

CazorlaCAOS group 1
Software Systems Division & Data Systems Division

Final Presentation Days
25th April 2012, ESTEC

Multicore OS Benchmark

Francisco J. Cazorla
Mikel Fernandez
Roberto Gioiosa
Eduardo Quiñones

Francisco J. Cazorla
(francisco.cazorla@bsc.es)

PhD. Researcher and Director of the CAOS group at BSC
(www.bsc.es/caos)

Marco Zulianello (TO)
Luca Fossati

CazorlaCAOS group 2

Agenda

BSC and Background of the CAOS team

Project Objectives and Motivation

Execution infrastructure

Experiments and results

Conclusions and Future work

CazorlaCAOS group 3

Agenda

BSC and Background of the CAOS team

Project Objectives and Motivation

Execution infrastructure

Experiments and results

Conclusions and Future work

CazorlaCAOS group 4

 Barcelona Supercomputing Center

 Spanish national research center (www.bsc.es)

 +300 people at the end of 2011 (>80% are researchers)

 Areas of research:

 Life Sciences

 Earth Sciences

 Computer Applications

 Computer Sciences. It comprises several research groups

 Compiler group

 Programming Models group

 …

BSC

CazorlaCAOS group 5

Computer Architecture/Operating System (CAOS)
(www.bsc.es/caos)
 16 people

 Research lines and collaborations:

 HPC systems: IBM

 Networking systems: Sun Microsystems

 Real-Time systems

• FP7 MERASA

• FP7 PROARTIS

• FP7 parMERASA

• VeTeSS ARTEMIS Project

• Projects with ESA

The CAOS group

CazorlaCAOS group 6

Agenda

BSC and Background of the CAOS team

Project Objectives and Motivation

Execution infrastructure

Experiments and results

Conclusions and Future work

CazorlaCAOS group 7

Introduction

Critical Real-time Embedded Systems (CRTESs) or hard real-
time systems are in everyday life

Some of the main requirements of hard real-time systems

 Functional correctness (like any other computing system)

 Timing correctness

CazorlaCAOS group 8

 Increasingly higher functional value to keep competitive edge

CRTEs require increasing computational power

 More and more functions required

 Functions are becoming more complex

 Examples:

 Automotive: (5x-10x) driver assistance in steer-by-wire, brake-by-wire, etc

 Aerospace: (>4x) Unmanned Aerial Vehicles

 Space: computational-intensive value-added on-board functions

Within bounded development and production costs

Requirements

CazorlaCAOS group 9

Such required performance could be achieved by designing
complex single-core processors

 Longer pipelines

 Out of order execution

 Higher clock frequency

These solutions are not feasible in CRTEs

 Hard to derive WCET

 Too complex due to their non deterministic run-time behaviors

 Timing anomalies

 High-energy requirements of such complex processors don’t satisfy
CRTE low-power constraints

Achieving High Performance

CazorlaCAOS group 10

Such required performance could be achieved by designing
complex single-core processors

 Longer pipelines

 Out of order execution

 Higher clock frequency

These solutions are not feasible in CRTEs

 Hard to derive WCET

 Too complex due to their non deterministic run-time behaviors

 Timing anomalies

 High-energy requirements of such complex processors don’t satisfy
CRTE low-power constraints

Achieving High Performance

Multi-core processors are considered
the solution for some of these

problems!

CazorlaCAOS group 11

Pros:

 Better performance per watt than single-core processors

 Maintain simple core design

 Enable co-hosting mixed-criticality applications

 Hardware utilization is maximized, while cost, size, weight and power
requirements are reduced.

Multi-cores for Hard Real-Time Systems

CazorlaCAOS group 12

Cons:

 Require functional isolation

 Prevent that one application corrupts the state of other applications;

• Low-criticality applications must not affect high-criticality ones

 Software isolation has been achieved within the space domain through the use
of hypervisors [1]

 Harder to time analyze w.r.t. single-core chips

 It is hard to provide a safe and tight WCET estimation in multi-cores

 Because of inter-task interferences!

