linux workflow ................................................................................................. 26 
4.6.2  RTEMS workflow ............................................................................................. 27 
4.6.3  Parameter analyzer (Linux and RTEMS) ......................................................... 28 
4.6.4  Variable renaming (Linux and RTEMS) ........................................................... 30 
4.6.5  Compilation (Linux) .......................................................................................... 30 
4.6.6  Runbench option generator (Linux) ................................................................. 30 
4.6.7  RTEMS Runbench program generator (RTEMS) ............................................ 30 
4.6.8  Linux Runbench Image generator (Linux) ....................................................... 31 
4.6.9  runbench_ngmp (Linux) ................................................................................... 31 
4.6.10  Script_GRMON (Linux/RTEMS) ...................................................................... 31 
4.6.11  Scripts for result analysis ................................................................................. 31 

5  Evaluation and Discussion .......................................................................................... 35 

5.1  Metrics ........................................................................................................................ 35 
5.2  Results on Linux ......................................................................................................... 35 

5.2.1  Micro-benchmarks only executions ................................................................. 35 
5.2.2  Executions of Mimicking benchmarks ............................................................. 40 
5.2.3  Executions of CoreMark with Micro-benchmarks ............................................ 41 
5.2.4  Executions of EEMBC with Micro-benchmarks ............................................... 42 
5.2.5  Executions of EEMBC with Parsec .................................................................. 45 
5.2.6  Periodic task with different opponent in each activation .................................. 46 

5.3  Results on RTEMS ..................................................................................................... 46 
5.3.1  Micro-benchmarks only executions ................................................................. 47 

6  Conclusions................................................................................................................... 51 

6.1  Timing Verification of NGMP-based real-time systems: impact of our study ............. 51 



 
 

4/54                                                             RFQ- 3-13153/10/NL/JK Multicore OS Benchmark 

6.2  Future work ................................................................................................................. 53 

References ............................................................................................................................. 54 

  

 



 
 

5/54                                                             RFQ- 3-13153/10/NL/JK Multicore OS Benchmark 

1 Introduction 

This document describes the Multicore OS Benchmark project done by BSC in 
collaboration with ESA under contract RFQ-3-13153/10/NL/JK. The document 
introduces the initial context and project specifications, summarizes the successive 
development stages, describes the current state of the technology and suggests future 
work directions. In this final report, special emphasis is given to the project outcomes 
and conclusions.  

The objective of this document is to provide a general perspective of the Multicore 
OS Benchmark project: 

- Description of the need for a project like this 

- Problem definition 

- Experimental Setup 

- Results Obtained 

- Conclusions 

This document targets the Management and Technical staff from ESA/ESTEC, 
mainly those working with Real-Time Systems. It has a broader target than the other 
project deliverables that were more technical or project oriented.  

1.1 Project Abstract 
The European Space Agency (ESA) and the Barcelona Supercomputing Center (BSC) 
collaborated in an exploration project to define and develop a benchmark suite to 
exercise the new features of the Next Generation MicroProcessor (NGMP), the 
multicore architecture solution designed by ESA and developed by Gaisler, and the 
better understand thread interaction in shared multicore resources. 

Through the execution of benchmarks coming from different domains (both real time 
and non-real time) in different configurations (e.g., 1-4 cores, different input sets), in 
addition to a set of specifically designed benchmarks, the project aims at increasing 
the understanding and the confidence of how to use multicore processors in future 
space scenarios, in which real-time and payload applications co-exist. The benchmark 
suite is, hence, designed to feature the following characteristics: 

- Exercising the new NGMP: The NGMP provides different levels of resource 
sharing among the four available cores. The interaction of threads concurrently 
running on the four cores may induce execution time variability and, thus, timing 
issues. The benchmark suite aims at identifying and bounding such interactions 
and timing issues. 

- Developing a benchmark able to mimic some characteristics of some ESA 
reference applications.  

- Based on world well known benchmarks compose workloads that comprise real 
and non-real time applications and study inter-thread interaction on those 
workloads when running on the NGMP. 

According to the ESA view, also confirmed by the state-of-the-art literature, future 
real-time, space systems will run a mix of real-time and payload (non real-time) 



 
 

6/54                                                             RFQ- 3-13153/10/NL/JK Multicore OS Benchmark 

applications. This will allow minimizing space and power consumption, hence 
production and maintenance costs. To reflect this scenario, the benchmark suite 
provides two classes of benchmarks: 

1. On-board control-like applications: These are real-time mission or safety 
critical applications. They demand functional and timing correctness, thus 
each command should be correctly executed before a given deadline. Solar 
panels on a satellite are controlled by this kind of applications. 

2. On-board payload-like applications: These are non real-time applications that 
are run next to the real-time control applications. They do not pose time 
constraints but should provide a desired QoS. In an aircraft system, customer 
entertainment is a typical payload application. 

The results of the project show how real-time and non real-time applications interact 
when co-running on the NGMP and on resource sharing yields the highest potential 
impact on applications’ performance. Depending on the resource under consideration 
the maximum effect of interactions between tasks can range from 75% or up to more 
than 19x. The result of the study will help application developers at ESA to better 
design their applications so that they can control the effect of inter-task interferences 
on their applications. The benchmarks developed can be easily adapted to other 
multicore architectures. 

1.2 Background of the CAOS team 
This project has been carried out by members of the CAOS group at at the Barcelona 
Supercomputing Center (www.bsc.es/caos). The CAOS group has long experience in 
managing bilateral projects with industry and European projects. The CAOS group 
has participated in industrial projects with IBM and Sun Microsystems (now 
ORACLE) and the European FP7 Projects MERASA. At the time of writing this 
document, the group participates in the PROARTIS and parMERASA FP7 projects. 
The group is also participating in the VeTeSS ARTEMIS projects. 

Some more details about these projects are provided next: 

- HiPEAC Network of Excellence: BSC has been an active member of this Network 
of Excellence, participating in several clusters (projects) related to multithreaded 
hard real-time capable processors. In these clusters BSC has been collaborating 
with other European universities (University of Augsburg, University of Toulouse 
and University of Karlsruhe), SME (Rapita Systems LTD) and industry 
(Infineon). 

- The MERASA FP7 project (www.merasa.org), in which ESA was involved as an 
industrial advisor, is highly related with this ITT. The project, which recently 
finished, investigated analyzable high performance hardware features for 
embedded hard real-time multi-core processors and the system software changes 
required to support those hardware features. MERASA put together important 
avionics companies such as Honeywell, which provided avionics applications and 
Airbus, which was part of the Industrial Advisor Board. Several key machinery 
(Bauer) companies and processor vendors (Infinenon and NXP) were in the 
industrial advisory board of MERASA as well.  

- The parMERASA project (www.parmerasa.eu), in which ESA is involved as an 
industrial advisor,  aims to develop a multi-core processor architecture that 
provides a predictable timing behaviour, a suitable system-level software, 



 
 

7/54                                                             RFQ- 3-13153/10/NL/JK Multicore OS Benchmark 

software design guidelines for parallelising hard real-time applications, and tools 
for estimating and verifying the timing behaviour of such parallel applications.  
parMERASA put together important avionics, automotive and construction 
machinery companies such as Honeywell, which provided avionics applications, 
and Airbus as part of the Industrial Advisor Board (IAB); Denso, which provides 
automotive applications, and BMW, Mecel AB, Elektrobit Automotive and 
Infineon as part of the IAB; and Bauer, which provides automation applications. 

- Finally, BSC leads the PROARTIS FP7 project, in which Airbus and ESA are also 
involved: the former as full partner and the providing avionics applications to 
perform case studies, and the latter as an industrial advisor partner. The 
PROARTIS project enables the BSC to explore a new set of hardware and system 
software proposals that enable probabilistic timing analysis and that overcome the 
limitations of statically analyzable real time systems. 

- VeTeSS: Verification and Testing to Support Functional Safety Standards. The 
increasing complexity of the systems and the need for higher quality levels as a 
differentiating characteristic, have pushed European automotive industry towards 
releasing a new safety standard ISO-26262, which requires methodologies for 
automatic verification and testing of systems. The VeTeSS ARTEMIS project 
addresses this challenge by proposing a new complete and automatic methodology 
to verify and test components and systems against the ISO-26262 standard and 
allowing components and systems to be certified out-of-context, so that they can 
be used in any system or car matching their specifications without requiring a re-
certification. VeTeSS consortium is formed by some of the main European 
companies in the automotive arena such as Infineon, NXP Semiconductors, Volvo 
Technology, Centro Ricerche FIAT, Catena, AVL List, TWT, e-AAM, Fico-
Triad, ViF, SprintSoft, Rapita Systems, IKV++, QRTECH and Exida, and some of 
the main European public research institutions such as the BSC-CNS, Fraunhofer, 
Politecnico di Torino, University of Oxford, Technische Universität Wien and SP 
Technical Research Institute of Sweden. 

As a result of some of the advances done in the embedded field BSC has filed two 
patents to the European Patent office and to the United States Patent and Trademark 
Office. 
 

1.3 Document Structure 
Section 2 describes the project’s objectives and requirements, the current state of the 
art, and the expected output of the project. Section 3 describes the project’s structure 
and details the project’s work packages and tasks. Section 4 describes the 
characteristics of the target system, the tools and techniques used during the 
implementation of the project and the design and implementation of the benchmark 
suite, the mimicking applications and the analysis tools developed throughout the 
project. Section 5 describes the results of this activity.  Finally, Section 6 presents the 
main conclusions of this activity.  

 



 
 

8/54                                                             RFQ- 3-13153/10/NL/JK Multicore OS Benchmark 

2 Project Objectives 

The objective of this activity is to define and develop a benchmark suite, 
representative of reference ESA applications, suitable to exercise the new NGMP 
multicore processor, so the level of confidence of the design of the NGMP increases. 
The benchmark suite will be capable to generate different inter-task interference 
scenarios that may arise in the NGMP processor, by stressing the different processor 
hardware shared resources. The benchmark suite developed has to be flexible enough 
such that different processor components can be stressed in different levels, e.g. 
configurable number of tasks running simultaneously inside the processor, CPU load, 
memory load, etc. The benchmark suite comprises benchmarks mimicking the 
behavior of payload applications and benchmarks mimicking on-board control 
applications, and it will run on both RTEMS and Linux operating system.  

2.1 State of the art 
Improving performance by means of processor’s frequency increment or Instruction 
Level Parallelism (ILP) has reached a sudden stop caused by the unsustainable 
increase of power consumption. Multicore Processors (CMP) are increasingly being 
considered as an effective solution to cope with current performance requirements of 
Critical Real-Time Embedded (CRTE) systems, like those used in space domain. 
CMPs feature several processors inside a single die where the cores share different 
level of hardware resources, providing performance improvement by means of Thread 
Level Parallelism (TLP). By doing so, the performance of a CMP is improved 
offering a better performance/Watt ratio than a single core solution with similar 
performance, while maintaining a relatively simple processor design. 

This trend has been followed by many processor vendors in different CRTE domains 
like the Aeroflex Leon4 Multicore processor [NGMP], implementing a four-core 
processor for space domain, the Freescale MPC5510 [MPC55] and MPC5668 
[MPC56], both implementing a dual-core processor for automotive and avionics 
domain and Texas Instruments TMS570 [TMS57], implementing a dual-core 
processor for transportation safety applications.  

CMP systems can be used in a wide range of application domains as they provide 
several advantages over single core systems: 

- System with limited space (satellites, aircrafts, automobiles, etc.) benefit from the 
higher density of CMPs. That is, CMPs allows scheduling workloads composed of 
a higher number of applications than single-core processor. In addition, workloads 
can be composed of mixed criticality applications, i.e. safety and non-safety 
critical applications, maximizing the hardware utilization and so reducing cost, 
size, and weight and power requirements. 

- Systems with limited power budget (satellites, mobile phones, etc.) take advantage 
of the shared hardware resources, increasing operation time, battery efficiency, 
etc. 

- Applications with high computing demands can exploit the CMP performing a 
parallel implementation of their algorithm and so exploiting the TLP. 

- CMPs facilitate the design of safety critical redundant systems. For example, if the 
system is operating in an environment in presence of cosmic radiation or alpha 



 
 

9/54                                                             RFQ- 3-13153/10/NL/JK Multicore OS Benchmark 

particles where there is a high risk of soft errors, several instances (say 3) of the 
same application can execute on the same CMP, each running in a different core. 
Then, an arbiter can later select the result of the computations that are not effected 
by soft errors by looking at the applications that provide the same result. 

In the space industry, CMP architectures may result especially beneficial as they 
achieve higher performance levels without increasing CPU clock frequencies which 
could lead, in turn, to an unacceptable error rate caused by electromagnetic 
interferences and cosmic radiations.  

Unfortunately, though the advantages provided by CMPs are clear, the timing 
correctness of Critical Real Time Embedded (CRTE) systems is harder to be proven 
for multicore (CMP) processors than for single-core processors due to inter-task 
interferences.  Inter-task interferences appear when two or more tasks access 
simultaneously a hardware shared resource, requiring an arbitration scheme to decide 
which task get the access granted. As a consequence, the execution time of a task may 
increase depending on the inter-task interferences generated by the other co-running 
tasks, and so it becomes extremely difficult or even impossible to perform a tight 
WCET analysis; and in CRTE systems it is essential to guarantee the timing 
correctness of the system, and for the most critical ones, strong arguments and proofs 
are needed to be able to prove correctness to certification authorities. CRTE systems 
need to prove that they operate correctly, satisfying all temporal constraints.  

