

TRP activity

Further Development of the Spacecraft Controller on a Chip

EXECUTIVE SUMMARY

EUROPEAN SPACE AGENCY CONTRACT REPORT

The work described in this report was done under ESA contract. Responsibility for the content resides in the author or the organisation that prepared it.

ESTEC Contract No. 20167/06/NL/FM

Prepared by :Franck KOEBELEADS Astrium1, boulevard Jean MoulinZAC de la Clef Saint Pierre - CS 3050378997 Elancourt CedexFRANCE

ESA STUDY CONTRACT REPORT

No ESA study Contract Report will be accepted unless this sheet is inserted at the beginning of each volume of the Report

* ESA Contract N°	SUBJECT		NAME	OF
20167/06/NL/FM	Further Developme	CONTRACTOR		
	Controller on a Chip		EADS Astrium	l
	Executive	Summary		
* ESA CR N°	* STAR CODE	No of Volumes : 1	CONTRACTOR'S REFERENCE :	8
		This is volume n°1	R&D.SCOC3.RP.01177. TR	V.AS
			Issue 0 Rev 1	

ABSTRACT:

The goal of the contract "Further Development of the Spacecraft Controller on a Chip" is to demonstrate the feasibility, develop the methodology and IPs, and make the study of the SCOC3 ASIC up to the Logic Review standard.

The work of the contract was necessary to assess and realize a very high integration level of functions coming with the increasing demand of performance in terms of processing, power and mass.

Increasing amount of functionalities integrated into the same ASIC implies that the development of a whole system relies on the use of pre-developed and pre-tested IP functions. The end target is to be able to construct a whole system by "simply" integrating IP blocks. This often comes difficult and the alternative is still to rely on modified IP blocks but very well tested and with a well-known history.

The requirements and functionalities of SCOC3 come from the SOW of the contract and a review of the customer needs. It was then decided to implement a demonstrator of this SCOC3 into a commercial reprogrammable FPGA, making the design available for a validation of the performances and functionalities by HW or SW teams.

Gate level design methodology currently used for ASIC development has to be improved to focus on the validation of the whole system design and take into account its greater complexity.

This work described in this report was done under ESA contract. Responsibility for the contents resides in author or organisation that prepared it.

Names of authors:

Franck KOEBEL (EADS Astrium)

ESA STUDY MANAGER	ESA BUDGET HEADING	
Mr Roland WEIGAND		
DIV: TEC-EDM		

*Sectors to be completed by ESA

ESA R&D n° 20167/06/NL/FM

Further Development of the Spacecraft Controller on a Chip

SCOC3 Executive Summary Report

	Name and Function	Date	Signature
Prepared by	Franck KOEBEL SCOC3 Design Manager	2010412040	S: MhA
Verified by	Marc SOUYRI ASIC/FPGA Design Expert	20/04/2010	Cennyi
Authorized by	Mathieu VANDENBOSSCHE Product manager	21.04.2010	æ.

Document type	Nb WBS	Keywords

DOCUMENT CHANGE LOG

Issue/ Revision	Date	Modification Nb	Modified pages	Observations
0/0	26/06/09			First Issue
0/1	02/02/10			ESA comments

PAGE ISSUE RECORD

Issue of this document comprises the following pages at the issue shown

Page	lssue/ Rev.	Page	Issue/ Rev.	Page	lssue/ Rev.	Page	lssue/ Rev.	Page	lssue/ Rev.	Page	lssue/ Rev.
all	0/1										

TABLE OF CONTENTS

1	INTRODUCTION	6
1.1	CONTEXT AND RELEVANCE OF THE STUDY	6
1.2	ACRONYMS	6
2	DESIGN OBJECTIVES AND CONSTRAINTS	10
2.1	Background	10
2.2	Design objectives	10
3	MAIN TOPICS	12
3.1	SCOC3 ARCHITECTURE AND PERFORMANCES	12
3.2	DISCUSSION ON THE IP CORES	14
4	METHODOLOGY AND TOOLS	18
4.1	Methodology	18
4.2	TOOLS	20
5	EVOLUTION OF STUDY	22
6	CONCLUSION	22

