Benchmarks for the GINA platform

SPLASH2 and NPB experiments
March 3, 2008

Giovanni Beltrame
Luca Fossati

Contents

1 nopsis

[2 eCos Setup|

3 SPLASH?2
4__INASA Parallel Benchmarks|
[6_Conclusions|

Section 1: Synopsis 3

1 Synopsis

This document describes the execution of parallel benchmarks on the GINA
platform in order to establish a term of reference for ESA next-generation mi-
croprocessor. The main idea behind this study is that processing power does
not scale uniformly with the number of cores used, due to concurrent access to
shared resources. By verifying and measuring how parallelized software scales
on a given architecture, it is possible to determine its shortcomings and ways
to improve its scalability.

In general, shared-memory parallel software uses a programming model that
specifies the primitives to create, synchronize and destroy threads of execution.
In this work we focus on two popular programming models, PARMACS and
OpenMP, as most free and commercial benchmarks rely on them. Both pro-
gramming models present an API to the programmer, the former as macros,
the latter as compiler pragmas.

The two models are general, they are not targeted to any particular architec-
ture, thus they need a “back-end” implementation to work on a specific system.
In this work we use the POSIX Threads (generally referred to as pthreads) API
for the back-end, due to its diffusion and support. Pthread implementations of
both PARMACS and OpenMP are available as open-source.

Working with POSIX Threads implies using of a shared-memory multi-
processor POSIX operating system. As eCos has these characteristics and as it
has already been ported to GINA, it was used as the choice operating system.

The performance of the benchmarks was evaluated using the board timers to
compute the timing and TSIM to determine the number of instructions involved
in the core of each benchmark. Thread management, inter-processor interrupts,
etc. are considered as overhead, and they are not included in the instruction
count. The result is a number of instructions and an execution time per bench-
mark, giving an overall Millions Operations Per Second (MOPS) figure; this
figures includes both integer and floating point operations.

In the following, we describe the setup for both the benchmarks and eCos,
the execution procesure, and we discuss the results.

2 eCos Setup

eCos is a highly configurable, open-source embedded operating system. Its
sources (but not its configuration) were provided with GINA CDs. A vanilla
configuration had to be extracted from the sources, and then adapted for the
use of benchmarks. This involved a few trials, but can be summarized as:

e Activation of FPU, SMP, and hardware serial drivers support
e Installation of the POSIX compatibility layer

It is worth noting how the sources on the CD are not the same sources used to
build the sample binaries, as they have a different memory map. This required
some additional patching of eCos’ sources, moving the application entry point
from 0x40000000 (SRAM) to 0x60000000 (SDRAM), in order to obtain the same
memory map of the sample binaries provided on the CDs.

eCos was compiled using the gcc-3.4.4 compiler from Gaisler website, and
all its test run as expected. Compiling the examples with gcc-4.2.2 gave some

Section 3: SPLASH?2 4

minor performance increase in the samples. However, when eCos itself was
compiled with gce-4.2.2; curiously the system didn’t boot (independently of the
optimization flags used).

As an additional note, the dhrystone example (provided on the GINA CDs)
used a 100 divider for the clock tick counter to measure time, but GINA’s clock
in its current implementation is 40MHz, giving the wrong MIPS calculation
(overestimated by 60%).

3 SPLASH2

The SPLASH2 set of benchmarks was developed by Stanford in 1995 to test
parallel supercomputer architectures. As modern embedded systems are much
more powerful and sport multi-core architectures, this set can be used with little
adaptation. The benchmarks are divided in two sets: applications and kernels,

applications being somewhat larger and more complex (and generally slightly
less parallel). The SPLASH2 benchmarks are:

BARNES : this application implements the Barnes-Hut method to simulate
the interaction of a system of bodies (N-body problem). This application
is computationally but not memory intensive.

FMM : this application implements a parallel adaptive Fast Multipole Method
to simulate the interaction of a system of bodies (N-body problem).