2.2 Requirements 
This project requires expertise in two main areas: processor architecture and 
benchmarking. The former is required to understand the different processor 
components that may affect the execution time of a given application when running in 
a multicore processor environment. The latter is required to design a benchmark suite 
capable of stressing the specific processor components that affect the execution time 
of a given application.  

Several boards where considered at the beginning of the project. The one that fits the 
budget and requirements of the project was the Xilinx ML510 development board 
implementing a Next Generation Multipurpose Microprocessor (NGMP) in its FPGA. 
The development board is described in [XML510SC, XML510RD, XML501ED].  
There are two variants of the NGMP that can be implemented in this board. One with 
two cores each comprising Floating-Point unit (FPU) and another without FPU but 
with 4 cores. We chose the latter as it lead to scenarios with higher contention 
between threads on shared resources. The FP operations where done through 
specialized libraries using integer functional units. 

A requirement on the board was to enable the reading of Performance Monitoring 
Counters (PMC).  In general, PMC values can be generally obtained through one of 
the following methods: 

- Internal measurements: performance counters values are obtained directly from 
the performance counter registers. These values can then directly be combined 
with other internal measurements (such as execution time or application-depend 
metrics). This option generally requires software components (i.e., operating 
system and/or runtime library support) that is not available for Linux on NGMP 
and was, thus, discarded. 



 
 

10/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

- External measurements: performance counters values are obtained from the 
NGMP statistical unit through the JTAG debug interface. Besides being more 
general (it does not rely on the particular software running on the NGMP), this 
option introduces lower measurement noise, thus more reliable results. On the 
other hand, external measurements can only be performed with a low frequency 
(e.g., no more than 1 Hz) and need to be coordinated with other (eventual) internal 
measurements. As part of the project, we developed an offline infrastructure that 
combines external measurements obtained through the NGMP statistical unit with 
the internal measurements obtained by the benchmark framework running on the 
NGMP. 

2.3 Expected Output 
The main results expected of the projects are: (1) a comprehensive understanding of 
the architecture of the new NGMP processor; (2) a comprehensive understanding of 
how inter-task interferences affect the execution of control-like applications; and (3) a 
comprehensive understanding of how the benchmark suite has been designed to stress 
NGMP resources and how the benchmarks mimic ESA reference applications. This 
will facilitate the porting of the benchmark suite to future processor architectures that 
are of the interest of the ESA. 

 



 
 

11/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

3 Project overview  

The project is scheduled to have 12 month of duration and structured into 4 
tasks/phases: 

- The first phase comprised the Task 1 (2 months). During this phase, we identified 
the most relevant state of the art. This includes research papers, industry papers 
(white papers), patents and projects. We performed an initial identification of the 
hardware shared resources in NGMP systems based on the available NGMP 
documentation. It is important to remark that during the first phase, the board was 
not available. The main focus of the study was on benchmarking techniques and 
applications for multicore and real-time architectures that were taken as reference 
in the rest of the project.  

- The second phase comprised the Task2 (4 months). During this phase refined the 
knowledge of the NGMP and the ESA reference application acquired during the 
first phase. The main objective of this phase was the development of a benchmark 
suite capable of running on-board control-like and payload-like applications and 
of stressing the different processor resources.  

- The third phase comprised the Task 3 (4 months). During this phase, we 
performed a dry-run of the benchmark suite a FPGA implementation of the 
NGMP, available at this point. Based on the experiments performed, we analyzed 
performance and timing issues caused by application interaction and resource 
sharing. 

- The last phase comprised the Task 4 (2 months). The objective of this phase was 
to port the benchmark suite to the NGMP implementation in ESA, a HAPS54 
board. This task was agreed not to be done with the technical offer of this activity. 
During the last two month of the activity an extensive set of results for both Linux 
and RTEMS were obtained. 

At the end of each Task2 and Task4 we have set a milestone, i.e. Mid-term review 
(milestone MS) and Final-Review milestone MS2 respectively, in which strategic 
decisions will be taken.  

 

3.1 Task 1: Study of the literature and requirements definition 
During this task, we generated an initial list of the processor components of the 
NGMP that may affect the execution of an application, taking into account the 
requirements of the different application types, i.e. payload-like applications as well 
as on-board control applications. It is important to remark that each application type 
may stress different processor components, which in turn may affect the execution 
time of other co-running applications. For example, memory-intensive applications 
may generate a lot of traffic not only into the memory controller, but also into the 
processor bus. Thus, applications that use the same processor bus, like I/O-intensive 
applications, may be potentially delayed although not being of the same type.  

Concretely the work performed is:1) Study of the Literature.  2) Collecting an initial 
list of the NGMP shared component and the execution profile of the most important 



 
 

12/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

run-time features of payload and on-board control applications. 3) Study other 
benchmark suites such as Parsec or EEMBC. 

This task has ParSec and EEMBC benchmark suites as inputs. As an output it has: (1) 
Analysis of the benchmark suites to use in the project, and (2) an analysis of the 
literature 

3.2 Task 2: Benchmark implementation 
In this task we developed the benchmark infrastructure and load that mimic ESA 
reference applications. The framework consists of several components: 
 

1. The Front-end or Generator: this component runs on the host machine. It 
takes as an input the loads and their parameters and generates the necessary 
configuration files and executables to run on the NGMP target system. 

2. The Back-end or Executor: this component is in charge or running the 
specified loads in a determined order and configuration. It consists of a general 
framework and several loads (benchmarks) executed as specified by the user 
during the build and configuration of the experiments. There is a back-end for 
Linux and one for RTEMS. 

3. The Analyzer: this component collects and processes the data generated 
during the execution of an experiments and provides statistics used to analyze 
the output of the experiments. The input data comprise of the execution time 
(measured on the NGMP) and performance counters (obtained from the 
JTAG) of each load. This component runs on the host machine (offline 
analysis) and consists of bash, perl, python, and matlab scripts. 

 
The benchmark framework is able to run both control-like and payload-like 
applications as shown in the introduction. In several cases, the porting of applications 
on NGMP (mainly Parsec applications) was not available and significant time was 
invested to port some of them (namely, X264, Blackscholes, Ferret, and Dedup). 
 
This task takes as an input the outcome of Task 1, in addition to the GRMON 
software to connect the ML510 board to a host computer, RTEMS and Linux. As an 
output it provides: (1) the micro benchmark suite; and (2) the benchmark suite manual 
(D3). 
 

3.3 Task 3: Benchmark dry-run 
During this task, the benchmark suite developed in Task 2 was executed on a 
preliminary version of the NGMP implemented on a Xilinx ML510 evaluation board 
by Aeroflex Gaisler. The available NGMP design consists of 4 cores but does not 
feature FPUs (instead a software floating-point library is used to perform application’s 
floating point operations). 
 
This task takes as an input the outcome of Task 2, the Aeroflex Gaisler NGMP 
implementation on a Xilinx ML510 evaluation board, GRMon and an implementation 
of Linux and RTEMS for NGMP. As an output it provides (1) a Revised Benchmark 
suite; (2) a revisited Benchmark suite manual and (3) the final Report of the execution 
of the benchmarks on the board (D4). 
 



 
 

13/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

4 Design and Implementation  

4.1 The ML510 Board: setting it up and the tool chain 
This section describes the steps followed to set up an Aeroflex Gaisler NGMP FPGA 
prototype design for Xilinx ML510 development board. 

The test evaluation board is a Xilinx ML510 development board equipped with a Next 
Generation Multipurpose Microprocessor (NGMP) design from Aeroflex Gaisler. The 
development board is described in [XML510SC][XML510RD][XML510ED] but only 
a subset of the interface provided by Xilinx are enabled. A complete list of the 
available interface can be found in [GNGMP], in this document we will focus on the 
following interfaces: 

1. Ethernet: the first and only Ethernet MAC is connected to the top Ethernet 
connector.  

2. UART: both UARTs are enabled and UART0 is the lower connector.  

3. JTAG: the JTAG interface is connected and can be access through J9. 

Among those interfaces only the Ethernet and the JTAG interfaces are connected to 
the debug link [GNGMP]. The development board is connected to the workstation 
through one or more of these interfaces. The workstation is a normal PC running 32-
bit Ubuntu Linux version 11.04. This configuration was selected after consulting with 
Aeroflex Gaisler. Although running MS Windows is possible, the JTAG debug 
interface require a 32-bit driver and compiling such driver on a 64-bit MS Windows is 
said to be non-trivial. 

The main connection between the Xilinx ML510 development board and the 
workstation is through a Xilinx USB Cable II JTAG. The JTAG is connected to the J9 
connector on the board and to a standard USB port on the workstation (NB: the USB 
connector must be able to supply enough energy to power on the JTAG). Using the 
JTAG on the workstation requires the installation of a device driver and some extra 
system configuration. The rest of this section describes these processes while section 
[GRMON] describes the use of the JTAG to connect to the board. 

In order to boot and run applications on the NGMP development board several tools 
need to be installed and configured. Most of these tools are installed in the 
Workstation and the compiled and assembled as an image into the board. This section 
briefly describes such tools. A more detailed description can be found in [GLINUX]. 
The tools are available on Areoflex Gaisler [GAISLER] web site, the precise URLs 
can be found in [GLINUX].  Aeroflex Gaisler distributes a crosstool-NG toolchain 
based on GCC and fixed for the NGMP processor for both Linux and RTEMS. The 
Linux package also contains the configuration required to build a custom GLIBC. 
 
The Linux toolchain installation steps are detailed in [GLINDRV] and consist of 
simply extract and install the package provided by Aeroflex Gaisler. The RTEMS 
cross-compiler (RCC) toolchain installation steps are described in [GRCC]. Although 
the document, as most of the RTEMS documentation, describes the installation of the 
RTEMS toolchain for LEON2/LEON3/ERC32, the process works for the NGMP 
processor as well.  



 
 

14/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

This LEON Linux RAM loader combines the Linux kernel and the root file system 
image into a single image that can be loaded through the board device interface or a 
PROM/FLASH card. 
GRMon is a tool provided by Aeroflex Gaisler to interact with the development board. 
The tool can be used in two ways: 

1. Console interface: In this mode GRMon can be started from any terminal 
console. Throughout this document we use this mode. 

2. Graphical interface: This mode requires the installation of an additional tool 
(GRMonRCP) also provided by Aeroflex Gaisler [GNGMP]. 

In order to run GRMon full version, a special USB protection key is required. This 
protection key is provided by Aerroflex Gaisler together with the development board. 
In order to make it running in Linux (MS Windows follows a similar process) a 
special package (HAS Sentinel) is required. The package is provided by Aeroflex 
Gaisler together with the board but installing the canonical Ubuntu 11.04 package is 
simpler and does not require extra configuration. 
GRMon is mainly designed for interactive debugging purposes. As such, the latency 
of sending commands and receiving information to/from the NGMP board over the 
JTAG connection is not critical: the user issues commands and stop the processor 
while analyzing the results and, eventually, issues other commands. In our 
experimental environment, instead, we wish to automatically send commands and 
retrieve information. We explored with Gaisler several options, reported in the 
following: 

1. Placing breakpoints before/after staring the loads: the problem is the symbols 
are not known when loading the ramdisk and we need to wait till we start the 
program in Linux. This option was not practical and, perhaps, impossible. 

2. Application trapping: make the application trap, with an invalid opcode, and 
return the control to GRMon to read data. Unfortunately, GRMon catches 
either all exceptions or none (which would make GRMon trap at every Linux 
exception or interrupt). 

3. Attach GDB to GRMon. This would work but it requires considerable work in 
order to automatize the process. 

4. GRMon poll/runpoll command to monitor the performance counters during the 
execution of applications on the NGMP board. This would work but requires 
extra synchronization techniques, as GRMon, on the host workstation, and 
Linux, on the NGMP board, are not synchronized. In particular, this extra 
synchronization is needed between the data collected on the NGMP board 
(timing, application start/stop) and the data collected from GRMon 
(performance counters). We perform such synchronization offline, after the 
test is concluded. Note that coordinated start/stop of the performance counters 
at the exact moment on which the load start/stop, would require on-chip 
sampling. This, in turn, would require a Linux kernel module that interacts 
with the NGMP statistical unit (writing/reading to the statistical unit's I/O 
memory is protected and require operating system's privileges). 

The final option we have chosen was option 4.   
 
 
 
 



 
 

15/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

We leverage several features provided by GRMon: 
1. Batch script: GRMon allows the user to provide an input file containing a list of 

commands to be executed in order by GRMon. This eliminates the need of issuing 
commands such as loading the disk image, initializing the statistical unit, etc. 
manually. 

2. Logging: GRMon is able to log the output on an external file on the host 
workstation 

3. Counter polling: This option allows the user to continuously poll the statistical 
unit once the executable loaded on the NGMP board starts. This functionality was 
not present in the version of GRMon delivered with the board (1.1.47) and has 
been added successively (version 1.1.50). Gaisler provided us with the updated 
software and manual. 