LIST OF FIGURES

Figure 1 : SCOC3 overall architecture	13
Figure 2 : LEON3 processor core block diagram	15
Figure 3 : AHBR block diagram description	15
Figure 4 : IPMON on AHB environment	17
Figure 5 : Example of Write RMAP command list and reception	17
Figure 6 : Spacewire assurance report sheet	19
Figure 7 : Overview of the SCOC3 testbench structure	19
Figure 8 : KerDive board	21
Figure 9 : Overview of the Modelsim simulation	21

1 INTRODUCTION

1.1 CONTEXT AND RELEVANCE OF THE STUDY

EADS Astrium has previously developed a SCOC prototype design along with an evaluation board (BLADE), as documented in Technical Documentation from Call-Off Order #3 (Spacecraft Controller On-a-Chip) of ESA contract #13345/99/NL/FM (Building Blocks for System On-a-Chip).

The interest of SCOC3 is to integrate most of the functions of an On Board Data Handling system, and to reduce significantly the cost of embedded electronics. The chip is named SCOC3 in the following document.

The present study is the continuation of the above mentioned "SCOC1" contract and EADS Astrium internal R&D activities ("SCOC2"). The aim of this activity is:

- to replace the LEON1 version used in the first contract by the LEON3,
- to improve the architecture in terms of performance,
- to develop new IPs that are missing and to validate them,
- to improve existing IPs and to verify them,
- to validate the SCOC3,
- to assess the gate level design phase by performing synthesis and static timing analysis on a selected technology.

A special attention has been paid to IP licensing problem in order to allow reuse and ASIC manufacturing.

1.2 ACRONYMS

Name	Description
AHB	Advanced High-performance Bus
AHBR	AHb to ahb BRidge
AMBA	Advanced Microcontroller Bus Architecture
AOCS	Attitude and Orbital Control System
APB	Advanced Peripheral Bus
ASIC	Application Specific Integrated Circuit
ASSP	Application Specific Standard Product
AUS	AUthentication Status
BC	Bus Controller
BCRT53	IP 1553 BC/RT/BM

BM	Bus Monitor
CAN	Controller Area Network
CCSDS	Consultative Committee for Space Data Systems
CLCW	Command Link Control Word
CPDU	Command Pulse Distribution Unit
CPDUS	CPDU Status
CDU	Control Processing Unit
	Central Processing Unit
DMA	Direct Manager Access
	Direct Memory Access
DMAIM	DMA for TeleMetry
DRAM	Dynamic Random Access Memory
DSU	Debug Support Unit
DSU3	Debug Support Unit for LEON3
EDAC	Error Detection And Correction
EEPROM	Electronically Erasable Programmable Read Only Memory
ESA	European Space Agency
FAR	Frame Analysis Report
FPGA	Field Programmable Gate Array
FPU	Floating Point Unit
GPS	Global Positioning System
GR	Gaisler Research
GREPU	Gaisler Research Floating Point Unit
GREPU-FT	Gaisler Research Floating Point Unit Fault Tolerant
GRUB	Gaisler Research I IBrary
НАРМА	allh Asunchronous Direct Memory Access
	Landware Description Landware
	Hardware Description Language
	HouseKeeping
HKPF	HouseKeePing Function
HW	HardWare
I/F	Interface
I/O	Input/Output
ICS	Improved Channel Selection
ICTL1	SCOC3 Primary Interrupt Controller
ICTL2	SCOC3 Secondary Interrupt Controller
IEEE	Institute of Electrical & Electronics Engineers
INRX	Spacewire INTernal for Reception
INST	Instruction
INTX	Spacewire INTernal for Transmission
Ю	Input / Output
IOAHBCTL	IO AHB Controller
IP	Intellectual Property
IPL	Inter Processor Link
IPMON	IP MONitor
IRO	Interrupt ReQuest
IRQ	Multi Drogossor Interrupt PaQuest controller
IEON	(not an agronym) SDADC V9 22 bit processor
	Lesson Conoral Dublic Linear
LGPL	Lesser General Public License
	Least Recently Used
LSB	Least Significant Bit
MACS	Modular Attitude Contol System
MAP	Multiplexed Access Point
MAPTCR	MAP TC Recorder
MISC	MISCellaneous