OCEAN : this program simulates large-scale ocean movements based on eddy
and boundary currents. Two implementations are provided in the SPLASH-
2 distribution:

e Non-contiguous partition allocation: this implementation uses two-
dimensional arrays. This data structure prevents partitions from
being allocated contiguously, but leads to a conceptually simple pro-
gramming implementation.

o (Contiguous partition allocation: this implementation uses 3-D arrays.
The first dimension specifies the processor which owns the partition,
and the second and third dimensions specify the x and y offset within
a partition. This data structure should enhance data locality proper-
ties (so it should lead to a better exploitation of the on-chip caches).

RADIOSITY : this code computes the equilibrium distribution of light in a
scene using the hierarchical diffuse radiosity method. This benchmark is
both CPU and memory intensive.

RAYTRACE : This code renders a three-dimensional scene onto a two-
dimensional image plane using optimized ray tracing. A hierarchical uni-
form grid is used to represent the scene for efficient access, and early ray
termination and antialiasing are implemented. The complexity and the
use of large input files and additional libraries prevented the use of this
benchmark.

VOLREND : This code renders a three-dimensional volume onto a two-
dimensional image plane using an optimized ray casting technique de-
veloped by Marc Levoy. A hierarchical octree data structure is used to

Section 3: SPLASH?2 5

represent the scene for efficient access, and early ray termination and an-
tialiasing are implemented. The same considerations for raytrace apply
here.

WATER-SPATIAL : This code solves molecular dynamics N-body problem
of water. It imposes a 3-d spatial data structure on the cubical domain,
resulting in a 3-d grid of boxes. This benchmark is both CPU and memory
intensive as boxes are stored as linked lists.

WATER-NSQUARED : similar to water-spatial, but using a different algo-
rithm, less memory intensive.

CHOLESKY : this kernel performs blocked Cholesky Factorization on a sparse
matrix. The matrix definition is stored on a large file, and so the bench-
mark was not included.

FFT : this kernel is a complex, one-dimensional version of the ”Six-Step” FFT.
CPU intensive.

LU : this kernel factors a dense matrix into the product of a lower triangular
and an upper triangular matrix. Two implementations are provided (as
for OCEAN), with different memory access strategies.

RADIX : this kernel implements an integer radix sort. This is the least de-
manding of the benchmarks concerning CPU power and memory band-
width.

All these benchmarks use the PARMACS programming model. In this work,
we used a freely available pthread PARMACS implementation, patched in or-
der to provide a correct timing figures on the GINA board. Although Gaisler
patches to eCos provided a PARMACS implementation that relies on eCos
threads instead of the POSIX compatibility layer, these were not used as we
wanted to estimate the overhead of the standard POSIX programming model.
Gaisler-provided eCos configuration files did not feature the required POSIX
compatibility layer, so, as previously stated, this feature had to be added to the
configuration. A different specific configuration for eCos was also defined to run
the benchmarks on TSIM; this step was necessary in order to obtain the number
of instructions involved in the core routines of each benchmark (initialization,
generally single threaded, is excluded from this count).

As TSIM-LEON3 was not available, TSIM-LEON was used, and its configu-
ration parameters were tweaked to mimick as much as possible GINA configura-
tion: RAM, SDRAM, caches are the same, with the exception of the cache line
size. This does not affect the instruction count in any case. The benchmarking
was structured as:

e One run of the benchmark on the host machine to test the PARMAC
macros using pthreads

e One TSIM simulation using hardware breakpoints around the core of the
benchmark to determine the instruction count

e Three simulations of the benchmark on GINA, using one, two and four
cores respectively timing the benchmarks at the same breakpoints as used
in TSIM

Section 3: SPLASH?2 6

Unfortunately, not all the benchmarks run as expected: we experienced some
unexpected crashes on the board and on TSIM although all of the benchmarks
ran correctly locally on Linux i686. Changing the PARMACS macros, using
another barrier style, reduced the number of crashes but it didn’t really solve
the problem. The benchmarks that failed are:

e OCEAN, using the contiguous-sets implementation. Although OCEAN
ran on TSIM, it kept hanging on GINA, even when using only one thread,
(this excludes synchronization or coherency problems). Little changes of
the executable changed the way the program crashed, leading us to think
of some pointer-related issue that however remains unfound

e BARNES: the application runs smoothly on TSIM but crashes during
initialization (when accessing a vector in particular). It is not clear what
causes the IU to enter error mode (write error, code 0x2b)

e FMM: the benchmarks works on TSIM, but stops at a non-existent watch-
point (perhaps an unwanted write to the DSU?) as soon as the calculations
start

e RADIOSITY: apparently it gets locked in an infinite loop on both TSIM
and the GINA board when using pthreads. It works on TSIM only when
run without threading