The main issue we had with retrieving information from the NGMP board is the 
latency of the JTAG connection. Sampling the values of performance counters with a 
frequency higher than 1 Hz is not practical, as the latency of the JTAG cable would 
not sustain that frequency.  
 
The MKPROM2 tool is required for creating PROM/FLASH images. This document 
does not describe the use of PROM/FLASH to autonomously start development board 
without a JTAG debug interface, as this was not used during the project. MKPROM2 
is distributed by Aeroflex Gaisler [GLINBLD]. 
The compilation process is conveniently tied together in Linuxbuild. Linuxbuild tool 
performs the following steps: 
1. Download additional packages from external web sites (such as the Linux kernel 

from [LINUX]). The step is required before proceeding to the compilation of the 
components and it is performed through the update option the first time the script 
is executed. Both the Linux kernel and the boot loader need to be selected for the 
update [GLINDRV]. Notice that the workstation needs to be connected to Internet 
for this step to work. 

2. Configure each individual component. There are default configuration files in 
gaisler/configs that can be loaded through the “Save/Load Configuration” option 
in Linuxbuild. Loading a configuration file updates the configuration of all 
components. In particular, the following component can be configured at this 
stage: Toolchain, Linux kernel, Boot loader, Buildroot (creates the root File 
System that has to be compressed it into a Ramdisk) and MKPROM2 

3. Compile the components and merge them into a single image. 
 
Once all the packages are installed, the system can be configured and build using the 
configuration scripts. We used the default configuration file 
lb_config_ngmp1_v8fpu.tar.bz2, the only one provided for the NGMP processor. The 
final image will be available in the output/ directory. Notice that, at this stage, 
components that have not yet been downloaded will be downloaded.  
 
The current official Linux kernel [LINUX] supports LEON3 and LEON4 processors, 
thus there is not need of extra kernel patches for the processor. A separate Linux 
kernel driver is, however, required for the SpaceWire device [GLINDRV]. 
We used the default configuration file lb_config_ngmp1_v8fpu.tar.bz2, the only one 
provided for the NGMP processor. However, this configuration file is generic and 
does not take into account the two available designs (2 cores with FPU and 4 cores 



 
 

16/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

without FPU). Our design is a 4-cores without FPU design, thus, the option FPU must 
be removed from the kernel configuration. 
Theoretically, any Linux distribution with support SPARC can be used with the 
development board. As a matter of fact, however, there are not many. Aeroflex 
Gaisler provides patch for GCC to build custom images with buildroot. The image can 
be used as root file system mounted with MTD from a FLASH card of loaded with 
initramfs from the debug interface (the approach followed in this document). 
The compiled Linux kernel must be loaded into a pre-defined address location in 
RAM. During the compilation process, this address must be provided statically. In the 
process described in this document we used the default memory address. 
The Linux kernel and, in our case, the distribution ramdisk are wrapped together 
through the LEON Linux RAM Loader (mklinuximg). The resulting image can 
then be loaded through the debug interface or the PROM/FLASH card (see Section 
[MKPROM2]). 
The image created with Linuxbuild (boot loader + Linux kernel + Ram Disk) can then 
be loaded with the command load from the GRMon console: and started with the 
command run. 

4.2 The loads: microbenchmarks 
The purpose of the micro-benchmarks is to put a constant load on a processor 
resource. They are, hence, specifically designed to reach that objective. Each 
benchmark stresses one of the main resources of the processor, i.e. Integer execution 
units, L1 data cache, L2 data cache, AMBA AHB Processor and Memory Bus and the 
Memory Controller. They are written in assembler and are composed of a partially 
unrolled loop to cause the maximum effect of inter-task interferences in NGMP 
resources. In the following subsections, different micro-benchmark families are 
presented. 

4.2.1 CPU micro-benchmark (CPU) 
The objective of this micro-benchmark is to see if programs not accessing the memory 
hierarchy suffer from inter-task interference. Its loop is composed of add instructions, 
which are CPU intensive. The structure of the micro-benchmark is the following: 

for (i=0; i<it; i++) { 
  a=a+b; b=a+b; 
  a=a+b; b=a+b; 
  // … repeated 508 more times 
} 

 
The assembler code for the main loop is composed of the following instructions: 512 
add, 1 subcc, 1 br. 

4.2.2 Load-instruction micro-benchmarks 
Several load-instruction based micro-benchmarks have been prepared. With these 
benchmarks we want to determine how sensitive tasks accessing different memory 
hierarchy levels are to inter-task interference. 
This family of micro-benchmark initialize memory in a way that then it will be 
accessible through indirect load instructions (pointer chasing), which allows longer 
sequences of instructions. 
The structure of the initialization code of the matrix is the following. The stride and 
the array_size determine how often a benchmark hits/misses in each cache level. The 



 
 

17/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

stride is always set to prevent several accesses to the same cache line. The array_size 
is set to ensure that a benchmark hits/misses in a desired cache level. 

for(cnt=0; cnt<array_size; cnt+=stride){ 
  if(cnt<array_size-stride) 
    M[cnt] = (int*)&M[cnt+stride]; 
  else 
    M[cnt] = (int*)M; 
} 

 
For this micro-benchmark the main loop is composed of ld instructions, which access 
different levels of the memory hierarchy depending on how we configure each micro-
benchmark. In particular, the code of the micro-benchmarks is the following.  

for (i=0,a=M; i<it; i++) { 
  b=*a; a=*b  
  b=*a; a=*b  
  // … repeated 124 more times 
} 

 
The assembler code for the main loop is composed of the following instructions: 128 
ld, 2 cmp, 2 br, 2 nop. The load-instruction based micro-benchmark family contains 
the following micro-benchmarks: 

- L1 Load hit (L1): 8KB data footprint, always hits the private L1 cache.  

- L2 Load hit (L240): 40KB data footprint, always misses the private L1 cache, 
always hits the shared L2 cache. 

- L2 Load full (L2200): 200KB data footprint, always misses the private L1 
cache, hits the L2 cache when no other concurrent processes are using it, 
misses the L2 cache when other concurrent processes are using it. 

- L2 Load miss (L2miss): 8MB data footprint, always misses L2. 

4.2.3 Store-instruction based micro-benchmark (L2st) 
The objective of this micro-benchmark is to check the effect of having a lot of store 
instructions in a program may affect its performance when running it together with 
other store-intensive programs. This is relevant because NGMP’s L1 data cache 
implements a write non-allocate, write-through policies, so all store operations access 
directly to the shared L2 cache, thus increasing the risk of inter-task interference. 
This benchmark uses st instructions to store a value in the memory position defined 
by a pointer plus an immediate value. The store micro-benchmark has a 40KB data 
footprint, which hits the L2 cache if no other concurrent processes are using it, and 
misses the L2 cache if other concurrent processes are using it. 
The structure of the micro-benchmark is the following: 

for (i=0; i<it; i++) { 
  M[p+(imm+=stride)]=a; 
  M[p+(imm+=stride)]=a 
  // … repeated 506 more times 
} 
 

The value of imm in the structure description is updated after every store; we use a 
different immediate value for each store. Next we show a fragment of the loop after 
the unrolling has been applied, considering a stride of 32 bytes: 

M[p] = a; 
M[p+32] = a; 
M[p+64] = a; 



 
 

18/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

 
There is a limitation to the maximum value of the immediate, which is 4095 for the 
target architecture. As a consequence, if we use 32-byte stride, after 127 stores the p 
pointer has to be updated as shown next. 

M[p+4032] = a; 
M[p+4064] = a; 
p += 4096; 
M[p] = a; 
M[p+4] = a; 

 
The main loop of the store micro-benchmark is composed of the following 
instrictions: 3 cmp, 3 br, 1 mov, 1 clr, 508 st, 6 add. 
 
We wrote our loop bodies in assembler, and this assembler code is marked as 
_volatile_ so the compiler will not try to change the unrolled loop. Other instructions 
might be generated by the compiler, such as subcc, addcc, cmp and br instructions. 
 
To ensure no extra memory accesses in case a –O0 optimization level is used, 
induction variables are declared with the register keyword 
 
The object code generated for every micro-benchmark has been checked and the 
overhead added by the compiler has been taken into account. For instance, in section 
4.3.1 one subcc and one br instructions are in the loop body in addition to the 512 add 
instructions which were explicitly inserted by us. We unrolled the loops enough to 
make this overhead negligible. 

4.3 The loads: Mimicking benchmark 
In this section we describe the main characteristics of the ESA mimicking benchmark. 
This benchmark is meant to copy the main characteristics of several ESA applications 
taken as a reference. 

4.3.1 Parameters to consider 
As part of the deliverables presented in month 2, the consortium agreed on the main 
parameters required to mimic ESA applications: Memory footprint, execution time 
duration and number of lines of code.  
Month 2 deliverables also provide some recommendations when designing the 
mimicking benchmark: 1) Usage of simple c-language statements so that the lines of 
assembly code per c line of code is limited; 2) Usage of simple conditions;  and 3)  Do 
not use many nested conditions. 
Next we show a survey of the main parameters observed in the characterization given 
by ESA to BSC of the applications AOCS and PacketWire, each comprised of several 
threads. Both applications are executed independently from one another. The numbers 
from the two Tables below, where obtained on a single-core architecture, i.e. at any 
point in time there was only one thread running. 
- In the AOCS characterization there were several threads, each of which was 

categorized into a group. The main groups are: Application, AOCS, System and 
Payload. 

 
 Application AOCS System Payload 
CPU usage 17% 35% 11% 32% 



 
 

19/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

Memory usage 22kB 450kB 1M 10M 
Lines of code Not provided Not provided Not provided Not provided 
 
- In the case of the PacketWire we group threads into the following groups: System 

asynchronous activities (e.g. handlers), system synchronous activities, AOCS, 
Platform and Payload. 

 
 SysA SysS AOCS Platform Payload 
CPU usage 5%-12% 6%-7% 3%-15% 4%-16% 1%-5% 
Memory usage <1kB <1kB <1kB <1kB <1kB 
Lines of code Not provided Not prov. Not prov. Not prov. Not prov. 
 

4.3.2 Benchmark Design 
We have designed an Automatic Benchmark Generator tool, (based on perl script),  
which is able to construct a benchmark that replicates the behavior of other 
applications based on the parameters defined above. Concretely, it allows configuring: 
- Instruction mix: the amount of loads and stores,   

- Lines of code: number of instructions inside the loop  

- memory footprint and stride  

- memory accesses as burst or evenly distributed,  

- Duration: done through the number of iterations.  

 
The tool generates a C program composed of a memory initialization part and a loop 
with assembly code which will take most of the overall execution time. This loop 
performs the configured amount of load and store instructions. Every instruction, 
other than load and store is an add instruction, which do not access the memory 
hierarchy. Load instructions inside the loop traverse an array using pointer chasing, 
while store instructions traverse a different array referencing it with a pointer plus an 
immediate. The allocated memory depends on the amount of load and store 
instructions. For example, for a 200KB data footprint, with 10% loads and 20% stores, 
the array traversed by the store instructions will be twice as big as the one traversed 
by the load instructions, so 133KB for stores and 67KB for loads. 
In the example below, we set the following configuration in the script: 

my $DATA_FOOTPRINT  = 200*1024; 
my $STRIDE     = 32; 
my $ITERATIONS    = 1000; 
my $LD_PERCENT   = 10; 
my $ST_PERCENT   = 20; 
my $INST_PER_ITER  = 100; 
my $EVEN_DISTRIBUTION  = 1; 

 
This will generate a C program with a 200KB array, accessing memory with a 32 byte 
stride, a loop body with 100 instructions 10% of them being loads and 20% of them 
being stores, and distributed evenly though the code. A fragment of the resulting code 
can be seen below: 

for (i = 0; i < 1000; i++) { 
        __asm__ __volatile__( 
                "add %2,  1, %2"        "\n\t"   



 
 

20/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

                "add %2, -1, %2"        "\n\t"   
                "st %2, [%3+32]"        "\n\t"   
                "add %2,  1, %2"        "\n\t"   
                "add %2, -1, %2"        "\n\t"   
                "add %2,  1, %2"        "\n\t"   
                "add %2, -1, %2"        "\n\t"   
                "st %2, [%3+64]"        "\n\t"   
                "add %2,  1, %2"        "\n\t"   
                "ld [%0], %1 "          "\n\t"   
                "add %2, -1, %2"        "\n\t"   
                "add %2,  1, %2"        "\n\t"  

 
If $EVEN_DISTRIBUTION is set to 0, then the operations of each type are executed 
consecutively, the following program will be generated: 

for (i = 0; i < 1000; i++) { 
        __asm__ __volatile__(   "ld [%0], %1"   "\n\t" 
                                "ld [%1], %0"   "\n\t" 
                                "ld [%0], %1"   "\n\t" 
 
[...] 
                                "st %0, [%1]"   "\n\t" 
                                "st %0, [%1+32]"        "\n\t" 
                                "st %0, [%1+64]"        "\n\t" 
[...] 
                                "add %0,  1, %0"        "\n\t" 
                                "add %0, -1, %0"        "\n\t" 
                                "add %0,  1, %0"        "\n\t" 

 
After each iteration some checks are done to ensure store instructions will not access 
out of bounds in next iteration. These check takes only 4 assembly instructions, and 
are subtracted from the number of add instructions in the loop. The percentages of 
load and store instructions are not affected by this. 
This C code can be compiled with GCC. A –O2 optimization setting is suggested. 

