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 Barcelona Supercomputing Center

 Spanish national research center (www.bsc.es)

 +300 people at the end of 2011 (>80% are researchers)

 Areas of research:

 Life Sciences

 Earth Sciences

 Computer Applications

 Computer Sciences. It comprises several research groups

 Compiler group

 Programming Models group

 …

BSC
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Computer Architecture/Operating System (CAOS)  
(www.bsc.es/caos)
 16 people

 Research lines and collaborations:

 HPC systems: IBM

 Networking systems: Sun Microsystems

 Real-Time systems

• FP7 MERASA

• FP7 PROARTIS 

• FP7 parMERASA

• VeTeSS ARTEMIS Project

• Projects with ESA

The CAOS group
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Introduction

Critical Real-time Embedded Systems (CRTESs) or hard real-
time systems are in everyday life

Some of the main requirements of hard real-time systems

 Functional correctness (like any other computing system)

 Timing correctness
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 Increasingly higher functional value to keep competitive edge

CRTEs require increasing computational power

 More and more functions required

 Functions are becoming more complex

 Examples:

 Automotive: (5x-10x) driver assistance in steer-by-wire, brake-by-wire, etc

 Aerospace:  (>4x) Unmanned Aerial Vehicles

 Space: computational-intensive value-added on-board functions

Within bounded development and production costs

Requirements
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Such required performance could be achieved by designing 
complex single-core processors 

 Longer pipelines 

 Out of order execution

 Higher clock frequency

These solutions are not feasible in CRTEs

 Hard to derive WCET

 Too complex due to their non deterministic run-time behaviors

 Timing anomalies

 High-energy requirements of such complex processors don’t satisfy 
CRTE low-power constraints

Achieving High Performance 
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Such required performance could be achieved by designing 
complex single-core processors 

 Longer pipelines 

 Out of order execution

 Higher clock frequency

These solutions are not feasible in CRTEs

 Hard to derive WCET

 Too complex due to their non deterministic run-time behaviors

 Timing anomalies

 High-energy requirements of such complex processors don’t satisfy 
CRTE low-power constraints

Achieving High Performance 

Multi-core processors are considered 
the solution for some of these 

problems!
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Pros:

 Better performance per watt than single-core processors

 Maintain simple core design

 Enable co-hosting mixed-criticality applications 

 Hardware utilization is maximized, while cost, size, weight and power 
requirements are reduced.

Multi-cores for Hard Real-Time Systems



 

CazorlaCAOS group 12

Cons:

 Require functional isolation

 Prevent that one application corrupts the state of other applications; 

• Low-criticality applications must not affect high-criticality ones

 Software isolation has been achieved within the space domain through the use 
of hypervisors [1]

 Harder to time analyze w.r.t. single-core chips 

 It is hard to provide a safe and tight WCET estimation in multi-cores

 Because of  inter-task interferences!

Multi-cores for Hard Real-Time Systems

1 ESA contract 4200023100, System Impact of Distributed Multi-core Systems
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Appear when several tasks that share a hardware resource 
want to access to it at the same time, so an arbitration 
stage is required

The Execution time, and hence the WCET, of a task in a 
multi-core depends on the co-running tasks!
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Appear when several tasks that share a hardware resource 
want to access to it at the same time, so an arbitration 
stage is required

The Execution time, and hence the WCET, of a task in a 
multi-core depends on the co-running tasks!WCET depends on the workload!!!
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State of the art (hardware proposals)

Several proposals developed to ease the computation of 
WCET estimates  for CMPs (MERASA, ACROSS, GENESYS, 
PRET, TTA, PROATIS, PREDATOR ...)

 Either by means of isolating interactions between tasks or 

 upper-bounding the maximum interaction between tasks (MERASA)

 NPI activity between BSC and ESA.

 Title: Architectural solutions for the timing predictability of next-generation multi-
core processors

 Objective: Creating hardware support for taking inter-task interferences into 
account when computing WCET estimations for the NGMP (simulator)

 People: Javier Jalle, Francisco J. Cazorla, Eduardo Quiñones, 
Luca Fossati, Marco Zulianello
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State of the art (hardware proposals)

Current multicores do not implement those hw features

 It will take several years to be implemented

 Industry cannot benefit nowadays from those proposals

 COTS multicore processors have to be used instead
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Timine Analysis: multicore processors

Static Timing Analysis (STA) has several problems when used 
in industrial-size applications [1]

 Hardware analysability, Computational tractability , Information gathering 

Measurement-based Timing Analysis (MBTA) approaches, or 
hybrid approaches, have emerged

 MBTA for single-threaded architectures 

 WCET estimation = longest observed execution time (LOET) x 
safety margin

[1] “On the Industrial Fitness of WCET Analysis”. Mezzeti, Vardanega. 
WCET Worskshop 2011.
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Timine Analysis: multicore processors

 In multicores the effect of inter-task interferences affect the 
computation of the safety margin 

 WCET estimation = longest observed execution time (LOET) x 
safety margin x
margin for inter-task interferences

