"An approach to system-wide fault tolerance for FPGAs"

Kirchhoff-Institute for Physics (Reconf. Hardware)

- years of experience in detector electronics
 - CERN (Geneva)
 ALICE Electron Trigger

 GSI → FAIR (Darmstadt) CBM Read-Out-Controller (Xilinx FPGAs)

Ionizing Radiation Effects

- ionizing particles increase # of electron-hole pairs by scattering electrons along their way
 - pairs try to recombine immediately, but
 - electric fields (e.g. powered transistors) hinder recombination
 - electron-hole pairs are separated
 - additional carriers in material (electrons & holes)
 - this leads to
 - Single Event Effects
 - destructive errors (SEL, SEBO, SEGR)
 - non-destructive errors (SEU, SET)
 - Cumulative Effects (Displacement, TID)

CMOS fault-tolerance in brief

- a lot of conventional CMOS techniques already exist
 - Heavy Ion Tolerant (HIT) cells [BV93]
 - Single Event Resistant Topology (SERT) [SM00]
 - Dual Interlocked Storage Cell (DICE)
 - ...
- not applicable to FPGA hardware circuits
 - conflict with reprogrammability feature
 - circuit design becomes too expensive

FPGA fault-tolerance in brief

- physically hardened chips
 - ceramics and advanced silicon
 - excessive shielding increases weight and size
- slightly modified CMOS architecture
- triple device redundancy
 - tripled costs, power supply, setup size
- fault tolerant design
 - no limiting constraints
 - unused chip area used for additional security features

Xilinx FPGA

- SRAM based → runtime reprogrammable, but radiation susceptible
 - DCM: clear signaling, skew elimination
 - IOB: buffered inputs, grouped in banks for different standards
 - PPC: may offer embedded PowerPC
 - BRAM: SRAM-based memory with build-in-ECC on Virtex4, Virtex5

• CLB: combinatorial logic, shift registers or RAM ff

Upset risks for FPGA components ctd.

• CLB + Routing Radiation Susceptibility

Designing SEU-tolerant circuits

- automated
 - TTM ++, area consumption --, power consumption --
 - everybody's tool, no additional knowledge about FT required
 - TMR tools under development:
 - Partial TMR Tool (BLTmr) Mike Wirthlin (BYU)
 - Xilinx TMR Tool (XTMR)
 - and others
- manually
 - TTM --, area consumption +, power consumption ++
 - extremely time-consuming
 - best optimization and fault tolerance results (designers know about their critical code patterns)

[RCVR05] Reis, Chang, Vachharajani, Rangan, August, Mukherjee, "Software-Controlled Fault Tolerance", ACM Trans. on Architecture and Code Optimization 2005

KIRCHHOFF-INSTITUTE FOR PHYSICS

How to secure configuration matrix

- eyecatcher: "Blind Scrubbing"
 - continuous refresh resets configuration memory (including errors) without performing a chip reset (exclusive Xilinx feature) → "dynamic reconfiguration"
 - BRAM, FF, PPC untouched
 - refresh cycle less than a second
 - SysCore: Actel ProASIC 3 + Flash Memory
 - Actel connected to Virtex SelectMAP and 2x4MB Flash memory
 - Intended: file system on flash to select uploaded configuration file dynamically
- watch out: do not use LUT as distributed RAM (SLICEM) or as shift registers, leave this for BRAM and Flip-Flops

How to secure configuration matrix ctd.

validation results

KIRCHHOFF-INSTITUTE FOR PHYSICS

How to secure configuration matrix ctd.

- counts <200: transistor threshold increases
- count 200: scrubbing turned on
- counts >200: scrubbing continuously holds current at constant values

[Røe] Ketil Røed, PhD thesis (to be published), private communication

How to secure System Architecture

- mitigation techniques
 - double module redundancy for functional units
 → can wait for the next reconfiguration cycle
 - triple module redundancy for dynamic data
 → unrecoverable data has to be kept valid
 - Parity/CRC error detection/correction in data paths and buses
 - \rightarrow prevent data pipelining failures
 - fault tolerant state machines (hamming-based state encoding with neighbored states have fixed/minimal Hamming distance)
 - \rightarrow detect illegal state crossings
- intended: maximum fault tolerance at minimum size

How to intelligently secure CPU

- pipeline stages are doubled
 - comparison of all stages before memory writeback
 - in case of difference: reset PC to last valid address and invalidate all following calculations

- Program Counter is tripled (data has to be kept valid)
 - in case of error or watchdog: reset cpu (disables deadlocks)
- keep in mind: Xilinx series 6 doesn't provide PowerPC

How to intelligently secure CPU ctd.

restart with

MW-stage PC

• Error Handling:

more at: IEEE proceedings FPL09 (P1.8) "An approach to system-wide fault tolerance for FPGAs"

JANO GEBELEIN

5

Beamtest

- Beam parameters:
 - Ru96 ions at 1,69 GeV \rightarrow LET: 3,3·10¹² eV·cm²/kg (Bethe-Bloch)
 - flux at FPGA: $1,4.10^{10} \le \Phi \le 4,21.10^{10}$ ions/cm²
- $e^{-} = 1,602 \cdot 10^{-19} \text{ C [J/V]}$
- $A = 1 \text{ cm}^2$ (approx. XC4VFX20)
- TID rate = $100 \cdot \text{LET} \cdot \Phi \cdot e^{-} / A = 740$ krad to 2,23 Mrad
- exceeds max. Virtex4 TID of 300 krad ^[FDLH08]
 → scrubbing may have saved the chip