4.3.3 Setups 
Based on this generic benchmark we generated several configurations to mimic the 
ESA application behavior. Regarding the memory footprint, we can differentiate 4 
cases: memory footprint fits in L1, partially fits in L1, fits in L2 and does not fit in L2.  
All designed mimicking benchmarks have 30% memory operations from which 70% 
are loads and 30% stores. There was no characterization of the percentage of load and 
stores of ESA applications. We have used these figures, based on previous analysis of 
other benchmark suites 
- MckBench_1KB: This benchmark fits in L1 data cache (memory footprint of 

1KB). This provides the same data cache footprint than all thread of PacketWire 
and the Application thread in AOCS. 

- MckBench_22KB: This benchmark partially fits in L1 data cache (memory 
footprint of 22KB). This covers the Application thread in AOCS. 

- MckBench_450KB: This benchmark fits in L2 data cache. This covers the AOCS 
thread in AOCS. 

- MckBench_1M: This benchmark does not fit in L2 data cache 

o This covers the System and Payload thread in AOCS. 



 
 

21/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

Once the slowdown factors due to inter-task interferences are obtained when these 
mimicking benchmarks run in the NGMP, it is normalized based on the cpu_usage to 
see the actual affect on the execution time of the application:   

Actual_slowdown = cpu_usage * observed_slodown 

4.4 The loads: CoreMark and EEMBC 
The EEMBC (Embedded Microprocessor Benchmark Consortium) is a non-profit 
association which aims to develop embedded benchmarks for processor evaluation. 
EEMBC targets telecom/networking, digital media, Java, automotive/industrial, 
consumer, office equipment products, and two generic benchmark suites specifically 
developed for targeting multi-core processors and processor cores. 
The EEMBC benchmarks suites that are of interest for this project are the one 
mimicking control applications: AutoBench and CoreMark. 
MultiBench has been also analysed, although discarded to be used in this project. 
MultiBench is a suite of embedded benchmarks that allows processor and system 
designers to analyze multi-core architectures and platforms. Unfortunately, 
MultiBench encompasses workloads from the networking, consumer, and office 
automation domains, not including control applications. 

4.4.1 EEMBC AutoBench 

AutoBench is a suite of benchmarks that allow users to predict the performance of 
microprocessors and microcontrollers in automotive, industrial, and general-purpose 
applications. It is composed of 16 benchmark kernels including: 
- Generic workload tests. These tests include bit manipulation, matrix mapping, a 

specific floating-point tester, a cache buster, pointer chasing, pulse-width 
modulation, multiplication, and shift operations (typical of encryption algorithms). 

- Basic automotive algorithms. These tests include controller area network (CAN), 
tooth-to-spark (locating the engine’s cog when the spark is ignited), angle-to-time 
conversion, road speed calculation, and table lookup and interpolation. 

- Signal processing algorithms. These tests include algorithms which are becoming 
increasingly important for sensors used in engine knock detection, vehicle stability 
control, and occupant safety systems. They include Fast Fourier Transforms (FFT 
and iFFT), a finite impulse response filter (FIR), an Inverse Discrete Cosine 
Transform (iDCT), and an Infinite Impulse Response (IIR) filter. 

The characteristics of each benchmark kernel are the following: 
- Each kernel is composed by a single function (t_run_test) which contains the 

control loop. The control flow only contains a single path, allowing to improve the 
coverage of WCET analysis when using WCET tools such as RapiTime. 

- The number of iterations of this loop is determined by an input parameter (-I).  

- The input data required by each benchmark is hard-coded inside the source code.  

- The total size of the working set of each benchmark kernel is 32KB for data and 
4KB for code. 

The size of the working set may not be enough to stress certain hardware shared 
resources of the NGMP such as the AMBA bus or the L2 shared cache. The size of 
the instruction and data caches of the LEON4 are 16 KB each. 



 
 

22/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

All benchmark kernels contain the file same structure. The most important ones are 
bmark_lite.c and algotst.c: 
- Bmark_lite.c. It contains the main function, which calls the t_run_test. 

- Algotst.c. It contains the hard-coded input data used by the control loop. The data 
is stored in an array called inp[bench]ROM, being bench the type of data 
contained in the array. For example, in case of aifftr01 the array is called 
inpSigROM, while in case of a2time01 the array is called inpAngROM. In order to 
enlarge the input data considered by the benchmark it is required to enlarge this 
structure. 

Lite versions of EEMBC have been compiled as control benchmarks. Lite EEMBC 
are not interactive and can be configured for not printing any output. This is perfect 
for our execution infrastructure, as the interaction with the system is minimized. 
EEMBC implementing floating point operations have not been considerd as the target 
board does not implement an FPU. These benchmarks are: a2time, aifftr, aiifft, basefp, 
idctrn, iirflt, matrix and tblock. 
The following table shows a list of EEMBC benchmarks used and the number of 
configured iterations for each one of them. The number of iterations is fixed to an 
amount that makes the benchmark run for at least 30 seconds. 
 

EEMBC Iterations 
aifirf 
bitmnp 
cacheb 
canrdr 
pntrch 
puwmod 
rspeed 
ttsprk 

1M 
40K 
10M 
10M 
50K 
10M 
6M 
300K 

 

4.4.2 CoreMark 
CoreMark benchmark suite (composed of only one benchmark) has been designed 
specifically to test the functionality of a processor core. CoreMark contains 3 types of 
functionalities, each of which is implemented with a different set of functions. 
- Matrix-related functionality: multiply matrices, add matrices, add constant to a 

matrix. 

- Linked list management operations: add, remove, insert, find, …. 

- Finite State Machine operations 

In each run of the CoreMark all these functions are executed. Depending on the input 
parameters the time each of these functions run can vary. 
 
Several input arguments (parameters) can be given to the CoreMark benchmark. This 
is configured through the make file. To add compiler flags from the command line, we 
can use XCFLAGS e.g.  
make XCFLAGS="-g -DMULTITHREAD=4 -USE_FORK=1". 
Some of the main parameters are: 
- ITERATIONS: By default, the benchmark will run between 10-100 seconds.  To 

override, use ITERATIONS=N 



 
 

23/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

- Several copies of the benchmark can be run in parallel. To that end use           
make XCFLAGS="-g -DMULTITHREAD=4 -DUSE_FORK=1" 

- Several implementations are available to execute in multiple contexts by using 
make XCFLAGS="-DUSE_FORK=1. We can use fork or posix threads api (-
DUSE_PTHREAD). 

- Method used to allocate data, MEM_METHOD = MEM_STATIC, MEM_MALLOC 
or MEM_STACK 

The CoreMark executable itself also accepts different parameters. 
- 1st - A seed value used for initialization of data.  Could be any value. 

- 2nd - A seed value used for initialization of data.  Must be identical to first for 
iterations to be identical. 

- 3rd - A seed value used for initialization of data. Any value should be at least an 
order of magnitude less then the input size, but bigger then 32. 

- 4th - Number of iterations (0 for auto : default value). Special, if set to 0, iterations 
will be automatically determined such that the benchmark will run between 10 to 
100 secs 

- 5th - Reserved for internal use.   

- 6th - Reserved for internal use.   

- 7th - For malloc users only, ovreride the size of the input data buffer. 

The buffer size for the algorithms must be defined via the compiler define 
TOTAL_DATA_SIZE.  TOTAL_DATA_SIZE must be set to 2000 bytes (default) for 
standard runs.  The default for such a target when testing different configurations 
could be make XCFLAGS="-DTOTAL_DATA_SIZE=6000 -
DMAIN_HAS_NOARGC=1". 
 
We compiled the CoreMark benchmark suite on Linux on an Intel architecture. We 
vary some of the input parameters and determine the effect of this variation on the 
duration of each function. This characterization was not done on the target 
architecture because this task would consume too much time. 



 
 

24/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

 
 

 

4.4.3 CoreMark configurations 
To execute the CoreMark benchmark we have selected to compile a single binary file 
and then use different arguments to call it. Two different configurations have been 
used: 

 Coremark 8KB (c8): 8KB data footprint. Does fit in the private L1 cache. The 
number of iterations is forced to 300 to make the execution time on the target 
board take approximately 30 seconds. The following command line arguments 
have been passed to the coremark executable: 0x127 0x127 0x127 300 7 1 
8192 

 Coremark 32KB (c32): 32KB data footprint. Does not fit in the L1 cache. The 
number of iterations is forced to 15 to make the execution time on the target 
board take approximately 30 seconds.  The following command line 
arguments have been passed to the coremark executable: 0x127 0x127 0x127 
15 7 1 32767 

 

4.5 The loads: ParSeC 
PARSEC is a benchmark suite that features multithreaded workloads. This is a 
presentation of the basic features of the 2.0 version, including the different workloads 
and their functionality, the program directory tree, the different build configurations, 
the available input sizes and the script that is provided for ease of use. 
 
Parsec does not officially support SparcV8 (it does though support SparcV9). In 
addition to this, the NGMP does not implement an FPU, so floating point instruction 
are not supported either. Porting the Parsec to SparcV8 took significant effort and we 

ARGUMENTS (input parameters) Functions 

R
an

do
m

 

R
an

do
m

 

R
an

do
m

 

It
er

at
io

ns
 

R
es

er
ve

d 
fo

r 
in

te
rn

al
 u

se
 

R
es

er
ve

d 
fo

r 
in

te
rn

al
 u

se
 

D
at

a 
S

iz
e 

m
at

ri
x_

m
ul

_m
at

ri
x_

bi
te

xt
ra

ct
()

 

co
re

_s
ta

te
_t

ra
ns

iti
on

()
 

m
at

ri
x_

m
ul

_m
at

ri
x(

) 

ee
_i

sd
ig

it(
) 

cr
cu

8(
) 

m
at

ri
x_

su
m

()
 

co
re

_l
is

t_
re

ve
rs

e(
) 

co
re

_l
is

t_
m

er
ge

so
rt

v(
) 

co
re

_l
is

t_
fi

nd
()

 

co
re

_b
en

ch
_s

ta
te

()
 

T
O

T
A

L
 P

E
R

C
E

N
T

A
G

E
 

0x0 0x0 0x66 2K 7 1 16K 32 29 14 11 4 3 0 0 0 0 93 
0x0 0x0 0x66 2K 7 1 2K 5 28 4 4 33 0 16 0 0 0 90 
0x0 0x0 0x66 2K 7 1 32K 39 25 0 17 0 2 0 0 0 0 83 
0x0 0x0 0x66 2K 7 1 2K 13 21 8 8 39 0 0 0 0 0 89 
0x127 0x127 0x127 2K 7 1 2K 0 23 4 11 21 0 11 5 5 5 85 



 
 

25/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

were not able to compile all of the benchmarks. In addition to this problem, some 
Parsecs presented input data which was too big for our platform. Finally,  
blackscholes, dedup, ferret, and x264 were successfully compiled. 
The execution of Parsec is done with the parsecmgmt script. For this project we need 
to execute the binary file directly as we have limitations in the size of the image file 
loaded to the board, and also limitations in the developed infrastructure, which 
expects an executable file to be called and not a script. This has forced us to analyze 
the script to find out the command line arguments we had to use. 
Problems were found when trying to execute two of the compiled Parsecs in the 
NGMP: 

 Dedup: prints the following error: “Memory allocation failed”. The cause to 
this error could be having too little memory available. 

 Ferret: Uses a data base as an argument and some parameters associated to this 
database as arguments. It also presents some auxiliary programs which are 
possibly to manage or create this database. It was not possible to find out the 
way it works, so ferret is not used as a benchmark. 

Blackscholes and x264 were used as payload benchmarks. The following commands 
were used to build them: 

parsecmgmt -a build -p x264 –c hfleonv8-cross-gcc 
parsecmgmt -a build -p blackscholes –c hfleonv8-cross-gcc 
 

Binary files are generated in pkgs/ [apps|kernels]/ <benchmark_name>/ inst/ 
hfleonv8-linux/ bin. The following table shows the input data set and the parameters 
used to run them. 
 

Parsec Data set Parameters (N=number of threads) 
blackscholes sim_small N inputs/sim_small /dev/null 
x264 sim_small --quiet --qp 20 --partitions b8x8,i4x4 --ref 5 --

direct auto --b-pyramid --weightb --mixed-refs --
no-fast-pskip --me uhm --subme 7 --analyse 
b8x8,i4x4 -o /dev/null inputs/sim_small --threads 
N 

 
The input file is selected to make benchmarks run for longer than 30 seconds. 
Sim_dev takes few seconds to execute, and sim_medium takes more than 5 minutes 
on the target architecture, so sim_small was used as input set. 
 

4.6 Execution infrastructure 
Our framework is composed of one front-end and two back-ends targeting Linux and 
RTEMS. The execution infrastructure (EI) is comprised of a set of scripts, C and C++ 
programs that allows anyone connected to the host machine to run experiments on 
NGMP and collect results. These scripts enable us to speedup the process of doing 
experiments and generating results.  
Note that the framework is not focused on task scheduling. It does not deal with task 
priorities either. The user provides the scheduling to follow in each core (i.e., which 
sequence of tasks will be executed in each core). Figure 2 shows a general view of our 
framework 
 



 
 

26/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

 
Figure 1 .General view of the execution infrastructure 

 
The framework allow the execution on Linux or on RTEMS. Two different workflows 
exist to allow this dual behaviour, but most of the programs and scripts are common 
for both OS. 