Multi-cores for Hard Real-Time Systems

1 ESA contract 4200023100, System Impact of Distributed Multi-core Systems

CazorlaCAOS group 13

Appear when several tasks that share a hardware resource
want to access to it at the same time, so an arbitration
stage is required

The Execution time, and hence the WCET, of a task in a
multi-core depends on the co-running tasks!

CazorlaCAOS group 14

Appear when several tasks that share a hardware resource
want to access to it at the same time, so an arbitration
stage is required

The Execution time, and hence the WCET, of a task in a
multi-core depends on the co-running tasks!WCET depends on the workload!!!

CazorlaCAOS group 15

State of the art (hardware proposals)

Several proposals developed to ease the computation of
WCET estimates for CMPs (MERASA, ACROSS, GENESYS,
PRET, TTA, PROATIS, PREDATOR ...)

 Either by means of isolating interactions between tasks or

 upper-bounding the maximum interaction between tasks (MERASA)

 NPI activity between BSC and ESA.

 Title: Architectural solutions for the timing predictability of next-generation multi-
core processors

 Objective: Creating hardware support for taking inter-task interferences into
account when computing WCET estimations for the NGMP (simulator)

 People: Javier Jalle, Francisco J. Cazorla, Eduardo Quiñones,
Luca Fossati, Marco Zulianello

CazorlaCAOS group 16

State of the art (hardware proposals)

Current multicores do not implement those hw features

 It will take several years to be implemented

 Industry cannot benefit nowadays from those proposals

 COTS multicore processors have to be used instead

CazorlaCAOS group 17

Timine Analysis: multicore processors

Static Timing Analysis (STA) has several problems when used
in industrial-size applications [1]

 Hardware analysability, Computational tractability , Information gathering

Measurement-based Timing Analysis (MBTA) approaches, or
hybrid approaches, have emerged

 MBTA for single-threaded architectures

 WCET estimation = longest observed execution time (LOET) x
safety margin

[1] “On the Industrial Fitness of WCET Analysis”. Mezzeti, Vardanega.
WCET Worskshop 2011.

CazorlaCAOS group 18

Timine Analysis: multicore processors

 In multicores the effect of inter-task interferences affect the
computation of the safety margin

 WCET estimation = longest observed execution time (LOET) x
safety margin x
margin for inter-task interferences

Similarly, contention-aware scheduling algorithms has to
be designed

CazorlaCAOS group 19

Objective of this project

Define and develop a benchmark suite…

 able to mimic the CPU behavior of reference ESA applications,

 suitable to exercise the new NGMP multicore processor

 capable of generating different inter-task interference scenarios that
may arise in the NGMP processor

The ultimate goal of the benchmark suite is to provide a
methodology to measure the real-time capabilities of multi-
core architectures and, in particular, of the NGMP.

CazorlaCAOS group 20

Agenda

BSC and Background of the CAOS team

Project Objectives and Motivation

Execution infrastructure

Experiments and results

Conclusions and Future work

CazorlaCAOS group 21

The board: ML510
 NGMP with 4 cores

 Private per-core resources

 Core, 16KB Data and instruction caches

 Shared resources

 The bus to the L2, 256KB L2, and the memory bandwidth (memory
controller)

 I/O resources are also shared but are not considered in this project

 DDR2 interface runs at 140 MHz

 NGMP frequency: 70 MHz

CazorlaCAOS group 22

The NGMP

http://microelectronics.esa.int/ngmp/LEON4-NGMP-DRAFT-1-6-changebars.pdf

CazorlaCAOS group 23

The NGMP

http://microelectronics.esa.int/ngmp/LEON4-NGMP-DRAFT-1-6-changebars.pdf

CazorlaCAOS group 24

Target applications and metrics

The target workloads comprise both

 Hard real-time applications or control applications

 non-hard real-time applications or payload applications

Metrics

 Hard Real-Time Applications:

 The sensitivity (jitter) of the HRT applications to the execution environment
which include the other HRT and NRT applications.