Similarly, contention-aware scheduling algorithms has to 
be designed



 

CazorlaCAOS group 19

Objective of this project

Define and develop a benchmark suite…

 able to mimic the CPU behavior of  reference ESA applications, 

 suitable to exercise the new NGMP multicore processor

 capable of generating different inter-task interference scenarios that 
may arise in the NGMP processor

The ultimate goal of the benchmark suite is to provide a 
methodology to measure the real-time capabilities of multi-
core architectures and, in particular, of the NGMP.
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The board: ML510
 NGMP with 4 cores

 Private per-core resources

 Core, 16KB Data and instruction caches 

 Shared resources

 The bus to the L2, 256KB L2, and the memory bandwidth (memory 
controller)

 I/O resources are also shared but are not considered in this project

 DDR2 interface runs at 140 MHz

 NGMP frequency: 70 MHz
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The NGMP

http://microelectronics.esa.int/ngmp/LEON4-NGMP-DRAFT-1-6-changebars.pdf
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The NGMP

http://microelectronics.esa.int/ngmp/LEON4-NGMP-DRAFT-1-6-changebars.pdf
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Target applications and metrics

The target workloads comprise both

 Hard real-time applications or control applications

 non-hard real-time applications or payload applications

Metrics 

 Hard Real-Time Applications:

 The sensitivity (jitter) of the HRT applications to the execution environment 
which include the other HRT and NRT applications. 

 Understanding and quantifying the impact of interferences on shared resources

 Non-Hard Real-Time Applications:

 The performance of the NRT applications

 How much performance can be obtained by NHRT tasks without affecting 
(much) HRT apps?
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Developing representative benchmarks

Hard-real time applications

 Micro benchmarks

 Put high load on a single resource (L1, L2, cpu)

 Used to measure the highest interference an application can suffer

 No data sharing

 Standard benchmarks: EEMBC, CoreMark

 Mimicking applications

 Applications that mimic main characteristic of some selected reference apps.

 Instruction mix, memory access frequency, ..

Non-hard real-time applications

 Standard benchmarks: ParSec
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The execution infrastructure
 We developed a set of scripts that allows (remotely)

 Connecting to the host machine

 Running experiments on NGMP (Linux and RTEMS)

 Collecting results

HOST
NGMP 
board

GRMON

Serial

Eternet

JTAG
USER Eternet
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System setup
 Host machine

 Linux desktop

 Compiling, linking toolchains

 GRMon

 Connected to NGMP board

 JTAG (debug), preferred

 Serial (standard)

 Ethernet (standard, debug)

 NGMP board

 Software

 Linux

 RTEMS

 Connected to Host

 debug to GRMon

 Standard interface (serial, 
Ethernet)
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Experiments (conceptually)

Core0

Core1

Core2

Core3

Execution time of Task 0 when running with a constant load on C1, C2 and C3

By comparing T0 Exec. Time w.r.t its run in isolation  inter-task interferences
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(1) Experiments on Linux. Microbenchmarks
 In all cases, as reference execution time we take the execution 

time of each benchmark when it runs in isolation

 Run different sets of microbenchmarks and compute the 
execution time variation of each of them

 quadruples: (L2 L1 ADD MULT), …

 Pairs:  (L1, L1), …
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Results: Amba bus
 AMBA Bus that connects core to L2

 4 copies of L240KB (less than 1/ 4 of the L2, bigger than DL1)

 Each copy always misses in DL1 and hits in L2

 N copies  interaction in Amba bus

 Conclusions.

 The worst delay due to sharing the AMBA Bus

 12% for 2 tasks

 83% for 4 tasks

1 2 4 1 2 4
L2-40 0.06% 0.12% 1.42% 95.05% 95.14% 98.39%

percentage of D misses per ldpercentage of L2 misses per ld
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Results: memory bandwidth
 Memory bandwidth
 4 copies of L2miss (memory)

 All accesses in each copy always miss in L2

 N copies  interaction in the memory controller  
& the memory BW (and also in the AMBA bus)

 Conclusions*
 Worst delay due to sharing memory bandwidth

 50% for 2 tasks

 2.5x for 4 tasks

*(In our FPGA implementation of the NGMP the 
ratio core_frequency/memory frequency is lower 
than in reality)

1 2 4 1 2 4
L2-miss 100.00% 99.59% 98.51% 99.20% 98.89% 98.08%

percentage of L2 misses per ld percentage of D misses per ld
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Results: L2 + memory
 Memory bandwidth + L2 cache

 4 copies of L2200

 Each copy will hit in L2 many times

 N copies  interaction in L2 and memory and 
memory controller (also in the AMBA bus)