The results for the remaining benchmarks are outlined in Table [I} with the last
line showing the adjusted average, excluding outliers (the fastest and the slowest
benchmark). Figure [I| shows in graphical form the MOPS trend as the number

Table 1: Performance of the GR-CPCI-XC4V board configured with GINA,
scaled to 266MHz

Benchmark | Bus b/w [%)] 1 processor 2 processors 4 processors
speed (MOPS) | speed (MOPS) | speed (MOPS)

FFT 16.9 172.96 320.59 461.57
LU 14.4 78.67 146.54 195.16
LU-NC 26.7 61.84 101.68 106.09
RADIX 6.3 105.73 168.11 164.81
OCEAN 15.3 92.86 202.03 230.36
WATER-N 9.0 68.56 125.66 201.7
WATER-S 9.1 76.49 133.01 221.01
Average 13.9 93.87 171.09 225.81
Average adj. 10.82 84.46 148.69 200.48

of cores used increases, together with adjusted standard deviation (thick gray
bar) and minumum and maximum error (thin line error bar). On average, the
trend shows diminishing returns, roughly 1.76x and 1.34x performance when
going from 1 to 2 and 2 to 4 cores, respectively. The thick gray bar represents
the standard deviation of the benchmarks when the two outliers at the extemes
of the error bar are removed, showing a consistent behavior of the benchmarks,
excluding FFT (highly parallelizable and scalable) and LU-NC (memory access
inefficient). Another interesting result is produced by correlating the single-core
bandwidth utilization of the benchmarks with the speedup obtained with 2 and
4 cores, as shown in Table The Pearson correlation coefficient RHO (we

Section 4: NASA Parallel Benchmarks 7

4757

;

225

3

200

MOPS

Averag

50MHz
‘ | <266MHz

3 4

Core #

Figure 1: MOPS trend for the SPLASH2 benchmarks

Table 2: Speedup and single bandwidth utilization correlation
| | Bandwidth | Speedup 2 | Speedup 4 |

RADIX 6.3 1.59 0.98
WATER-S 9 1.74 1.66
WATER-N 9.1 1.83 1.61
LU 14.4 1.86 1.33
OCEAN-NC 15.3 1.83 1.29
FFT 16.9 1.85 1.44
LU-NC 26.7 1.64 1.04
| RHO (Pearson) | - | -0.00094 | -0.3467 |

used Pearson as the relation between speedup and doubling of cores is almost
linear) shows that the bandwidth utilization is totally uncorrelated with the
speedup obtained with 2 cores: this agrees with the fact that the bus is not
close to saturation. The correlation increases as we go to 4 cores, showing some
initial saturation effects, but remaining low and with some evident outliars,
like RADIX where saturation has no impact. It is worth noting that CPU use
is 100% in all benchmarks (they are all computationlly intensive with no 1/0
operations).

4 NASA Parallel Benchmarks

A more interesting and more self-contained benchmark suite is the NASA Paral-
lel Benchmarks (NPB). These benchmarks are based on the OpenMP program-
ming model. The NPB suite is composed by:

BT is a simulated CED (Computational Fluid Dynamics) application that uses
an implicit algorithm to solve 3-dimensional (3- D) compressible Navier-
Stokes equations. The finite differences solution to the problem is based

Section 4: NASA Parallel Benchmarks 8

on an Alternating Direction Implicit (ADI) approximate factorization that
decouples the x, y and z dimensions. The resulting systems are Block-
Tridiagonal of 5x5 blocks and are solved sequentially along each dimension.