 Understanding and quantifying the impact of interferences on shared resources

 Non-Hard Real-Time Applications:

 The performance of the NRT applications

 How much performance can be obtained by NHRT tasks without affecting
(much) HRT apps?

CazorlaCAOS group 25

Developing representative benchmarks

Hard-real time applications

 Micro benchmarks

 Put high load on a single resource (L1, L2, cpu)

 Used to measure the highest interference an application can suffer

 No data sharing

 Standard benchmarks: EEMBC, CoreMark

 Mimicking applications

 Applications that mimic main characteristic of some selected reference apps.

 Instruction mix, memory access frequency, ..

Non-hard real-time applications

 Standard benchmarks: ParSec

CazorlaCAOS group 26

The execution infrastructure
 We developed a set of scripts that allows (remotely)

 Connecting to the host machine

 Running experiments on NGMP (Linux and RTEMS)

 Collecting results

HOST
NGMP
board

GRMON

Serial

Eternet

JTAG
USER Eternet

CazorlaCAOS group 27

System setup
 Host machine

 Linux desktop

 Compiling, linking toolchains

 GRMon

 Connected to NGMP board

 JTAG (debug), preferred

 Serial (standard)

 Ethernet (standard, debug)

 NGMP board

 Software

 Linux

 RTEMS

 Connected to Host

 debug to GRMon

 Standard interface (serial,
Ethernet)

CazorlaCAOS group 28

Experiments (conceptually)

Core0

Core1

Core2

Core3

Execution time of Task 0 when running with a constant load on C1, C2 and C3

By comparing T0 Exec. Time w.r.t its run in isolation inter-task interferences

CazorlaCAOS group 29

Agenda

BSC and Background of the CAOS team

Project Objectives and Motivation

Execution infrastructure

Experiments and results

 Results on Linux

 Results on RTEMS

Conclusions and Future work

CazorlaCAOS group 30

(1) Experiments on Linux. Microbenchmarks
 In all cases, as reference execution time we take the execution

time of each benchmark when it runs in isolation

 Run different sets of microbenchmarks and compute the
execution time variation of each of them

 quadruples: (L2 L1 ADD MULT), …

 Pairs: (L1, L1), …

CazorlaCAOS group 31

Results: Amba bus
 AMBA Bus that connects core to L2

 4 copies of L240KB (less than 1/ 4 of the L2, bigger than DL1)

 Each copy always misses in DL1 and hits in L2

 N copies interaction in Amba bus

 Conclusions.

 The worst delay due to sharing the AMBA Bus

 12% for 2 tasks

 83% for 4 tasks

1 2 4 1 2 4
L2-40 0.06% 0.12% 1.42% 95.05% 95.14% 98.39%

percentage of D misses per ldpercentage of L2 misses per ld

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4

Processes

R

el
at

iv
e

ex
ec

ut
io

n
tim

e

CazorlaCAOS group 32

Results: memory bandwidth
 Memory bandwidth
 4 copies of L2miss (memory)

 All accesses in each copy always miss in L2

 N copies interaction in the memory controller
& the memory BW (and also in the AMBA bus)

 Conclusions*
 Worst delay due to sharing memory bandwidth

 50% for 2 tasks

 2.5x for 4 tasks

*(In our FPGA implementation of the NGMP the
ratio core_frequency/memory frequency is lower
than in reality)

1 2 4 1 2 4
L2-miss 100.00% 99.59% 98.51% 99.20% 98.89% 98.08%

percentage of L2 misses per ld percentage of D misses per ld

CazorlaCAOS group 33

Results: L2 + memory
 Memory bandwidth + L2 cache

 4 copies of L2200

 Each copy will hit in L2 many times

 N copies interaction in L2 and memory and
memory controller (also in the AMBA bus)