[FDLH08] Fabula, DeJong, Lesea, Hsieh, "The Total Ionizing Dose Performance of Deep Submicron CMOS Processes", MAPLD 2008

CMOS architecture and **TID**

- TID susceptibility for Xilinx Virtex (MIL-STD-883 testing method 1019 at full dose rate)
 - Virtex 220 nm 100 krad [FDLH08]
 - Virtex-II 150 nm 200 krad [FDLH08]
 - Virtex-II Pro 130 nm 250 krad ^[FDLH08]
 - Virtex-4 90 nm 300 krad [FDLH08]
 - Virtex-5
 65 nm ~340 krad
 - Virtex-6
 40 nm ~380 krad

90nm and 65nm test transistors "appear capable of operating through TID stress well in excess of 1 Mrad(Si) with proper design margins" ^[FDLH08] (= reduced Timing) ^[Sch96]

[FDLH08] Fabula, DeJong, Lesea, Hsieh, "The Total Ionizing Dose Performance of Deep Submicron CMOS Processes", MAPLD 2008 [Sch96] Schwank, "Space and Military Radiation Effects in Silicon-on-Insulator Devices", 1996 [MIL-STD-883] http://www.dscc.dla.mil/Programs/MilSpec/listDocs.asp?BasicDoc=MIL-STD-883

Single Event Effect calculations

- #SEU = $\sigma \cdot \Phi \cdot \omega / A$
 - σ cross section [cm²/bit]
 - depends on LET
 - given by Weibull Fit:
 varys by 2-4.10⁻⁹ cm²/bit

- Φ particle flux [1/spill] = 1.7-5.0.10⁵ ions/(cm²·spill)
- ω design density [bit] = 7.242.624 (XC4VFX20)
- A FPGA chip area [cm²] = 1 cm² (approx. XC4VFX20)
- #SEU per particle = $\sigma \cdot \omega / A = 0,014-0,029$
- #SEU per 15s spill = $\sigma \cdot \Phi \cdot \omega / A = 2k$ to 15k

How to intelligently secure CPU ctd.

- CPU Test results
 - GSI FOPI beamtime (3 weeks long-term test)
 - 96Ru (Z=44, 42+); 1.69 GeV
 - -5.10° ions / 15s spill
 - #SEU per 15s spill: 2k to 15k

KIRCHHOFF-INSTITUTE FOR PHYSICS

How to secure simple BRAM blocks?

- BRAM
 - made of SRAM cells
 - therefore susceptible to radiation
- increased susceptibility
 - SEU cross-section higher than for CLBs (Virtex4) [GKS+04]
 - maybe manufacturing issues: BRAM cells use smaller channels, thinner oxide, less metal than CLBs ^[GKS+04]
 - #MBUs for Virtex4 = 3·VirtexII = 69·Virtex ^[QGK+05]
- mitigated chance of hit
 - general designs use more CLB configuration bits than BRAM bits → theoretically balanced SEU cross-section

[GKS+04] George Koga Swift Allen Carmichael Tseng, "SEUs in Xilinx Virtex-4 FPGA Devices", 2004 [QGK+05] Quinn Graham Krone Caffrey Rezgui Carmichael, "Radiation-Induced Multi-Bit Upsets in Xilinx SRAM-Based FPGAs", 2005

KIRCHHOFF-INSTITUTE FOR PHYSICS

How to secure simple BRAM blocks? ctd.

- current approach:
 - each 2 parallel ECC BRAM contain identical data
 - DMR implementation, but
 - ability to correct 2+ errors in a single word line
 - each 64bit line checked for errors via continuous loop
 - single error corrected and rewritten immediately
 - double error fetched from second ECC BRAM (max security)

How to secure FPGA I/O Buffers (IOB)

- can be secured by TMR ^[xapp197]
 - combinational logic tripled
 - I/O pins tripled and hard-wired outside FPGA (no external logic required)

- I/O Buffers are not that critical [RWCG02]
 - just 1 of 324 IOB configuration bits and 2 two-bit combinations are able to flip an IOB behavior

[RWCG02] Rollins, Wirthlin, Caffrey, Graham, "Reliability of Programmable Input/Output Pins in the Presence of Configuration Upsets", 2002

JANO GEBELEIN

KIRCHHOFF-INSTITUTE FOR PHYSICS

Upset risks for FPGA components

- Configurable Logic Blocks (Routing, LUT, MUX)
- Embedded Block RAM (no distributed SLICEM memory)
- Flip-Flops in combinational logic
- XtremeDSP Slices (DSP48) × → temporal Redundancy
- Power PC (esp. internal Cache) > FT Soft Core CPU
- Digital Clock Managers (DCM) × → temporal sampling
- I/O Buffers (IOB) → 3x hard-wired
 - \rightarrow everything is feasible
 - \rightarrow Virtex6/Spartan6 without PPC \rightarrow instead more Slices

feasibleuntouchable

Lessons Learned

- creating individual fault tolerant designs without TMR has to be done manually and is very time consuming
- what we get:
 - instant fault tolerant system with default components
 - CPU standard MIPS architecture
 - Linux compatibility
 - maximum fault tolerance
- PowerPC in Virtex is obsolete \rightarrow SoftCore CPU is required

Questions? Please get in personal contact with me!

,5