

ATMEL ATF280E Rad Hard SRAM Based FPGA

Bernard BANCELIN ATMEL Nantes SAS, Aerospace Business Unit

Atmel FPGA Key Points and Architecture

ATF280E Radiation Test Results

Atmel FPGA Key Points and Architecture

ATF280E Radiation Test Results

ATF280E Block-Diagram

FPGA Architecture Overview

Atmel Radiation Hardened FPGAs

Layout rules

- Improved to avoid multiple nodes charge collection during a single heavy ion impact
- SEU hardened Memory points
 - Core cell Flip-Flops, embedded memory, configuration memory based on radiation hardened Flip-Flops
- Controller protected by classical TMR
 - Including combinatorial logic and flip-flop of all states machines
- Clock and reset trees
 - Protected by DMR (resistive isolation path based on N and P isolated path carrying the same signal)
- Your Design is radiation Hardened by construction
 - No need for SEU/SET mitigation

Hardened Memory Cell and Isolation Path

ATF280E Key Features

- 288K equivalent ASIC gates
- 50 MHz clock speed
- 14400 core-cells (each 2 LUT + 1 DFF)
- 115 Kbit FreeRAM (900 modules of 32x4 blocks)
- 1.8V Core / 1.8V and 3.3V Cold-sparing I/Os
- Dedicated 1.8V LVDS buffers: 8 pairs Rx + 8 pairs Tx
- 3.3V PCI-compliant I/Os
- ATC18KRHA 0.18um CMOS technology (same as ATC18RHA) ASIC and AT697F LEON2 processor)
- MCGA472 (308 + 32 User I/O) / MQFP256 (148 + 32 User I/O)
- **Configuration load integrity check**
- Configuration self-integrity check
- **Boundary scan interface**

Atmel FPGA Key Points and Architecture

ATF280E Radiation Test Results

Application oriented SEU sensitiveness

ATC18RHA Radiation Performances

ATF280 and AT697F (100MHz Leon2FT) use the same ASIC technology

- ATC18RHA, 0.18µm technology
- TID tested up to 300 Krad without parameters drift
- No SEL up to 70 MeV.cm²/mg@125°C
- SEU:
 - ATC18RHA SEU hardened DFF: LET threshold of 30 MeV/mg/cm2)
 - sensitivity of the standard DFF to SEU (LET threshold of 2 MeV/mg/cm2).
- Silicon size increase by 30% to ensure RHBD
 - To be compared to 3 to 4.5 for non RHBD

Test Principles

Functionality and Immunity Test configurations

- Reset : configuration memory reset to low level ('0').
- Multiplier: configuration memory set to high level ('1').
- Shift register: core cell flip-flops and clock tree to upset.
- Inverted shift register: core cell flip-flops and clock tree to upset as the combinatorial path to transients.
- And chain: combinatorial path to transients.
- Free RAM: integrated FreeRAM block tested as 4K words of 16 Bits dual-port RAM.
- Free RAM with EDAC: integrated FreeRAM block tested as 4K words of 16 Bits dual-port RAM with an "Error Detector and Correction" EDAC system.

Test conditions

- Configuration clock frequency 1MHz
- IOs supply in the range 3V to 3.6V, nominal 3.3V
- Core voltage in the range 1.65V to 1.95V, nominal 1.8V
- Package temperature control for Latch-Up sensitivity

Test operator and location

- Test is run by HIREX (France)
- Test locations:
 - UCL Louvain, Belgium
 - BNL Berkeley, USA
 - RADEF Jyvaskyla, Finland

Single Event Latch-up

 No SEL detected over all the runs performed and in particular with the runs performed at 1.95V core voltage and 3.6V I/O buffer at LBNL with Xenon and 45 deg tilting angle that corresponds to a LET of 76 MeV/(mg/cm²) and a device under test (DUT) temperature of 125°C, up to fluence of 1.10+7 part/cm².

Cross section

- The configuration SEU error cross section per device versus effective LET is derived from the tests performed in UCL, LBNL and RADEF.
 - Configuration memory SEU saturated cross-section better than 5.10-3 per device (3.10-9 cm² per bit) with a LET threshold around 30MeV at Vcc min.
 - No SET was recorded with a LET of 43 MeV/(mg/cm²).
 - SET error cross-section per device about 1.6 10-4 at 60MeV/(mg/cm²).
 - FreeRAM Asymptotic SEU error cross-section per bit about 6.5 10-8 cm².

SEU sensitivity of ATF280E configuration bits

Bernard BANCELIN ATMEL

SEU sensitivity of ATF280E configuration bits

- ◆ LENL1.65∨ Reset
- LENL1.77VReset
- ▲ LBNL1.65 VInverter + Register
- LENL1.95 Register 125°C
- LBNL1.65 Register
- LENL1.77 VMultiplier
- ♦ LBNL1.65∨Multiplier
- LENL1.65VAND
- UCL1.65VMultiplier
- UCL1.65VReset
- JNFL1.65VReset
- → JAFL1.65∨Shift Register
- × JNFL1.65VAnd Chain
- × JNFL1.65VFree RAM
- JNFL1.65VFree RAM EDAC
- JNFL1.65VMultiplier
- Fitted Weibull curve

Atmel FPGA Key Points and Architecture

ATF280E Radiation Test Results

Conclusion

RHBD FPGA

- ATF280
 - samples already available and designs on going
 - Improvement of power-on current (maximum in worst case conditions 1A during 10µs)
 - Application note on-going on How to design board for proven start-up current
- Multiple die package AT697F + ATF280
 - High performance AT697F (Leon2 FT SPARC V8 100MHz)
 - Peripherals in FPGA
 - One version under development under CNES contract (SPARC slave, memories controlled by FPGA)
 - One version with SPARC master to be develloped
- ATFS450 development on going using 130nm SOI process
- New architecture for 2.5Mgates RHBD SRAM based FPGA for 2012, 65nm process