 Conclusions

 The worst delay due to sharing memory
bandwidth and L2

 2.5x for 2 tasks and

 4.3x for 4 tasks

1 2 4 1 2 4
L2-200 31.45% 88.42% 98.55% 99.53% 98.98% 98.09%

L2 miss per load DC miss per load

CazorlaCAOS group 34

(1) Experiments on Linux. EEMBC
 We run several copies of EEMBC against one or several copies

of micro-benchmarks

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

isolation x2 x4 L2-40 x3 L2-200 x3 L2-miss x3

Benchmarks

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

aifirf0
bitmnp01
cacheb01
canrdr
pntrch
puwmod
rspeed
ttsprk

CazorlaCAOS group 35

Results: store operations
 Store operations

 L2st40KB (less than 1/ 4 of L2 cache)

 Each copy always misses in DL1 and hits
in L2

 Conclusions

 L240 and L2200 and L2miss cause a big
slowdown, up to almost 20x on L2st

 It has to access to the L2 and hence use
the AMBA AHB Processor bus on every
store operation

• This make it quite sensitive to other
benchmarks using the bus.

5,62

19,27 19,47

1

3

5

7

9

11

13

15

17
19

21

Exec. Time

In
cr

ea
se

st-40 (L2-40)x3
st-40 (L2-200)x3
st-40 (L2miss)x3

CazorlaCAOS group 36

(1) Experiments on Linux. EEMBC
 Why this behavior?

 High correlation between the density of store instructions and the
slowdown.

0

1

2

3

4

5

6

7

8
L2

-2
00

 x
3

L2
-m

is
s

x3

L2
-2

00
 x

3

L2
-m

is
s

x3

L2
-2

00
 x

3

L2
-m

is
s

x3

L2
-2

00
 x

3

L2
-m

is
s

x3

L2
-2

00
 x

3

L2
-m

is
s

x3

L2
-2

00
 x

3

L2
-m

is
s

x3

L2
-2

00
 x

3

L2
-m

is
s

x3

L2
-2

00
 x

3

L2
-m

is
s

x3

aifr bitmnp cacheb01 candr pntrch puwmod rspeed ttkprk

Benchmark

Sl
ow

D
ow

n

0%

2%

4%

6%

8%

10%

12%

14%

16%

Pe
rc

en
ta

ge
 o

f s
to

re
s

slowdown

percentage of stores

CazorlaCAOS group 37

(1) Experiments on Linux. EEMBC
 EEMBC vs. PARSEC

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

eembc x1 eembc x1
blackscholes

x3

eembc x1 x264
x3

eembc x2
blackscholes

x2

eembc x2 x264
x2

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

aifirf01
bitmnp01
cacheb01
canrdr01
pntrch01
puwmod01
rspeed01
ttsprk01

CazorlaCAOS group 38

(1) Experiments on Linux. EEMBC
 EEMBC vs. PARSEC

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

eembc x1 eembc x1
blackscholes

x3

eembc x1 x264
x3

eembc x2
blackscholes

x2

eembc x2 x264
x2

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

aifirf01
bitmnp01
cacheb01
canrdr01
pntrch01
puwmod01
rspeed01
ttsprk01

The observed slowdown is not really high.
The potential slowdown is!
Bad for time composability

CazorlaCAOS group 39

(1) Experiments on RTEMS
Linux RTEMS

 L240 similar

 L2miss similar

 L2200 bigger degradation on RTEMS than on Linux

 On RTEMS, the baseline L2200 run in isolation causes very few L2 misses,
thanks to the small memory footprint of the operating system.

 Single copy of L2200: 0.31% miss rate on RTEMS 31% on Linux

0

1

2

3

4

5

6

7

8

9

10

L2_40 L2_miss L2_200

1 copy
2 copies
4 copies

E
xe

cu
tio

n
tim

e
in

cr
em

en
t

0

1

2

3

4

5

6

7

8

9

10

L2_40 L2_miss L2_200

E
xe

cu
tio

n
Ti

m
e

In
cr

em
en

t

1 copy
2 copies
4 copies

CazorlaCAOS group 40

Agenda

BSC and Background of the CAOS team

Project Objectives and Motivation

Execution infrastructure

Experiments and results

Conclusions and Future work

CazorlaCAOS group 41

Conclusions

The lack of quantitative studies on inter-task interferences on
real COTS multi-core processors, limit their use by industry

We have developed a benchmark suite that is…

 suitable to exercise the new multicore processors

 capable to generate different inter-task interference scenarios

The benchmark suite…

 Provides accurate figures on the impact of interferences arisen in the main
shared resources in the NGMP under both Linux and RTEMS.