4.6.1 Linux workflow 
Three main scripts comprise the execution infrastructure for Linux, see Figure 2. The 
first two form the front-end and the third the back end. 

- runbench:  This is the common front-end. It processes the user parameters, 
compiles the loads (benchmarks) and gets the executables that will be run on 
the NGMP. 

- script_grmon. It interacts with the GRMON to read performance monitoring 
counters.  

- runbench_ngmp:  It runs on the NGMP. It spawns threads, run loads in each 
core. 

 

 
Figure 2. Three  main scripts that compose our Linux  execution infrastructure 

 
These main scripts do several functionalities as shown in the next detailed diagram 
(Figure 3): 

Runbench
(host) 

script_grmon
(host)

runbench_ngmp
(NGMP)

Command
line 

output 



 
 

27/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

 
Figure 3. Components of the different scripts for Linux 

 

4.6.2 RTEMS workflow 
Three main scripts comprise the execution infrastructure (see Figure 4). The first two 
form the front-end and the third the back end. 
 

- runbench:  This is the common front-end. It processes the user parameters, 
compiles the loads (benchmarks) and gets the executables that will be run on 
the NGMP. 

- script_grmon. It interacts with the GRMON to read performance monitoring 
counters.  

- Makefile: Compiles generated source files for RTEMS and generates the 
bootable RTEMS images. 

Image  
generator 

Load 
& run .out 

Post- 
processing 

GRMON & 
App. PMC
gathering 

Variable 
Renaming

Compila-
tion 

Runbench 
generator 

Command 
line 

options file 
(runbench_ngmp)

loads 
(executables)

Parameter 
Analyzer 



 
 

28/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

 
Figure 4. Three  main scripts that compose our execution infrastructure for RTEMS 

 
These main scripts do several functionalities as shown in the next detailed diagram 
(Figure 5): 
 

 
Figure 5. Components of the different scripts for RTEMS 

 

4.6.3 Parameter analyzer (Linux and RTEMS) 
The parameter analyzer is in charge of parsing the command line given by the user 
and checking it is semantically correct. It will report an error otherwise. It creates a set 
of data structures that will be query by the other scripts in order to understand the 
parameters set by the user. 
Next we show which the parameters of the framework are. In defining it, we use the 
following notation: 

- {}N parameter that repeats at least N times 

- [] optional parameter 

Runbench
(host) 

script_grmon
(host)

RTEMS image
(NGMP)

Command
line 

output 

Makefile 
(host) 

source
(host)

Load 
& run .out

Post- 
processing

GRMON & 
App. PMC
gathering 

Variable 
Renaming

Runbench
generator

Command 
line 

RTEMS images

Parameter 
Analyzer 



 
 

29/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

- <> generic name 

Elements in lists are comma separated. 
./run_bench  
   -lname <name> 
   -lpmcs <list_pmcs>  
   {-lsrcfile <filename> {-lvar <varname> -lvalue 
<value>}1 }0 
   [-lmakefile <mfile> 
    -lmake_ofile <mofile>] 
   -lexecfile <efile> 
   [-loptions “<argument list>”] 
   -lexec_ofile <eofile> 
   -lbind <bind_list> }1 
   [-lperiodicity <period>] 
   [-pf <parameters_file>] 

 
The user can specify the commands in the command line or through a parameter file 
by using the option -pf <parameters_file>.  
The user specifies a set of loads to run. For each load, the user may also specify some 
source files to generate that load and new values for some new variables. The 
execution framework changes the value of the desired variables in the source files of 
the load and recompiles it. The user has to specify: 

- load name: each load starts with this parameter and the rest of options follow. 
Several loads may be defined. 

o -lname <name> 

- Source files and variables to rename and new values. This parameter is 
optional. Several source files can be defined, and for each one of them, several 
variable/value pairs may be defined. 

o {-lsrcfile <filename> {-lvar <varname> -lvalue <value>}1 }0 

- makefile to execute that automatically generate the executable file. This 
parameter is optional and can be skipped if the executable is provided instead 
of the source code. This option is only used in Linux. For RTEMS a specific 
Makefile is provided, which is used after the RTEMS code is generated. 

o [-lmakefile <mfile>] 

- On Linux, the executable file that will be generated by the makefile or that 
will already exist if the makefile is not provided. On RTEMS, name of the 
function that will be called. 

o -lexecfile <efile> 

- The file in which the output of the compilation process will be put. Optional, 
and may only be defined if a makefile has been configured. 

o [-lmake_ofile <mofile>] 

- The file in which the output of the executable (load) will be put 

o  -lexec_ofile <eofile> 

- On Linux, the arguments that will be passed to the executable file. On RTEMS, 
function parameters to be passed to the configured function. This is optional, 
no arguments will be passed if this is left unconfigured. 



 
 

30/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

o –loptions “<argument list>” 

- The core (or cores) where the load will be bound. In the 0-3 range, separated 
by commas. 

o  -lbind <bind_list> 

- The PMCs that will be read. Identified with the same name used by GRMON 
and separated by commas. 

o  -lpmcs <list_pmcs> 

- A load may be configured as periodic, meaning it will recurrently be executed 
at a periodic rate. Period is specified in milliseconds. 

o  -lperiodicity <period> 

 
To define the parameters in the parameter file, the same syntax applies. Each option 
has to be put in a different line without the heading dash. 

4.6.4 Variable renaming (Linux and RTEMS) 
For each input file this script changes the values of the given variables. It generates 
the values of the variables in each file have been changed. 
It opens each srcfile, changes the value of <varname> in that file by the given one. 
The format of the line where parameters are found has to be one of the following: 

 <typename> <varname> = <value>; 

 <typename> <varname> = “<value>”; 

 #define <constname> <value> 

4.6.5 Compilation (Linux) 
As an input this script receives the makefile and the executable file. Also the files in 
which to show the error and output messages of the make file.   
It spawns a new process that executes make and print the result of the compilation 
process. Finally it checks that the executable has been generated 

4.6.6 Runbench option generator (Linux) 
The option generator creates an options file containing the data structures with the 
parsed input parameters. This file (or files) will be used by runbench_ngmp on the 
board to run the loads. They have opt extension and are loaded by runbench_ngmp. 

4.6.7 RTEMS Runbench program generator (RTEMS) 
A RTEMS program is automatically generated from the configured parameters. It is a 
C file that is ready to be compiled using the provided Makefile and RTEMS 4.10 
provided by Gaisler. When compilled, the bootable RTEMS images will be generated. 
To configure RTEMS loads, keep in mind that the lexecfile parameter is used as the 
function name to be called, and not as the executable file. Thus lexec_ofile option is 
ignored, and the loptions is used not as command line arguments but as function 
parameters to the function specified by lexecfile. If more than one parameter (option) 
is specified, they will be passed as an integer array to the function. For example, the 
following configuration: 
 



 
 

31/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

 lexecfile ub_l2_200 
 loptions “200 50” 
Will generate a code similar to this: 

int param[] = {200, 50}; 
ub_l2_200(param); 

Currently only int parameters are allowed as function parameters. 

4.6.8 Linux Runbench Image generator (Linux) 
The image is generated using Gaisler provided tools, specifically the linuxbuild tool. 
The basic configuration had to be changed so the Linux image generated uses 
software emulated floating point instead of using floating point instructions. 
In this stage the executable files generated in the compilation phase and the options 
file containing all the load data are added to the operating system image. 

4.6.9 runbench_ngmp (Linux) 
Once the generated image is loaded into the board using the J-Tag interface, Linux is 
booted and runbench_ngmp executed. Runbench_ngmp will execute the configured 
loads according with the values stored in the opt files stored by Runbench. 
Runbench_ngmp is invoked from a start-up script. 

4.6.10 Script_GRMON (Linux/RTEMS) 
PMCs are read by GRMON during the execution of each micro-benchmark on the 
board. Two log files with all the information are generated: one with PMC data and 
the other one with timing data. The information in these two files is combined to 
obtain meaningful results during the result analysis phase. 

4.6.11 Scripts for result analysis 
A series of scripts have been developed to analyze the results obtained. These scripts 
are made to work analyze PMC data and timing data. Each one of these analysis 
require different kinds of experiments to be used. 

4.6.11.1 PMC analysis 

To collect PMC data our initial intention was to generate an interruption to trap back 
to GRMON and get the values. This approach was not applicable because GRMON 
does not allow configuring which interruptions were going to be handled by Linux 
and which ones were going to be handled by GRMON. At the end, and following 
Gaisler’s recommendations, counters are polled once per second. More information 
about GRMON and different methods studied for reading PMCs can be found in 
previous versions of document D4 “Report of the Execution of the Benchmarks on the 
Board”. Also, some PMCs were not functioning until November 2011, until Gaisler 
corrected a bug and flashed the bug fix into the board’s memory card. 

4.6.11.1.1 Methodology 
The scripts read the values of the PMC data generated during the execution of the load 
and provide the mean of each counter for each core. For this kind of analysis the loads 
comprise a single execution of a process in each core to avoid the overhead generated 
by the operating system (see figure 6). That interval has to be long enough to allow 
several PMC reads to happen. In our experiments, the duration of the loads is of 30 
seconds or higher. 



 
 

32/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

 

MT ST 1 MT

MT ST 2 MT

MT ST 3 MT

MT ST 4 MT

Core 1

Core 2

Core 3

Core 4

Execution start PMC read start

Discarded data

Safety margin

PMC read end Execution end

Discarded data

Safety margin

Meaningful data

Figure 6. PMC analysis 
 

4.6.11.1.2 Scripts 
PMCs are read and reported by GRMON through the runpoll command. GMRON 
logs this data and timestamps it. Meanwhile, runbench_ngmp runs the loads on the 
board and reports their start and end time. This time is provided by Linux’s 
gettimeofday() and does not match the time logged by GRMON. A set of scripts are 
provided to match these times and generate compact output files: 

 parse-time.py / parse-time-rtems.py: the execution time reported by the OS run 
on the board for each experiment is saved in a .log.dat file in a more 
convenient format, ready to be read by Matlab as an input file. 

 parse-experiments.py: PMC data output by GRMON is stored in .log.dat files 
in a more convenient format, ready to be read by Matlab. 

 Matlab scripts (run.m): Matlab reads the .log.dat files generated by the 
preivous Python scripts and generate core0.log, core1.log, core2.log, and 
core3.log files, where for each experiment (row) 16 columns are set (4 
configured PMCs per each core) with each PMC averaged. Run.m script 
should be modified to change the directory where the input files are located, as 
well as the experiment list. 

 

4.6.11.2 Timing Analysis 

4.6.11.2.1 Methodology 
For measuring inter-task interference effects on timing, loads are configured as a 
series of repetitions of the same set of applications. The scripts read the reported 
execution times of each repetition, remove non-concurrent execution data and provide 
the execution mean time for each one of the cores (see Figure 7). The duration of STs 



 
 

33/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

has to be long enough to make MT overhead (<10ms) negligible. The data extracted 
from the experiment in Figure 6 would be the execution time of ST1 (one repetition), 
ST2 (one repetition), ST3 (one repetition), and ST4 (mean of two repetitions). In 
reality, experiments are repeated more than 2 or 3 times, and hence we obtain more 
data to calculate more accurate statistics. 
 

MT ST 1 (discarded) MT

MT ST 2 (discarded) MT

MT ST 3 (discarded) MT

MT ST 4 MT

Core 1

Core 2

Core 3

Core 4

Execution start

Concurrent
Execution

start
Execution end

ST 1 MT

ST 2 MT

ST 3 MT

ST 4 MT

ST 3 (discarded) MT

ST 4 (discarded) MT

ST 1 (discarded) MT

Concurrent
Execution

end

Discarded data Discarded dataMeaningful data

Figure 7. Measuring the effect of inter-task interferences on timing  

4.6.11.2.2 Scripts 
Timing data can be extracted from the log files using the timing.sh shell script 
provided. 
 

4.6.11.3 Periodic task with different opponent in each activation 

Our framework also allows to measure the deadline miss rate for a given periodic 
control application when it runs as a part of a workload with other applications. Note 
that, our framework does not focus on task scheduling but is the user providing the 
schedule of the tasks to execute. Our framework does not deal with task priorities 
either and tasks are not preemptable. 
In order to do that, we bind the control application to a given core, and the payload 
applications to the other cores. In D4 we have explored two scenarios: 

- 1 control application and 1 payload application 

- 1 control application and 3 payload applications 

In reality other scenarios with 3 or 4 control applications can be explored as well.  
The user provides a given deadline for the control task. Then the execution of the 
control application and the payload applications is done as show in Figure 8. In this 
depicted scenario the control application runs against a different set of arriving and 
leaving payload applications. If a task finishes in the middle of a given period, the 
next instance of the task is delayed and started at the next period boundary. 
 
Once the execution is done, a simple script is used to compare the different execution 
times of the control application again the user given deadline as follows. 