MMU	Memory Management Unit
MPW	Multi Project Wafer
MSB	Most Significant Bit
NRZ	Non Return to Zero
OBC	On Board Computer
OBDH	On-Board Data Handling
PC	Personal Computer
PLL	Phase Locked Loop
PM	Processor Module
PROM	Programmable Read Only Memory
PTD	Packet Telecommand Decoder
PTME	Packet TeleMetry Encoder
OPSK	Ouaternary Phase Shift Keying
R/W	Readable/Writable
RAM	Random Access Memory
RD	Reference Document
RHI	RX Host Interface
RMAP	ReMote Access Protocol
RMW	Read Modify Write
ROM	Read Only Memory
RS	Reed Solomon
RST	ReSeT
RT	Remote Terminal
RTL	Register Transfer Language
SA	Sub Address (1553 context)
SCET	SpaceCraft Flansed Time
SCOC	Spacecraft Controller On a Chip
SCOC1	Spacecraft Controller On a Chip 1 (based on LEON1)
SCOC3	Spacecraft Controller On a Chip 3 (based on LEON3-FT)
SCTM	SCOC3 CCSDS Time Manager
SDRAM	Synchronous Dynamic Random Access Memory
SET	Single Effect Transient
SGM	SafeGuard Memory
SIF	Service InterFace
SIP	System_In_Package
SI	System-In-I ackage
Sof or SOf	System on Chin
SOFT	SOFTware
SPARC	Scalable Processor ARChitecture
SoW	SpaceWire
SpW_RMAP	SpaceWire Remote Memory Access Protocol
SRAM	Static Random Access Memory
STME	SCOC3 PTMF
SW	SoftWare
SW/M A	SWitch MAtrix
	International Atomic Time ("Temps Atomicule International" in
1711	Erench)
ТС	ToloCommand
TCDD	ToleCommand Decoder Dives
тсі	Tool Command Language
TCD	Tolo Command Daduadant madril
	TY Lost Interface
1111 TM	
1 IVI	1 elemetry

TMTC	TeleMetry and TeleCommand
ТТ	Тгар Туре
UART	Universal Asynchronous Receiver Transmitter
USO	Ultra Stable Oscillator
USTM	USer TeleMetry
UTC	Coordinated Universal Time
VASI	Very Advanced Sparc Interface (ERC32 Companion Chip)
VCA	Virtual Channel Access
VCID	Virtual Channel ID
VCM	Virtual Channel Multiplexer
VHDL	Very High Speed Integrated Circuit Hardware Description Language
XSTR	Cross-STRapping

2 DESIGN OBJECTIVES AND CONSTRAINTS

2.1 BACKGROUND

The telecommunication satellite constellation market and the small satellite market drive to dramatically decrease spacecraft equipment weight, consumption budget and recurrent price. The emerging micro satellites and nano satellites generation generates also a demand for much more integrated equipment. ESA and industrials developed in the years 80 and 90 sets of ASICs to reduce the size of electronics. Functions such as the VCA, VCM and PTD used to build a CCSDS TM/TC system, bus interfaces such as MACS, OBDH, 1553, or error correction chips (EDAC, Reed-Solomon, Viterbi...) were manufactured as Application Specific Standard Products (ASSP).

In the past years, the ASICs developed under ESA contracts were offered to European industrials as ASSP. Most of these chips were designed by using the VHDL language creating software macros that can be reused under certain conditions. The idea by now is to merge most of these available blocks in a single ASIC called "System-on-a-Chip" that would be able to perform a large number of the Data Management System functions of a platform.

The SCOC3 is the achievement of this approach for Space system, leading to the SIP (System In a Package) emerging concept. The SIP will also contain:

- memories (SDRAM, SRAM, EEPROM, Flash...)
- drivers (e.g. CAN, 1553...)