SP is a simulated CFD application that has a similar structure to BT. The
finite differences solution to the problem is based on a Beam-Warming
approximate factorization that decouples the x, y and z dimensions. The
resulting system has Scalar Pentadiagonal bands of linear equations that
are solved sequentially along each dimension.

LU is asimulated CFD application that uses symmetric successive over-relaxation
(SSOR) method to solve a seven-block-diagonal system resulting from
finite-difference discretization of the Navier-Stokes equations in 3-D by
splitting it into block Lower and Upper triangular systems.

FT contains the computational kernel of a 3-D fast Fourier Transform (FFT)-
based spectral method. FT performs three one-dimensional (1-D) FFT’s,
one for each dimension.

MG uses a V-cycle MultiGrid method to compute the solution of the 3-D scalar
Poisson equation. The algorithm works continuously on a set of grids that
are made between coarse and fine. It tests both short and long distance
data movement.

CG uses a Conjugate Gradient method to compute an approximation to the
smallest eigenvalue of a large, sparse, unstructured matrix. This kernel
tests unstructured grid computations and communications by using a ma-
trix with randomly generated locations of entries.

EP is an Embarrassingly Parallel benchmark. It generates pairs of Gaussian
random deviates according to a specific scheme. The goal is to establish
the reference point for peak performance of a given platform.

A compatible compiler is needed to compile OpenMP programs. In this work,
we tested three possible solutions:

e GCC-4.2: the newest version of GCC natively supports OpenMP, using a
runtime library called libgomp. As programs for eCos are compiled with
some special parameters, the runtime libgomp has to be compiled with
different flags with respect to the rest of the cross-compiler. GCC does
not allow such a setup, and the libgomp had to be extracted manually,
compiled outside the tree, and linked to the test executables. The process
required some tweaking but compiled without problems in the end

e Omni: an OpenMP source-to-source compiler that transforms OpenMP
code in C/C++, relying on a proper C/C++ compiler for the creation
of executables. Unfortunately, Omni relies on an undocumented runtime
library, and does not accept many of the C constructs used in eCos. Even
though the NPB suite compiled (but not linked), the cross-compilation of
the runtime library was not taken in consideration

e OMPI: similar to Omni, but more compact, with better structure, and a
very simple runtime library creation mechanism. A special runtime for

Section 5: Conclusions 9

eCos and GINA was created, and successfully linked to the NPB bench-
marks. eCos includes needed some tweaking as they used non-standard C
constructs that OMPI didn’t recognize

All the benchmarks were tested on GINA and TSIM, but none of them
worked properly. We suspect this is due to the posix-based runtime libraries,
as the benchmarks start but crash in different ways as threading begins. Many
workarounds have been tried (increasing stack size, changing the malloc strategy,
etc.), to no avail. Notice how eCos configuration had to be modified (specifying
that static constructors had to be executed in the main thread context) in order
for the benchmark to boot. It is worth noting that the NPB were successfully
run on the ReSP simulation framework with the same libgomp configuration
and a closely resembling eCos configuration, but using four ARM7 processors.

5 Conclusions

A first analysis of the results leads to the following conclusions:

1. Increasing the number of cores from 2 to 4 does not scale over 1.4x perfor-
mance for the SPLASH2 benchmarks. This shows that the current GINA
architecture using eCos SMP (or the benchmarks) are reaching the scal-
ability limit. Further experimentation using an emulated POSIX layer in
the simulator will allow us to separate the OS overhead from the architec-
tural scalability limit

2. The absolute value of 220 MOPS at 266MHz is a good indication of what
might be the next generation of this kind of processor. Expecting a fre-
quency of 300MHz and a more efficient communication mechanism, it is
reasonable to target 400 MOPS on average

3. eCos POSIX threading makes the implementation of OpenMP very diffi-
cult, unless a proper runtime is developed. In general, eCos non-standard
coding represents an issue for its future use

4. The same benchmarking can be applied using MPI benchmarks instead
of OpenMP, drawing some interesting consideration on the use of mes-
sage passing as opposed to shared memory (this requires message passing
support in the Operating System)

	Synopsis
	eCos Setup
	SPLASH2
	NASA Parallel Benchmarks
	Conclusions