 
 

34/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

hits = 0; 
misses = 0; 
if ( execution_time_isolation * allowed_increase > execution_timei)   

hits=hits+1; 
else 

misses=misses+1. 
 
The total deadline hit rate is given by: hits/(hits+misses)%. In the evaluation section 
we show the results we have obtained for some scenarios in which we use EEMBC as 
control applications. 

Periodical task

Task 1

Task 2

Task 3

Core 1

Core 2

Core 3

Core 4

Task 4

Task 5

Task 6

Periodical task Periodical task Periodical task

Figure 8. This set up could be used to check whether the periodic task will miss the 
deadline or not.  

 
 
 



 
 

35/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

5 Evaluation and Discussion  

5.1 Metrics 
The main metric we want to take into account is the slowdown tasks suffer in the 
NGMP due to inter-task interferences. To that end, our execution environment allows 
running different ‘workloads’ in the desired cores, and periodically reading PMCs to 
derive the impact that inter-task interferences may have on the execution time of 
different programs. In particular, we measure data and instruction cache misses, L2 
cache misses, number of load and store instructions, AMBA AHB bus utilization, and 
total number of instructions executed per second.  
In order to compute the execution time slowdown of a task, we first run the program 
under study in isolation and then as part of a workload. With this, we compute inter-
task interferences as the ratio between the average counter value for runs in isolation 
and for runs as part of a workload.  The result is averaged from the PMC values 
polled each second. 
We have prepared 4 different types of workloads: 

 Workloads composed of Micro-benchmarks: They help bounding the 
maximum variation tasks may suffer due to inter task interferences.  In all 
cases, as reference execution time we have the execution time of each micro-
benchmark when running it in isolation. We run different sets of micro-
benchmarks and compute the execution time variation of each of them: 
quadruples. For instance (L2 L1 ADD MULT) and (L1, L1). 

 Workloads composed of CoreMark and Micro-benchmarks: They help 
bounding the maximum inter-task interference that a typical control task, 
modeled by CoreMark, may suffer. We study the execution time variation of 
CoreMark using an 8KB data footprint and a 32KB data footprint when 
running it concurrently with micro-benchmarks. 

 Workloads composed of EEMBC AutoBench and micro-benchmarks: Similar 
to the previous case, they help bounding the maximum impact of inter-task 
interferences on EEMBC benchmarks. 

 Workloads composed of EEMBC AutoBench and Parsec: These two 
benchmarks model the typical control task and the typical payload task. This 
test helps us understanding the effect of inter-task interference with reference 
applications, but does not help knowing the maximum inter-task interference 
level. 

5.2 Results on Linux 

5.2.1 Micro-benchmarks only executions 
We designed several experiments showing the effect of inter-task interferences on:  

- (1) AMBA AHB Processor Bus, which connects all cores to the L2.  

- (2) Memory bandwidth and both the AMBA AHB Processor and Memory 
Buses.  

- (3) Memory bandwidth, L2 cache and both the AMBA AHB Processor and 
Memory Buses. 



 
 

36/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

- (4) Data cache Write-through policy effect on stores under high load. 

Finally, we provide some results that show the importance of task scheduling in 
minimizing inter-task interferences. 

5.2.1.1 Overhead of the AMBA AHB Processor Bus 

In this experiment we determine the effect that interactions in the AMBA AHB 
Processor Bus may have over program execution time. To that end, we implemented 
the L240 micro-benchmark that: 

- When running in isolation it always misses in L1 and hits in L2. This is done 
by having a data footprint higher than 16KB that is the size of Data cache and 
properly accessing it. 

- When running up to four copies of this benchmark, it is the case that all the 
data of the 4 copies fits in L2, see Figure 9. To that end, we make data 
footprint to be smaller than 256/4=64KB. In particular we choose a footprint 
of 40 KB.  

With this experiment, the difference between the execution in isolation and the 
execution of several copies of this benchmark will be mainly due to interferences in 
the AMBA AHB Processor Bus. Notice, that regardless of the number of copies the 
number of hits per thread is the same, so are the number of access to the bus. Hence, 
the total number of AHB accesses and of L2 hits linearly increase with the number of 
copies of the benchmark executed.  
 

 
(a) high-level view of the NGMP 

processor 

 
 
 
 
 
 
 
 
 
 
 
 

(b) Resource stressed by the micro-
benchmarks 

Figure 9. Experiment to stress the AMBA bus 
 
Figure 9 shows the amount of data cache and L2 misses when running the L240 micro-
benchmark in isolation, two instances of the L240 each running in a different core, and 
four instances of the L240 each running in a different core. We observe that Data 
cache misses stay stable almost at 100%, and L2 cache misses stay low near 0%. 
 

1 2 4 1 2 4
L2-40 0.08% 0.06% 5.94% 99.73% 99.74% 99.60%

L2 miss per load DC miss per load

Figure 10. L2 and data cache misses when running L2-40 on 1 core, 2 cores or 4 
cores.  

 
Figure 11 shows the results obtained for this experiment. We observe that the worst 
delay due to sharing the AMBA AHB Processor Bus is 12% when two tasks are 



 
 

37/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

executed and 83% when 4 tasks are executed. This results are a bit higher than 
reported in MERASA project, where results where around 27% for 4 cores 
[PQCG+09]. The may reason ways that in [PQCG+09] the bus model used was 
simpler and hence has lower latency and less effect on applications. 
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4

Processes

 
R

el
at

iv
e 

ex
ec

ut
io

n 
tim

e

Figure 11. Experiment to stress the AMBA bus 
 

5.2.1.2 Overhead of the memory bandwidth and the AMBA AHB Processor and 
Memory Buses 

In this experiment our focus is on determining the effect that interactions in the 
memory controller and in both the AMBA AHB Processor and Memory Buses may 
have on program’s execution time. With that aim we implemented the L2miss micro-
benchmark that: 

- When running in isolation it always misses in data cache and L2 cache. This is 
done by having a data footprint higher than 256KB that is the size of L2 cache 
and properly accessing it. In particular we choose a footprint of 8 MB. 

- When running up to four copies of this benchmark, each copy misses the L2, 
see Figure 5(a), so no additional L2 misses happen per process. Note that all 4 
copies are independent processes so they do not share data or instructions 
(beyond the code of some shared libraries). 

With this experiment, the difference between the execution in isolation and the 
execution of several copies of this benchmark will be mainly due to sharing the 
memory bandwidth. To access the memory controller, both buses are also used, but as 
we can see comparing Figure 11 and Figure 13 13 (b), the bottleneck is in the 
memory controller. Notice, that regardless of the number of copies of L2-miss the 
number of misses in L2 is the same, so are the number of accesses to memory. Figure 
12 shows the percentage of data cache and L2 misses when running L2miss micro-
benchmark in isolation, two instances of itself, and four instances of itself.  

1 2 4 1 2 4
L2-miss 100.00% 99.59% 98.51% 99.20% 98.89% 98.08%

L2 miss per load DC miss per load

Figure 12. L2 and data cache misses when running L2-miss on 1 core, 2 cores or 
4 cores.  

  



 
 

38/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

We observe that the ratio is roughly the same regardless of the number of copies. So 
the effect on this benchmark is not on the number of L2 misses it suffers but on the 
time to solve each L2 miss due to contention on the memory controller. 
 

(a) Resource stressed by the micro-
benchmarks 

0

0.5

1

1.5

2

2.5

3

1 2 4

Processes

 
R

el
at

iv
e 

ex
ec

ut
io

n 
tim

e

(b) Results 

Figure 13. Experiment to stress the memory bandwidth and AMBAAHB Processor and 
Memory buses 

 
Figure 13(b) shows the execution time slowdown obtained when running L2miss in 
isolation (1), with two simultaneous copies of L2miss (2) and with four simultaneous 
copies of L2miss (4), in both cases each running in a different core. We observe that the 
worst delay due to sharing the memory bandwidth is 50% when two tasks are 
executed and 160% (2.6x) when 4 tasks are executed. These results are in accordance 
with the results obtained in [PQV+09]. 
 
Two Considerations have to be made when analyzing the results: 

- Our NGMP evaluation board runs at 70MHz while the memory interface 
works at 140MHz. This is due to the fact that the NGMP is implemented in an 
FPGA. In reality, the processor will have higher frequency than memory, so 
the effect of interferences in memory will be much higher. 

-  This benchmark shows the worst possible effect of interferences sharing the 
memory bandwidth. In reality, programs will not constantly access to memory 
but will alternate CPU and memory phases, so the effect of interferences will 
be smaller. 

5.2.1.3 Overhead of the memory bandwidth, the L2 cache, the AMBA AHB Processor 
and Memory buses 

In this experiment we determine the effect that inter-task interferences arised in the 
whole memory hierarchy, i.e. the memory controller, the L2 cache and both the 
AMBA AHB processor and memory buses, may have over program execution time. 
To that end, we implemented the L2200 micro-benchmark that: 

- When running in isolation it misses in data cache and hits in L2. This is done 
by having a data footprint higher than 16KB which is the L1 cache size, and 
smaller than 256KB, which is the size of L2 cache, and properly accessing it.  

- When running up to four copies of L2200 benchmark, it is the case that the data 
of all the copies does not fit in L2, see Figure 15(a). To that end, we make 



 
 

39/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

data footprint to be higher than 256/2=128KB. In particular we choose a 
footprint of 200 KB.  

With this experiment, the difference between the execution in isolation and the 
execution of several copies of this benchmark will be mainly due to sharing the L2 
cache and memory bandwidth. To access the L2 and the memory controller, the 
AMBA AHB Processor and Memory buses are also used, respectively, but as we can 
see comparing Figure 11 and Figure 15(b) the bottleneck is in the L2 and the memory 
controller. Notice, that one copy of the benchmark running alone has most of its data 
in the L2 cache, so it does not have to access memory frequently. Performance 
degradation is caused by the sharing of the L2, which causes all processes to go to 
memory to get the data. Therefore, the number of accesses to main memory is 
increased from few when running in isolation to almost always when running more 
than one copy. Figure 14 shows the amount of data cache and L2 misses when 
running this micro-benchmark in isolation, two instances of itself, and four instances 
of itself. We can see a stable behavior on missing both L1 cache, and an increasing 
number of misses in L2, caused by the different instances competing for the shared 
resources. 
 

1 2 4 1 2 4
L2-200 31.45% 88.42% 98.55% 99.53% 98.98% 98.09%

L2 miss per load DC miss per load

Figure 14. L2 and data cache misses when running L2-miss on 1, 2 and 4 cores. 
 
 

(a) Resource stressed by the micro-
benchmarks 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4

Processes

 
R

e
la

tiv
e 

e
xe

cu
tio

n 
tim

e

(b) Results 
Figure 15. Experiment to stress the memory bandwidth, the L2 cache,  and the AMBA 

bus 
 
Figure 15(b) shows the results obtained for this experiment. We observe that the worst 
delay due to sharing the memory bandwidth and L2 cache is 2.3x when two tasks are 
executed and 4.3x when 4 tasks are executed. 
 
The considerations shown in the previous subsection about memory frequency hold 
here as well. 



 
 

40/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

5.2.1.4 Write-through policy effect on stores under high load 

The L1 data cache in the NGMP implements a write-through policy. This means that 
store instructions will always access directly to the L2 cache to store the data there, 
and will update the data cache as well only if the accessed cache line resides in it. 
This has important implications on inter-task interference, as the L2 cache is always 
accessed, even if the data footprint of the program fits the L1. In this section we study 
the interferences caused by memory stressing programs on store intensive programs. 

A micro-benchmark composed by more than 95% store instructions and a 40KB data 
footprint was prepared based on the parsec script used to mimic ESA applications. We 
call this micro-benchmark L2st, and it was executed concurrently with memory 
hierarchy stressing micro-benchmarks. In particular, 3 instances of L240, L2200 and 
L2miss respectively have been used as interfering programs. 
Figure 16 shows that L240 and L2200 and L2miss cause a big slowdown, up to almost 
20x, in the execution of the store micro-benchmark. This shows that, even if the data 
footprint of the store micro-benchmark fits in the data cache, the fact that it has to 
access to the L2 and hence use the AMBA AHB Processor bus on every store 
operation make it quite sensitive to other benchmarks using the bus. 
 

5,62

19,27 19,47

1

3

5

7

9

11

13

15

17

19

21

Exec. Time

In
cr

e
a

se

st-40 (L2-40)x3
st-40 (L2-200)x3
st-40 (L2miss)x3

 
Figure 16. Increase in execution time of the store benchmark under different 

workloads 
 
In addition to AMBA bus contention, another source of slowdown is that when L2st 
has to store a value to an L2 cache line owned by another process, the line has to be 
stored to main memory, if it is dirty, before being replaced. 
We conclude that programs with a high density of store instructions may suffer big 
slowdowns even if they fit in data cache, if they are run concurrently with programs 
using the L2 cache or the AMBA bus extensively. 

5.2.2 Executions of Mimicking benchmarks 
In this section we show the sensitivity of the mimicking benchmarks to inter-task 
interferences. In order to do so, we execute each of the three benchmarks we designed 
with our framework (MckBench_1KB, MckBench_22KB, MckBench_450KB and 
MckBench_1M)  against the microbenchmarks stressing the bus, the L2 cache and the 
main memory (L2st , L240 , L2200). Results are shown in Figure 17. Though we 
observe some difference in the slowdown, with the benchmarks with high data 
footprint with high slowdown, the main factor affecting its performance is the 
percentage of loads they have, which is common for all them. 