2.2 DESIGN OBJECTIVES

The system-on-a-chip approach is a necessary innovation for the European industry. It became feasible as the number of gates per ASIC had grown enough. There are at least two main domains of applications that require ASICs in Space, which are:

- The digital signal processing for which the available technologies are far from the requirement in terms of gate and in term of limitation of the power dissipation. These functions are by now far from the System-On-a-Chip concept since they integrate for some of them hundreds of ASICs.
- The Data Management Systems composed of elementary ASICs designed by the industrials or bought as ASSP after their development under an ESA contract. These functions can be integrated together with the microprocessor into a System-On-Chip to reduce power and mass budget.

By now Data Management Systems are built around a microprocessor, backplane bus interface, external serial bus interfaces, positioning functions such as GPS, TM/TC functions... The first contract has proven that it is possible to integrate most of these functions on a single die. The final objective of the SCOC series of activities is to produce an ASIC, available as off-the-shelf component to European Industry, which will simplify the architecture of future onboard control and data handling (OBDH) systems. The device functionality is comprehensive such as to satisfy a large variety of requirements, yet is scalable such as to be able to work in systems not using all of the features at reduced power consumption.

Earth observation and scientific satellite developers are candidates to use the SCOC3. Work has been performed in order to convince them that the reliability of an integrated solution is acceptable. Robust redundancy schemes have been proposed. The use of cache was a main concern for real time software developers. Most internal studies in this domain lead to a solution satisfying both hardware and software teams.

SCOC3 developed in this activity is a single chip Spacecraft Control System ASIC comprising the following functions:

- A LEON3-FT SPARC V8 processor including DSU for debug with GRFPU-FT floating point Unit and Memory Management Unit (MMU)
- 2 * 1553 BC/BM/RT controllers (each exclusive with the CAN controller that shares pins)
- 2 * CAN controllers (each exclusive with the 1553 controller that shares pins)
- A CCSDS TC decoder

EADS

- A CCSDS TM encoder
- An Housekeeping module
- A SCOC3 CCSDS Time Management controller (SCTM)
- 8 * SpaceWire controllers
- 4 * UART controllers
- 2 * memory controllers (One dedicated to CPU and one dedicated to IO)
- An AHB bus monitoring
- A MAPTCR with CONF

The goal of this activity is to have a verified RTL design which is ready to be mapped into an ASIC. The present activity includes the architecture definition of the component, the coding of its HDL model including IPs (existing, new and procured) and the verification by simulation and by prototyping at hardware level, and preliminary synthesis.

The activity covers the Specification and Architectural Design phases of the ASIC development according to ECSS-Q-60-02A.

3 MAIN TOPICS

3.1 SCOC3 ARCHITECTURE AND PERFORMANCES

The architecture of the SCOC3 is developed with modularity around validated blocks and new ones. This modularity is based on the internal bus structure and on standardized services provided to the blocks, like interrupts management and time distribution, independently of their intrinsic functionality.

Internal bus performances

The analysis of standard system requirements drives the SCOC3 bus architecture selection and leads to a choice of 2 AMBA AHB busses. The performances of this architecture for the targeted application have been evaluated and proven to be good. The hardware evaluation platform provided with the KerDive board is an excellent tool for architecture implementation and evaluation.

Data Transfer

The integration of complex IO interfaces within the same chip as the CPU needs a study of data exchanges mechanisms between the peripherals. In the SCOC3, DMA mechanisms have been distributed over each function. This allows having high and efficient transfer rates with a little use of the CPU.

SCOC3 Control

The SCOC3 is mainly controlled through the APB bus. All IP cores are connected to this bus for configuration and status register access. This structure allows the control of the SCOC3 by any AHB master connected to the CPU AHB bus. Basically the LEON3-FT CPU core acts as the main system controller, but the SCOC3 can also be configured by Spacewire thanks to RMAP protocol.