 Represents a first step towards providing effective interference-aware
measurement-based WCET estimation and scheduling for the NGMP.

CazorlaCAOS group 42

Conclusions: Quantitative

We have presented initial results about the effect of inter-task
interferences on time predictability for the NGMP.

Worst observed behaviors are the following:

 AMBA bus effect. Up to 83% (95%) for 4 cores

 Memory bandwidth effect*. Up to 2.6x (3.4x) for 4 cores

 L2 cache + memory BW effect*. Up to 4.3x (9x) for 4 cores

Clear correlation between stores density and slowdown
suffered by EEBMC

CazorlaCAOS group 43

Conclusions: Qualitative

 Integrated Architectures

 Guarantee that there is no interaction between the different functions
sharing the resources to contain verification costs

 Functional level: functional isolation

 A bug/misbehavior in a function does not affect the others

 Timing level: timing isolation

 Timing behavior of a task is not affected by the others

 Timing composability: timing behavior of an individual component does not
change by the composition, i.e. composing the system

• Alleviates system integration cost

CazorlaCAOS group 44

Conclusions: Qualitative

Time Composability in the NGMP:

 The main software features affecting time composability are

 (1) the percentage of store instructions and

 (2) whether its footprint fits in the first level data cache

CazorlaCAOS group 45

Corollary 1

For application developers

 Reduce the number of stores

 Obviously, this is intrinsic to the functionality of the application and hence
it can be difficult to change it

 Otherwise, in order to ensure time composability: play with
scheduling

 Store-intensive applications have to be scheduled in isolation or

 any other application that may run on the other cores fits their data cache
so they do not introduce traffic in the AHB bus

CazorlaCAOS group 46

Corollary 2

A write-back policy for the L1 data cache will significantly
reduce the overhead of inter-task interferences.

This will introduce several challenges

 Implementation of consistency protocol, as MESI/MOESI or directory-
based protocols will be needed.

 Some data for which only one copy would exist in the system, located indeed in
the L1 cache

 NGMP features error detection only in the L1 cache.

 To maintain adequate protection from errors (frequent in space, the target
environment for the NGMP) error correction schemes would have to be
implemented in the L1 cache,

 Increasing the latency of read/write operations in such cache and
reducing the maximum frequency of the processor

CazorlaCAOS group 47

Future Work

Hardware support for isolation:

 Exploring hardware support for timing isolation: In the documentation of
the NGMP, some features are explained to provide isolation in the L2
cache between threads.

Explore the I/O path

 We have explore the path to memory from the processor: data cache,
main AMBA AHB processor and memory buses, L2, memory.

 In addition to this main path, there are other paths that use other AMBA
APB buses in the NGMP, to handle I/O traffic.

CazorlaCAOS group 48

Future Work

Scheduling:

 In the literature there are many works dealing with scheduling algorithms
for multicore processors.

 Common assumption: threads receive an even part of the resources

 Threads receive 1/N of the resources

 WCET is independent of the workload

 From the results of this study it is clear that this assumption cannot be
done in the NGMP.

 In fact, the characteristics of each thread determines the percentage of the
shared resources, mainly AMBA bus and L2, they receive its WCET

CazorlaCAOS group 49
Software Systems Division & Data Systems Division

Final Presentation Days
25th April 2012, ESTEC

Multicore OS Benchmark

Francisco J. Cazorla
Mikel Fernandez
Roberto Gioiosa
Eduardo Quiñones

Francisco J. Cazorla
(francisco.cazorla@bsc.es)

PhD. Researcher and Director of the CAOS group at BSC
(www.bsc.es/caos)

Marco Zulianello (TO)
Luca Fossati