 
 

41/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2.3 Executions of CoreMark with Micro-benchmarks 
This section evaluates the execution time variation of the CoreMark benchmark, 
considering a data footprint of 8 KB and 32 KB (labeled as c8 and c32 respectively), 
when running each configuration within a workload composed of different micro-
benchmarks: L240, L2200 and L2miss. 
Figure 18 shows the execution time variation of c8 when running it within a workload 
composed of c8 and three copies of c8, L240, L2200 and L2miss (labeled as c8-(c8x3), 
c8-(L240x3), c8-(L2200 x3) and c8-(L2miss x3) respectively), taking as a baseline the 
execution time of c8 running in isolation.  
We observed that, when running multiple copies of c8, the execution time does not 
vary at all as the data footprint of c8 fits inside the data cache. However, when 
running it with L240, L2200 and L2miss the execution time increases 7%, 51% and 51% 
respectively. These increments are far from the ones observed in previous sections, 
i.e. 83% due to the processor bus and 4.3x due to processor bus, L2 cache and main 
memory. The reason behind this difference will be explained in the next section. 

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

1KB 22KB 450KB 1024KB

R
el

at
iv

e 
E

xe
cu

ti
o

n
 T

im
e

isolation

222

fff

 

Figure 17. Increase in execution time of the mimicking microbenchmarks 
under different workloads 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

c8 c8 L2-
40x3

c8 L2-
200x3

c8 L2-
missx3

c8x4

 
R

e
la

tiv
e

 e
xe

cu
tio

n
 ti

m
e

 
Figure 18. Execution time of CoreMark 8KB in isolation and with different 

opponents. 



 
 

42/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

 
Figure 19 shows the execution time variation of c32 when running it within a 
workload composed of c32 and three copies of c32, L240, L2200 and L2miss (labeled as 
c32-(c32 x3), c32-(L240 x3), c32-(L2200 x3) and c32-(L2miss x3) respectively), taking 
as a baseline the execution time of c32 running in isolation. 
Similarly to c8, running multiple copies of c32 does not make the execution time vary 
as the data footprint of c32 is still too small to collision into the processor bus. 
However, when running it with L240, L2200 and L2miss the execution time increases up 
to 2%, 31% and 31% respectively.  
 

5.2.4 Executions of EEMBC with Micro-benchmarks 
In this section we consider the EEMBC AutoBench as a control-like application. In 
order to evaluate the maximum slowdown caused by inter-task interferences on 
EEMBC, we run it simultaneously with the micro-benchmarks described in previous 
sections.  

5.2.4.1 Execution time 

The execution time slowdown observed when executing EEMBC with different 
workloads is computed considering the the execution time of each EEMBC running in 
isolation. Figure 20 shows the execution time slowdown of different EEMBC 
benchmarks when running each with two copies of the same benchmark (labeled as 
x2), with four copies (labeled as x4), with three copies of the L240 (labeled as L240 x3), 
with three copies of the L2200 (labeled as L2200 x3) and with three copies of the L2miss 
(labeled as L2miss x3).  
Note that when running EEMBC benchmarks with several copies of themselves (x2 
and x4) the execution time does not increase. When we run EEMBC with micro-
benchmarks the execution time increases significantly due to inter-task interferences. 
When running EEMBC together with 3 instances of the L240 benchmark, which have 
a 120KB data footprint in total, the execution time is may be increased up to  60% in 
case of the cacheb. Such an increment is even much higher when running EEMBC 
with L2200 and L2miss, observing an execution time slowdown of up to 5.5x (in case of 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

c32 c32 L2-
40x3

c32 L2-
200x3

c32 L2-
missx3

c32x4

 
R

e
la

tiv
e

 e
xe

cu
tio

n
 ti

m
e

 
Figure 19. Execution time of CoreMark 32KB in isolation and with different 

opponents. 



 
 

43/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

cacheb and canrdr). However, the execution time slowdown of pntrch is only 7%. 
The reason to this behavior is described in next sections. 
 

5.2.4.2  Characterization 

We have used the PMCs data obtained to characterize each EEMBC benchmark in 
terms of instruction mix and AMBA AHB Processor bus used. Figure 21 shows the 
results of this characterization. For each EEMBC, the first column shows the amount 
of load instructions (labeled as ld%), the second column shows the amount of store 
instructions (labeled as st%), the third column shows the sum of load and store 
instructions (labeled as ld%+st%), and the fourth column shows the bus utilization 
(ahbuse). 
 
 
 
 

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

isolation x2 x4 L2-40 x3 L2-200 x3 L2-miss x3

Benchmarks

R
el

at
iv

e 
ex

ec
ut

io
n 

tim
e

aifirf0

bitmnp01

cacheb01

canrdr

pntrch

puwmod

rspeed

ttsprk

 
Figure 20. Execution time slowdown of EEMBC AutoBench when running them 

together with micro-benchmarks, taking as a baseline the execution time in isolation. 



 
 

44/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

 
We can see that the EEMBC with more load and store instructions and the ones with a 
higher bus utilization (cacheb and candr, followed by puwmod and rspeed) are the 
ones suffering from the highest inter-task interference. Therefore, the observed 
execution time slowdown of each of the EEMBC benchmarks is caused not only by 
its data footprint, but also by the instruction mix of the benchmark. Specifically, a 
very high correlation has been found between the density of store instructions and the 
slowdown. This correlation is shown in Figure 22. 

  

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

aifirf bitmnp cacheb01 candr01 pntrch puwmod rspeed ttkprk

ld%

st%

ld%+st%

ahbuse

 
Figure 21. Characterization of EEMBC benchmarks.  

0

1

2

3

4

5

6

7

8

L
2

-2
0

0
 x

3

L
2

-m
is

s 
x3

L
2

-2
0

0
 x

3

L
2

-m
is

s 
x3

L
2

-2
0

0
 x

3

L
2

-m
is

s 
x3

L
2

-2
0

0
 x

3

L
2

-m
is

s 
x3

L
2

-2
0

0
 x

3

L
2

-m
is

s 
x3

L
2

-2
0

0
 x

3

L
2

-m
is

s 
x3

L
2

-2
0

0
 x

3

L
2

-m
is

s 
x3

L
2

-2
0

0
 x

3

L
2

-m
is

s 
x3

aifr bitmnp cacheb01 candr pntrch puwmod rspeed ttkprk

Benchmark

S
lo

w
D

o
w

n

0%

2%

4%

6%

8%

10%

12%

14%

16%

P
e

rc
e

n
ta

g
e

 o
f s

to
re

s

slowdown

percentage of stores

Figure 22. Correlation between percentage of stores (right y-axis) and slowdown (left 
y-axis) for all studied EEMBC benchmarks, when run together with 3 instances of 

either L2200 or L2miss. 



 
 

45/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

As a result, we conclude that control applications with more store instructions suffer 
of higher inter-task interference. Payload applications with a data footprint higher 
than the L2 size cause higher inter-task interference. 

5.2.5 Executions of EEMBC with Parsec 
In this section Parsec is used to mimic payload applications. We used Parsec to test 
the behavior of EEMBC benchmarks when run concurrently with typical payload 
applications. This experiment is different to the one presented in the previous section 
as it is not intended to bound the execution time, but to obtain an estimation of what 
the average execution time for EEMBC when executed concurrently with a payload 
application. 
We run the EEMBC presented in the previous section together with Blackscholes and 
x264 in different combinations: 
- EEMBC in isolation (baseline). 

- EEMBC with a multithreaded version of the Parsec (3 threads). 

- Two EEMBC with a multithreaded version of the Parsec (2 threads). 

In Figure 23 the relative execution time of each EEMBC benchmark when executed 
in each different scenario is presented. 
 

 
The worst case of performance degradation is 16% for cacheb, the most memory 
intensive EEMBC, when executed concurrently with x264. As expected, the observed 
slowdown is lower than the 5.8x boundary found for EEMBC in section 5.2.4. 
It is important to remark that the purpose of the parsec is not to stress a given 
processor resource as it is the case of our micro-benchmarks, hence, it is obvious that 
the overhead introduced on the control applications is smaller. 

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

eembc x1 eembc x1
blackscholes

x3

eembc x1 x264
x3

eembc x2
blackscholes

x2

eembc x2 x264
x2

R
el

a
tiv

e 
e

xe
cu

tio
n

 t
im

e

aifirf01

bitmnp01
cacheb01

canrdr01
pntrch01

puwmod01
rspeed01

ttsprk01

Figure 23. Relative execution time of EEMBC benchmarks when executed 
concurrently with Blackscholes and x264, in different parallel execution setups. 



 
 

46/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

The main corollary of these results is that depending on the instruction mix and 
memory footprint of the control application their time compos ability is affected by 
the other running applications. This will be extended in the conclusion section. 

5.2.6 Periodic task with different opponent in each activation 
In this Section we present the results for an scenario in which we select a given 
application as control application and run it against a different set of payload 
applications, measuring how often the control application hits its deadline. We have 
set three scenarios of increasing tightness for the control application. In the first 
scenario we assume that the deadline is only 30% bigger than the execution time of 
the control application in isolation, in the second it is 80% and in the thirds it is 200% 
bigger. 
We have explored two thread-count scenarios: 

- 2-thread configuration: 1 control application and 1 payload application 

- 4-thread configuration: 1 control application and 3 payload applications 

As control application we have used cacheb and canrdr as they show high sensitivity 
to resource sharing. As payload applications we have used the ParSec benchmarks and 
the L240 and L2200 microbenchmarks. 
In the case of the 2-thread configuration we run each of these benchmarks against a 
recurring sequence of payload applications Blackscholes, x26, L240 and  L2200. 
In the case of the 4-thread configuration we run each of the cacheb and candrd against 
3 threads, each executing a recurring sequence of paylod appliaction Blackscholes, 
x26, L240 and  L2200. 
The results for cacheb and canrdr are shown in Figure 24 and 25 respectively. We 
observe that for the scenario in which the deadline is only 30% bigger than the 
execution time in isolation the percentage of hit deadlines is high for cacheb only if 
one extra thread is running is 97%, in the case there are several threads running the hit 
rates decreases to 85%. As the deadline increases (80% and 200%) the hit rate 
increases accordingly. Canrdr shows higher sensitivity and hence less hit deadlines. 
 

 Scenario Total runs of the 
control 

application  
 

Scenario 1
(30%) 

Scenario 2 
(80%) 

Scenario3 
(200%) 

1 cntrl –1 payload app 0,97 0,98 0,98 156 
1 cntrl –3 payload apps 0,85 0,85 0,85 111 

Figure 24. Deadline hit rate for cacheb for the 2- and 4 –thread configuration 
 

 Scenario Total runs of the 
control 

application  
Scenario 1

(30%) 
Scenario 2 

(80%) 
Scenario3 

(200%) 
1 cntrl –1 payload app 0,00 0,81 1,00 156 
1 cntrl –3 payload apps 0,00 0,89 0,89 111 

Figure 25. Deadline hit rate for canrdr for the 2- and 4 –thread configuration 
 

5.3 Results on RTEMS 
Similarly to the experiments prepared for Linux, the main metric we want to take into 
account for RTEMS is the slowdown tasks suffer in the NGMP due to inter-task 
interferences. The execution environment prepared allows the same type of 



 
 

47/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

experiment we have on Linux (allows running different ‘workloads’ in the desired 
cores, and periodically reading PMCs), and measuring data and instruction cache 
misses, L2 cache misses, number of load and store instructions, AMBA AHB bus 
utilization, and total number of instructions executed per second.  
For RTEMS we have focused on workload, composed of micro-benchmarks as they 
help bounding the maximum variation tasks may suffer due to inter task interferences.  
In all cases, as reference execution time we have the execution time of each micro-
benchmark when running it in isolation. We run different sets of micro-benchmarks 
and compute the execution time variation of each of them. 

5.3.1 Micro-benchmarks only executions 

5.3.1.1 Overhead of the AMBA AHB Processor Bus 

In this experiment we want to determine the effect that interactions in the AMBA 
AHB Processor Bus may have over program execution time. To that end, we used the 
L240 micro-benchmark. Figure 26 shows the amount of data cache and L2 misses 
when running the L240 micro-benchmark in isolation, two instances of the L240 each 
running in a different core, and four instances of the L240 each running in a different 
core. We observe that Data cache misses stay stable almost at 100%, and L2 cache 
misses stay low near 0%. 
 

1 2 4 1 2 4
L2-40 L2-40x2 L2-40x4 0.25% 0.24% 0.16% 99.53% 99.49% 99.56%

percentage of L2 misses per ld percentage of D misses per ld

Figure 26. L2 and data cache misses when running L2-40 on 1, 2 and 4 cores.  
 
Figure 27 shows the results obtained for this experiment. We observe that the worst 
delay due to sharing the AMBA Bus is 32% when two tasks are executed and 97% 
when 4 tasks are executed. This results are a bit higher than the ones reported on 
Linux, probably because of the less overhead caused by the Operating System; 
RTEMS does not interfere the base line case and thus it is better, making the 
execution time of two and 4 concurrent micro-benchmarks relatively worse. 
 