Time Management

The Time management and time distribution is not a specific issue of SCOC3. But SCOC3 has to anticipate the need of synchronisation between peripherals in its architecture, as the design is frozen in an ASIC. A synchronisation switch matrix is implemented into SCOC3 to adapt the function to specific system requirements.

Architecture confirmation

Based on the first contract and follow-up internal activities, the architecture of SCOC3 has been evaluated in terms of performances. Bottlenecks have been identified and taken into account for SCOC3 in hardware. Evolutions mainly consist in an upgrade of LEON CPU and a modification of the internal bus architecture to offer simultaneously higher performances in terms of computation and data transfer rates.

Figure 1: SCOC3 overall architecture

Two AHB busses, the CPU AHB for high performance, flow controlled interfaces, and the IO AHB for medium data rate interfaces, form the basics of the SCOC3 internal bus structure. LEON3-FT CPU is the main user on the CPU bus. The APB Busses allow accessing to all registers implemented in the different IP cores. Any master on the CPU AHB Bus can access to the APB busses as Master through the APB Master interfaces. It is then possible to control the SCOC3 through the UART DSU interface for example. The hardware management of registers is split in three APB busses in order to separate different main functionalities such as processing, peripherals and TM/TC.

3.2 DISCUSSION ON THE IP CORES

We can distinguish four main sources for the IP cores used within the Spacecraft Controller on a Chip 3: IP provided by ESA, commercial IPs, Astrium ASIC design modified as IP cores, and IP fully developed in the frame of this activity.

LEON3-FT: CPU core

LEON3-FT SPARC V8 core developed by Gaisler Research provides a powerful highly configurable CPU core available for integration within System on a Chip. It has many improvements since LEON1 since for instance this latter was not very well adapted to the use within a SoC, as LEON1 core can be seen itself as a SoC. Directly attached to the CPU is the GRFPU which is well adapted to fast floating point computations. There is also the possibility to use the MMU if needed. We choose to get a big cache size (2*64 KB) in order to improve performance as the technology allows big memories. It was noted however that this leads to a critical timing path in the LRU decoder.

SCTM: SCOC3 CCSDS Time Management

The SCTM provides all the functionalities for the on board CCSDS Time Management by integrating time keeping, alarms and pulse per second generation, event time tagging, time correlation and resynchronisation. The SCTM is based on an ESA IP core, but an important work has been done on this IP to offer even more pulse generation frequencies in order to better fit to AOCS computation requirements.

STME: SCOC3 Packet Telemetry Encoder

The STME provides all the functionalities of the ground telemetry system, integrating the PTME IP from ESA. The functionalities have been wrapped into a single module including an internal memory buffer. Integration of PTME into SCOC3 has been performed without any major problem.

DMATM: DMA TeleMetry

To improve software management for STME, three DMA channels have been added in order to transfer Telemetry packets from the IO memory to the STME Virtual Channels. Several management modes are available including a dedicated status link with the Spacewire UserTM.

AHBR & HADMA: AHb to abb BRidge & AHB Asynchronous Direct Memory Access

The AHBR & HADMA integrated into SCOC3 are the links between CPU and IO AHB busses.

Both allow using different clock frequencies on CPU AHB and IO AHB busses. They also manage different burst or access sizes. AHBR processes write accesses as posted writes. HADMA works like a usual DMA for its main function.

• Interconnection block between AHB Slave interface and AHB Master interface

TCDD: Packet Telecommand Decoder

The TCDD is an improvement of the TC IP already implemented in SCOC1. The TC IP was derived from the well known PTD ASIC (MA28140). Work at segment layer level has been done in order to change MAP interfaces for CPDU, deciphering or cross-strapping purposes. All the four status registers FAR, CLCW, AUS, CPDUS can be read and written through APB. A local memory has been implemented in order to deal with authentication. This memory is scrubbed and protected by EDAC.

BCRT53: Mil-Std-1553 controller

The BCRT53 design is derived from the IP1553 used in VASI ASIC on EADS Astrium PM32 processor board. It integrates the Bus Controller, Remote Terminal and Bus Monitor capabilities on the Mil-Std-1553 bus. The BCRT53 design has been modified in order to get a synchronous reset to deal with SET sensitivity.