 Conclusions

 The worst delay due to sharing memory 
bandwidth and L2

 2.5x for 2 tasks and 

 4.3x for 4 tasks

1 2 4 1 2 4
L2-200 31.45% 88.42% 98.55% 99.53% 98.98% 98.09%

L2 miss per load DC miss per load
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(1) Experiments on Linux. EEMBC
 We run several copies of EEMBC against one or several copies 

of micro-benchmarks

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

isolation x2 x4 L2-40 x3 L2-200 x3 L2-miss x3

Benchmarks

R
el

at
iv

e 
ex

ec
ut

io
n 

tim
e

aifirf0
bitmnp01
cacheb01
canrdr
pntrch
puwmod
rspeed
ttsprk



 

CazorlaCAOS group 35

Results: store operations
 Store operations

 L2st40KB (less than 1/ 4 of L2 cache)

 Each copy always misses in DL1 and hits 
in L2

 Conclusions

 L240 and L2200 and L2miss cause a big 
slowdown, up to almost 20x on L2st

 It has to access to the L2 and hence use 
the AMBA AHB Processor bus on every 
store operation 

• This make it quite sensitive to other 
benchmarks using the bus.
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(1) Experiments on Linux. EEMBC
 Why this behavior? 

 High correlation between the density of store instructions and the 
slowdown.
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(1) Experiments on Linux. EEMBC
 EEMBC vs. PARSEC
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(1) Experiments on Linux. EEMBC
 EEMBC vs. PARSEC
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The observed slowdown is not really high. 
The potential slowdown is! 
Bad for time composability
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(1) Experiments on RTEMS
Linux RTEMS

 L240  similar

 L2miss similar

 L2200  bigger  degradation on RTEMS than on Linux  

 On RTEMS, the baseline L2200 run in isolation causes very few L2 misses, 
thanks to the small memory footprint of the operating system.

 Single copy of L2200: 0.31% miss rate on RTEMS 31% on Linux
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Conclusions

The lack of quantitative studies on inter-task interferences on 
real COTS multi-core processors, limit their use by industry

We have developed a benchmark suite that is… 

 suitable to exercise the new multicore processors

 capable to generate different inter-task interference scenarios

The benchmark suite…

 Provides accurate figures on the impact of interferences arisen in the main 
shared resources in the NGMP under both Linux and RTEMS.

 Represents a first step towards providing effective interference-aware 
measurement-based WCET estimation and scheduling for the NGMP.
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Conclusions: Quantitative

We have presented initial results about the effect of inter-task 
interferences on time predictability for the NGMP. 

Worst observed behaviors are the following:

 AMBA bus effect. Up to 83% (95%) for 4 cores

 Memory bandwidth effect*. Up to 2.6x (3.4x) for 4 cores

 L2 cache + memory BW effect*. Up to 4.3x (9x) for 4 cores

Clear correlation between stores density and slowdown 
suffered by EEBMC
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Conclusions: Qualitative

 Integrated Architectures

 Guarantee that there is no interaction between the different functions 
sharing the resources to contain verification costs

 Functional level: functional isolation

 A bug/misbehavior in a function does not affect the others

 Timing level: timing isolation

 Timing behavior of a task is not affected by the others

 Timing composability: timing behavior of an individual component does not 
change by the composition, i.e. composing the system

• Alleviates system integration cost
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Conclusions: Qualitative

Time Composability in the NGMP:

 The main software features affecting time composability are 

 (1) the percentage of store instructions and 

 (2) whether its footprint fits in the first level data cache
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Corollary 1

For application developers

 Reduce the number of stores

 Obviously, this is intrinsic to the functionality of the application and hence 
it can be difficult to change it

 Otherwise, in order to ensure time composability: play with 
scheduling

 Store-intensive applications have to be scheduled in isolation or 

 any other application that may run on the other cores fits their data cache 
so they do not introduce traffic in the AHB bus
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Corollary 2

A write-back policy for the L1 data cache will significantly 
reduce the overhead of inter-task interferences. 

This will introduce several challenges 

 Implementation of consistency protocol, as MESI/MOESI or directory-
based protocols will be needed. 

 Some data for which only one copy would exist in the system, located indeed in 
the L1 cache

 NGMP features error detection only in the L1 cache.

 To maintain adequate protection from errors (frequent in space, the target 
environment for the NGMP) error correction schemes would have to be 
implemented in the L1 cache, 

 Increasing the latency of read/write operations in such cache and           
reducing the maximum frequency of the processor
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Future Work

Hardware support for isolation:

 Exploring hardware support for timing isolation: In the documentation of 
the NGMP, some features are explained to provide isolation in the L2 
cache between threads. 

Explore the I/O path

 We have explore the path to memory from the processor: data cache, 
main AMBA AHB processor and memory buses, L2, memory. 

 In addition to this main path, there are other paths that use other AMBA 
APB buses in the NGMP, to handle I/O traffic. 
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Future Work

Scheduling:  

 In the literature there are many works dealing with scheduling algorithms  
for multicore processors. 

 Common assumption: threads receive an even part of the resources

 Threads receive 1/N of the resources 

 WCET is independent of the workload

 From the results of this study it is clear that this assumption cannot be 
done in the NGMP. 

 In fact, the characteristics of each thread determines the percentage of the 
shared resources, mainly AMBA bus and L2, they receive   its WCET
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