0.00

0.50

1.00

1.50

2.00

2.50

1 2 4

  
R

e
la

tiv
e
 e

xe
cu

tio
n
 ti

m
e

 
Figure 27. Experiment to stress the AMBA bus 

 



 
 

48/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

5.3.1.2 Overhead of the memory bandwidth and the AMBA AHB Processor and 
Memory Buses 

In this experiment our focus is determining the effect that interactions in the memory 
controller and in both the AMBA AHB Processor and Memory Buses may have on 
program’s execution time. With that aim we used the L2miss micro-benchmark. Figure 
28 shows the percentage of data cache and L2 misses when running L2miss micro-
benchmark in isolation, two instances of itself, and four instances of itself.  
 
 

1 2 4 1 2 4
L2-miss L2-missx2 L2-missx4 98.96% 99.09% 99.16% 98.91% 98.97% 99.03%

percentage of L2 misses per ld percentage of D misses per ld

Figure 28. L2 and data cache misses when running L2-miss on 1, 2 and 4 cores. 
  
We observe that the ratio is roughly the same regardless of the number of copies. So 
the effect on this benchmark is not on the number of L2 misses it suffers but on the 
time to solve each L2 miss due to contention on the memory controller.  
 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1 2 4

  
R

e
la

tiv
e
 e

xe
cu

tio
n
 ti

m
e

 
Figure 29. Experiment to stress the memory bandwidth and AMBAAHB 

Processor and Memory buses 
 
Figure 29 shows the execution time slowdown obtained when running L2miss in 
isolation (1), with two simultaneous copies of L2miss (2) and with four simultaneous 
copies of L2miss (4), in both cases each running in a different core. We observe that the 
worst delay due to sharing the memory bandwidth is 77% when two tasks are 
executed and 235% (3.35x) when 4 tasks are executed. These results show again 
higher inter-task interference than on Linux, caused by a better base line case (due to 
less interference from the operating system). 

5.3.1.3 Overhead of the memory bandwidth, the L2 cache, the AMBA AHB Processor 
and Memory buses 

In this experiment we want to determine the effect that inter-task interferences arised 
in the whole memory hierarchy, i.e. the memory controller, the L2 cache and both the 
AMBA AHB processor and memory buses, may have over program execution time. 
To that end, we used the L2200 micro-benchmark. Figure 30 shows the amount of data 
cache and L2 misses when running this micro-benchmark in isolation, two instances 
of itself, and four instances of itself. We can see a stable behaviour on missing both 



 
 

49/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

L1 cache, and an increasing number of misses in L2, caused by the different instances 
competing for the shared resources. 
 

1 2 4 1 2 4
L2-200 L2-200x2 L2-200x4 0.31% 99.05% 99.14% 99.42% 98.95% 99.03%

percentage of L2 misses per ld percentage of D misses per ld

Figure 30. L2 and data cache misses when running L2-miss on 1,, 2 and 4 cores. 
 
Figure 31 shows the results obtained for this experiment. We observe that the worst 
delay due to sharing the memory bandwidth and L2 cache is 5x when two tasks are 
executed and 9.5x when 4 tasks are executed. 
 

 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

1 2 4

  
R

e
la

tiv
e
 e

xe
cu

tio
n
 ti

m
e

  
Figure 31. Experiment to stress the memory bandwidth, L2 cache,  and AMBA bus 

 
Contrary to the observed on Linux, the amount of L2 misses when L2200 is run in 
isolation is almost 0. This makes the base line much better in terms of performance 
and thus makes the performance degradation caused by inter task interference (see 
Figure 31) much more noticeable than the observed on Linux. 
 

5.3.1.4 Overhead of due to write-through policy 

In Figure 32 we observe the execution time increment of L2st when in runs in different 
workloads with 3 copies of L240, L2200 and L2miss. We observe that the increment is 
quite similar to the one obtained under Linux, see Figure 16. 
 



 
 

50/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

 
Figure 32. Increase in execution time of the store benchmark under different 

workloads 



 
 

51/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

6 Conclusions  

Several experiments have been run on the NGMP to tests its multi-tasking 
capabilities. Some tests have provided boundaries in the maximum impact that inter-
task interference may have on the execution time on Linux and RTEMS. Other tests 
have bounded the effect of inter task interference in the applications used as 
representative of control applications. Finally, other experiments have found how the 
NGMP behaves when loaded with typical mixed control and payload applications, 
modelled by EEMBC and Parsec.  Execution time results can be summarized as: 
- CPU intensive tasks: little effect (at most) has been observed due to inter task 

interferences. 

- Memory intensive tasks which do not execute store instructions: up to 4.3x  
slowdown in Linux and 9x in RTEMS depending on the level of inter-task 
interference: 

- 83% if interference is only in the AMBA AHB processor bus. (95% in 
RTEMS) 

- 2.6x if interference is in the AMBA AHB processor and memory buses and 
the memory controller (3.4x in RTEMS) 

- 4.3x if interference is in the AMBA AHB processor and memory buses, L2 
cache, and memory controller (9x in RTEMS). 

- Memory intensive tasks with a lot of store instructions: up to 20x slowdown, 
depending on the utilization of L2 and the AMBA AHB bus for both Linux and 
RTEMS 

- CoreMark: up to 50% slowdown depending on the data footprint of CoreMark: 

- 8KB CoreMark: up to 50% slowdown. 

- 32KB CoreMark: up to 31% slowdown. 

- EEMBC AutoBench.  up to 5.83x slowdown depending on the instruction mix of 
the EEMBC: 

- cacheb and canrdr, with 15% stores: up to 5.83x and 5.67x slowdown. 

- pntrch, with 0.30% stores: up to 8% slowdown. 

- Effect of Parsec on EEMBC: up to 16% slowdown depending on the instruction 
mix of the EEMBC: 

- cacheb and rspeed, with 15% and 13% stores: up to 16% and 12% slowdown. 

- aifirf, pntrch, with 7% and 0.30% stores: less than 2% slowdown. 

 

6.1 Timing Verification of NGMP-based real-time systems: 
impact of our study 

Verification is the process used to check that the requirements of a system are 
satisfied. The verification can be classified into functional verification and timing 
verification; the former checks that the system is functionally correct while the latter 



 
 

52/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

verifies that timing constraints are met. For industries is of primary importance to 
keep the costs of such verification low. 
In Integrated Architectures a key design principle in order to contain the cost of 
timing verification is to guarantee that there is no interaction between the different 
functions sharing the resources. To that end, at functional level, it is necessary to 
provide functional isolation, such that a bug/misbehavior in a function does not affect 
the others. At timing level, it is necessary to provide timing isolation, such that the 
timing behavior of a task is not affected by the others. Incremental qualification relies 
on each software and hardware component exhibiting the property of time 
composability. Such property dictates that the timing behavior of an individual 
component does not change by the composition, i.e.  composing the system. Time 
composability also alleviates System Integration. It is important to remark, that to be 
time composable it is also required to be time analyzable so the requirements of hard 
real-time systems of being both timing correct and to contain the verification costs can 
be ensured by providing time composability. 
 
In the case of the NGMP we observe that the main application factor that may affect 
time composability are (1) the percentage of store the application has and (2) if the 
application has few number of stores, whether it fits in the first level data cache. 
Given an application with high percentage of stores, even if it fits in the first level 
cache, it may be the case that for the particular workload under which this application 
is run it does not suffer a significant execution overhead (slowdown). However, small 
changes in the other applications in the workload may significantly affect the 
execution of the application (up to 20x slowdown). Even if the other application has a 
footprint that fits in cache, the fact that the upgraded versions increase their number of 
access to cache, seriously affect the application with stores. This seriously 
compromise time composability.  
Corollary 1: For application developers the main conclusion is to reduce the number 
of stores of their applications. Obviously, this is intrinsic to the functionality of the 
application and hence it can be difficult to change it. Otherwise, in order to ensure 
time composability, those store-intensive applications have to be run in isolation or it 
has to be ensured that any other application that may run on the other cores fit their 
data cache so they do not introduce traffic in the AHB bus. 
Corollary 2: For the hardware designers a piece of advice could be to consider a write-
back policy for the L1 data cache as it will significantly reduce the overhead on  
applications execution time due to inter-task interferences. This, of course, will 
introduce challenges in the implementation of the consistency protocol, as 
MESI/MOESI or directory-based protocols will be needed, and they are consistently 
more complex than snooping-based ones. Moreover if write-back schemes were used, 
there would be some data for which only one copy would exist in the system, located 
indeed in the L1 cache. The current implementation of the NGMP features error 
detection only in the L1 cache; to maintain adequate protection from errors (frequent 
in space, the target environment for the NGMP) error correction schemes would have 
to be implemented in the L1 cache, potentially increasing the latency of read/write 
operations in such cache, thus lowering the maximum frequency of the overall system. 
 
With applications with few stores, but with high L2 cache footprint it is also hard to 
provide time composability on the NGMP. Time composability is subject to the fact 
that the other applications with whom the L2 cache-hungry application may 
potentially be run are not cache hungry as well. If these assumptions cannot be taken, 



 
 

53/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

then it is not recommended running control L2-cache hunger control applications with 
other control or payload applications. 
 

6.2 Future work 
There are several lines that can be explored based on the results of this initial study. 

- Exploring hardware support for timing isolation: In the documentation of the 
NGMP, some features are explained to provide isolation in the L2 cache 
between threads. For instance, in the L2 one or more ways can be configured 
to be locked, hence not to be replaced. This isolation hardware support may be 
interesting to explore to reduce some of the aspects of the NGMP jeopardizing 
timing composability: Each thread can be provided a separate partition of the 
L2 cache, preventing inter-task evictions in L2. Even if this solution is in 
place, the overhead due to the inter-task interactions are required. It should be 
studied the design of the AMBA AHB bus and determine how it can be 
adapted to reduce/bound this inter-task interactions. 

- Explore the I/O path: In this study we have explore the path to memory from 
the processor: data cache, main AMBA AHB processor and memory buses, 
L2, memory. In addition to this main path, there are other paths that use other 
AMBA APB buses in the NGMP, to handle I/O traffic. Given the importance 
of I/O traffic for space applications, the slowdown that can be suffered in this 
path should be explored. 

- Scheduling:  In the literature there are many works dealing with scheduling 
and schedulability analysis for multicore processors. A common assumption is 
that threads receive an even part of the resources. That is, threads receive 1/N 
of the resources of the processors where N is the number of cores. From the 
results of this study it is clear that this assumption cannot be done in the 
NGMP. In fact, the characteristics of each thread determines the percentage of 
the shared resources, mainly AMBA bus and L2, they receive. Hence, an study 
of how to make scheduling in the NGMP taking into account inter-task 
interferences is required to effectively use the NGMP in safety-critical space 
domains. 

 
 



 
 

54/54                                                              RFQ- 3-13153/10/NL/JK Multicore OS 
Benchmark 

References 

PQCG+09 Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, Guillem Bernat 
and Mateo Valero. “Hardware Support for WCET Analysis of Hard Real-
Time Multicore Systems”. ISCA 2009. 
 

PQV+09 Marco Paolieri, Eduardo Quinones, Francisco J. Cazorla and Mateo 
Valero. “An Analyzable Memory Controller for Hard Real-Time CMPs”. 
In IEEE Embedded Systems Letters, 2009. Volume 1, Issue 4 

EEMBC J. Poovey. Characterization of the EEMBC Benchmark Suite. North 
Carolina State 
University, 2007. 
 

E40C Space engineering – Software – ECSS-E-ST-40C – http://www.ecss.nl/ 
 

MERASA  Multicore Execution of Hard Real-Time Applications (MERASA), 
European Union Framework (FP7) research programme – 
http://www.merasa.org  

MPC55 http://www.freescale.com/files/32bit/doc/fact_sheet/MPC5510FS.pdf 
 

MPC56 
 

Freescale dual.core 32-bit Qorivva MPC5668G 
http://www.freescale.com/webapp/sps/site/taxonomy.jsp?code=MPC56XX 
 

NGMP Next Generation Multi Purpose microprocessor – ESTEC/Contract No. 
22279/09/NL/JK 
 

GLINUX Aeroflex Gaisler, LEON Linux 2.6 Development, December 2010 
GLINDRV Aeroflex Gaisler, GRLIB Linux Drivers User's Manual, November 2010 
GAISLER Aeroflex Gaisler, www.gaisler.com 
GRCC Aeroflex Gaisler, RCC User's Manual, October 2010 
LINUX Linux kernel, www.kernel.org 
GLINBLD Aeroflex Gaisler, Building the LINUX kernel for LEON, December 2010 
XML510ED Xilinx,  ML510 Embedded Development Embedded Platform Develop: 

User Guide, December 2008 
XML510SC Xilinx, ML510 Schematics (rev. C) 
XML510RD Xilinx, ML510 Reference Design: User Guide, June 2009 
GNGMP Aeroflex Gaisler, NGMP FPGA Prototype Design for Xilinx ML510 

Development Board: Next Generation Multipurpose Microprocessor, 
March 2010 

TMS57  
 

Texas Instrument TMS570 dual-core ARM Cortex R4F based 

 

 
 
 
  