Spacewire-RMAP:

The Spacewire IP core allows achieving transfer rates at up to four times the system frequency. The IP was initially developed for SCOC1, and it was extended by an RMAP function for SCOC3. RMAP write command principle is given on Figure 5 as an example. The VHDL structure of the IP core clearly separates the Spacewire protocol management from the host interface. But including the RMAP function was more intrusive because it has to be done between the codec layer and the host interface. In order to limit interfaces and gate counts, we also simplified the host interface to have only one AHB master.

HKPF: House Keeping "Packetizer" function

The HKPF function automatically generates telemetry packets transferred to the virtual channel 6 of the STME. The telemetry sources are internal – telecommand report, time packet, context RAM dumping - for SCOC3.

IPMON: IP MONitor (Figure 4)

The IP Monitoring (IPMON) module is used to spy an AHB Bus, recording trace and statistics data. This IP is designed in the context of the SCOC3 project but can be used as a generic AHB spy module. It has sophisticated triggering conditions to trace the exchanges on the IO AHB bus.

AMBA small IPs

Small IPs specified from the SCOC3 functional specification have been developed to enhance the SCOC3 internal architecture, for instance the **IO AHB C**on**T**ro**L**ler function (IOAHBCTL).

Figure 4 : IPMON on AHB environment

In SCOC3 functional specification, there is a requirement for a monitoring interface with upgraded functionalities. This IP is linked to the IO AHB bus in order to get some traces during internal exchanges on the bus.

Figure 5 : Example of Write RMAP command list and reception

The linked list of packet for transmission can be directly generated as a standard C-like linked list. When sending a RMAP write command, two segments must be used:

- One segment for RMAP header
- One segment for data in Exchange memory

4 METHODOLOGY AND TOOLS

4.1 METHODOLOGY

The particularity of the development of a SoC comes principally from the use or re-use of IP cores coming from different sources. Each block has its own particularities.

The design flow for such complex ASIC has to include hardware verifications in addition to simulation verification. This leads to many iterations with either HW teams or SW teams using the same breadboard.

Initial Analysis

The functional specification of a SoC design cannot be a self-contained document as it is based on the use or reuse of existing IP cores. But the SCOC3 functional specification has been established not only according to requirements from the contract but also from requirements from the user side. This leads to a preliminary specification, defining which module should be used and how many times. Trades off about the technology were also made during this phase in order to start as soon as possible the feasibility study from the foundry point of view. Schedule constraints related to the ATMEL space flow also needed to be taken into account, even though manufacturing was not part of the present activity.

Assurance of IP cores

As we were dealing with IPs coming from different providers (ESA, Gaisler Research, internal...) we had to assess the status of availability and the licensing conditions attached to these IPs. The IP Assurance Report was written in order to manage all these subjects. An example of an "IP Assurance sheet" is given in Figure 6. A history of IP modifications is also included in the document. Early in the development, the licensing model for the LEON3-FT has to be taken into account. A commercial license was bought in order to be compliant to GR model. For other IPs a license had also to be bought for SCOC3.

Development of new IP core

The SCOC3 functional specification required changes in existing IPs. These modifications have been done in an incremental way in order to always guarantee the full functionality. One of the major changes was the RMAP add-on to the Spacewire IP and also its AMBA interface simplification. The development goal was to produce a re-usable IP core.

Another new IP is an AHB monitoring unit, as there are two AHB busses on SCOC3, and only one of them can be debugged by the existing trace buffer mechanism of the LEON3-FT DSU. The IP was developed considering requirements from ESA.

Spacewire I/F										
Function	Spacewire I/F implementing ECSS-E50-12 standard									
Status	Modified in this R&D Used in SCOC1 Yes									
Provider	Astrium	N.A.								
License Type	(b) modified in this contract									
delivery	Source code									
Modifications to be performed to the IP										
• The previous IP had 3 ports on AHB bus (2 masters for DMA transmit and receive, 1 slave for										
transmit). The slave I/F is suppressed. The two masters are merged into one.										
RMAP protocol is implemented										
Verification status										
Will be verified in this R&D										
Known use and experiences										
Tested in SCOC1 and by various users in Europe since Spacewire IP belongs to ESA catalog										

Figure 6 : Spacewire assurance report sheet

Like on this table, there is for each block, a table which gives the main information according to ownership, licensing,

background, verification status...

