New capabilities for fault tolerance in FPGA synthesis

ESA Radiation Effects Workshop

Dennis van der Sluis
Digital Design Flow Application Engineer

Darren Zacher
Product Specialist

Kamesh Ramani
R&D
Evolution of PLD/SEE parameters

- Anti-fuse devices evolved
 - Increased capacity & operating frequency
 - Increased SET occurrence
- Adoption of SRAM-based devices
 - Further increases to capacity & operating frequency
 - Typically less hardened, needs scrub
- New mitigation approach needed for SRAM- and antifuse-based devices

<table>
<thead>
<tr>
<th>Process Geometry</th>
<th>1999</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Capacity</td>
<td>~20k gates</td>
<td>~20M gates</td>
</tr>
<tr>
<td>Operating Frequency</td>
<td>~20MHz</td>
<td>~150MHz</td>
</tr>
<tr>
<td>Relevant SEE</td>
<td>SEU</td>
<td>SEU & SET</td>
</tr>
</tbody>
</table>
Precision RTL Plus Overview

- **Start Right**
 - Vendor Independence
 - Standard language support

- **Synthesize & Optimize**
 - Out-of-the-box Quality of Results
 - Physically aware synthesis
 - ASIC Prototyping Support

- **Achieve Design Closure**
 - Award-winning analysis & debug
 - Incremental flows
What Synthesis Provides Today

Capabilities for fault tolerance

<table>
<thead>
<tr>
<th>Feature</th>
<th>User Benefit, Problem Solved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe FSM</td>
<td>Protection against getting stuck in invalid state caused by Single Event Upset (SEU)</td>
</tr>
<tr>
<td>TMR support (Local)</td>
<td>SEU mitigation for Actel anti-fuse Families</td>
</tr>
<tr>
<td>Message customization & reporting</td>
<td>- Easy to find relevant messages</td>
</tr>
<tr>
<td></td>
<td>- Messaging policies</td>
</tr>
<tr>
<td>Repeatability</td>
<td>Provides deterministic netlist for configuration sign-off</td>
</tr>
<tr>
<td>FormalPro Integration</td>
<td>Automated setup and launch of formal equivalence check</td>
</tr>
</tbody>
</table>
Recommended SEU Detecting FSM Approach

- **Coding style**
 - Describe normal FSM operation through “case” statement
 - Specify a one-hot FSM encoding
 - Specify error reporting mechanism in “default” / “when others”

- **Synthesis tool behaviour**
 - Implements all possible states (including those unspecified in RTL)
 - Generated logic has a defined behavior for each possible 2^n values of state bits
 - “Invalid States” transition to state specified in “default” / “when others”
Recommended Radiation Hardening Methods

1. Combinatorial-Combinatorial (C-C) mapping
 - Combines two combinatorial cells with feedback as opposed to using flip-flop

2. Triple Module Redundancy

3. Triple Module Redundancy using C-C mapping

C-C mapping prevents usage of the hardened clock trees
Local TMR Support
(What Synthesis Provides Today)

Benefit: SEU Protection

- Replace each sequential element with a macro of tripled flop + voter
- Combinatorial paths remain unchanged
- Recommended for Anti-fuse architectures
Messaging Customization & Reporting

Benefit: easier debug, deploy desired messaging policies

- Sort messages easily
- Cross-probe to relevant file and line number
- Control message settings in GUI (suppress, change severity)
- Control reporting level

Tools > Set Options > Transcript Options

![Screen shot of Transcript Options with options set for sorting and filtering messages.]

Messaging Tabs

![Screenshot of messaging tabs showing various messages with different severities and categories.]
FormalPro Integration

Benefit: Allows verification of synthesis results as desired

- Supports all families from Actel, Altera, Xilinx
- Automated setup of RTL vs. gates in Precision
- Post P&R check available also
 - See P&R tool docs for restrictions
FormalPro Integration (cont’d)

- Supported optimizations within synthesis
 - Merged registers
 - Duplicated registers
 - Inferred counters
 - Inferred static SRL
 - Eliminated registers
 - Re-encoded FSM

- Unsupported optimizations
 - Retiming
 - RAM/DSP inference
 - Gated-clock conversion
 - Physical synthesis
 - Incremental synthesis
Areas of Research

- Mentor Graphics is researching new technologies to facilitate mitigation of radiation effects
 - Automation of Requirements Tracing
 - Fault Tolerant FSM
 - Triple Module Redundancy

Attendees are encouraged to participate in the beta program

Contact precision_beta@mentor.com or your local Mentor Graphics representative for more information