Figure 7 : Overview of the SCOC3 testbench structure

Most of the emulator composing the SCOC3 testbench are issued and re-used from the IP core testbench. The standardization of emulators allows inter-operability at upper level. The TM emulator is in fact an instantiation of functions provided with the PTME IP. The controller emulator allows synchronisation of the emulators altogether.

Architectural Design

During the architectural design phase, the IP cores were developed according to their detailed specification, and the IP cores were integrated into the overall architecture of SCOC3.

The detailed architecture of each IP core is provided in IP specific documents, and the overall SCOC3 architectural design document refers to these IP documents.

For the simulations, the main point is the re-use (and eventually porting) of simulation environments from the IP core up to the system level. The simulation environment is illustrated in Figure 7. It uses emulators which are driven by text-based scripts.

Verification Plans have been written, one more specifically for simulation: SCOC3 Simulation Plan and Report and one more dedicated to the prototyping board: HW/SW verification plan.

Hardware Prototyping

Prototyping has been performed using a commercial Virtex4LX200 FPGA on the KerDive board shown in Figure 8. This FPGA allows us to wholly integrate the SCOC3 and tests most of its functionalities on a board. We also used the MAEVA board from a previous development to test the SRAM interface. This was an iterative process, allowing quick bug fixes, and we had the feedback of SW teams, doing preliminary SW development using an identical board.

Gate Level Design

The Gate Level Design has been made as far as to allow the Logic Review according to ATMEL flow. This means that we have made the Design Start Review and the Feasibility Review during this phase. We also made any simulations, timing analysis and synthesis in the targeted ATC18RHA ATMEL technology. We had many exchanges with the ATMEL design centre in order to be ready for the Logic Review.

4.2 TOOLS

SCOC3 development has been using software tools for classical ASIC development. This section aims to discuss on each of these tools, mainly VHDL simulator and synthesis tool when used to develop SCOC.3

Simulation tool

A commonly used VHDL simulation tool used is Mentor Modelsim (Figure 9). This tool is well suited for verification of SCOC3 at RTL level. A standardization of the methodology used for the development of testbench as well as basic rules for the VHDL RTL description eases the simulation of complex SOC.

Synthesis tools

Synplify is a powerful synthesis tool for quick FPGA development. The TCL scripting possibilities ease the use of this tool for complex SoC designs. We also use Synopsys for the ASIC technology with the 3.2 ATMEL design kit. Prime Time was also used to get the accurate timing margin in order to be ready for the Logic Review.

Figure 8 : KerDive board

The KerDive board integrates all environments necessary to evaluate the SCOC3 in a dedicated application test environment.

ModelSim SE PLUS 6.31														- 8 X
Eile Edit ⊻iew Compile Simulate Ad	d Wave Tools	Layout Window												Help
🗋 🖨 🖬 🖓 🗴 🌬 🛍 🗅 🔿	M 8: %	불불권회		🗱 🦮 🌾	ତ୍ ର୍ ବ୍ ଡ	Help	8	s 🖽 🙀 🕅	***	100 n	• \$ 11 11 1	2 10 19 1	🛍 🔛	
Contains 🧷											XIX D	E Layout S	imulate 🔻	
wave - default											,			• # X
Messag	jes													
🔶 Leon3 Regs														
Alb1/r_x_ctrl_inst Alb1/r x_ctrl_ec	7FFFFF2D 400021C4	01I I J010I	118210600F 102 11400021BC 140	2A00. J7FF.	III I IID021 ID III I II40001	221A01C II 0001E8C II	II ID20. 100A2	112 JUD202	0. 1 JD403A0.	10421II 10 14000II 14	10000. 1119C0: 0004. 111400	1 II4000 1400		102800089 340001ED8
□ ◆ /lb1/r_w_s_t	00	00												
Atb1/r_e_cwp BL AHR Short	7	0 17			16									
■ ♦ haddr	40001E84	4I [0][40]	11110.14	0.10.11 <mark>.</mark> 0.1	11111111	000	I I II000 II40		p. 11 110000	11401111	1 I I Io. 140.	11110140	11111100.	
Intrans	3	3 10 113	10 113	10 10	1 11(12	13	1,100 113	11	00.00	ma	100 (13	0 13	10	100 113
■ ♦ hburst	1	1 10 11	To Ti	lo h	To 11	b)(j)]1	Jo		31	Xu Ti	lo h	ю	<u>n</u>
🖻 🔶 Jhsize		2												
D Something in the second s	U 401FFF88	0 0000 I 100000		01	111000000021000	000	14000 Ilooo	00000 [401F		1 1018	01C3 111000	0. 1300. 1 100	000	0001010
🖸 🔶 Jindaba	00000000										000000000000000000000000000000000000000			
D So Intesp So Intesdy	0		າກກາກກາ	n n	nnnnnrn	n nnn		nnnnnn					nnnnnn	
🖬 🔶 Register Files														
IO AHB Short	04000080	04000050			101	ADDOLC				01800048	01600	144		
E 🔶 Intrans	0	0			10	IIo	110			110	110	-		
 Invite Invite 														
D Ansize		2												
D- Dimaster	0	0				00000 1000000	Y0000000			100010500	50000	100		
D + hrdata	00000000	00000000				-0.00000000000000000000000000000000000	00000002	000002			00000	000001C3		
E 🔶 hresp	0	0												
Inteady s c scoc3/z/joinhib	0					, u								v.
8.8.9 N	low 162728.82 ns	612000 ns	61	3000 ns	61	4000 ns	615	000 ns	6160	100 ms	617	000 ns	618000	ins in the second second
Curso	or 2 3190.567 ns			613190.567	ns				744726	046 ps				
		4											Ľ	
wave wave														< F
Transcript						HHE								+ 4
Note emu_sp >	CUTC 444 4000		at 6	513.954 us										
 Note emu_sp > MEMORY TEST OF CAU Note emu_sp > 	CHES and of DSU	reace butter (d_13)	ar 614.267 us at 6	\$14.704 us										
Note emu_sp > \n\vVersion 30010D09 a Note emu_sp > \n\v*** CORRECT DATA	at 616,860 us 13430008 at 615	9.860 us												
Note emu_sp > \n\r*** CORRECT DATA Note emu_sp >	:1B430008 at 62	2.017 us	at 6	22.517 us										
Note enu_sp > FRAME 0x00000022 a Note enu_sp >	d 623,485 us		at 6	23.798 us										
Note emu_sp > Value Read : 0x00FF400 Note emu_sp > Value Read : 0x00000000	FF at 829.548 us 0A at 831.548 us													
 Note emu_sp > Value Read : 0xFF0080 Note emu_sp > Value Read : 0x00EE00 	00 at 633,423 us													
Note end, sp > FRAME (v000000073 a	4 636 798 10		at 6	\$35.892 us										_
C Transcrint	a 600.750 Us													14
Annue 222 228 220 et Donte 2	in and All And a be	entrin 94ior **	Þ								e11021201	4. 619607670 -		11
140W: 002,720,020 ps Detta: 3 \$	amout manantichko	.pusiv_onine_1	.0								011021304 pt	10 61050/512 p	•	10

Figure 9: Overview of the Modelsim simulation

Wave signals show LEON PC (Program Counter), INST (Instr. code), CWP (Current Window Pointer), TT (Trap Type) registers and both AHB busses.

5 EVOLUTION OF STUDY

Follow-up activities will include the ASIC layout and manufacturing in the frame of ATMEL space MPW programme, validation, and the development of SW tools and drivers. The final goal is to establish SCOC3 as a standard component (ASSP) greatly available to all users in the ESA member and participating states.

6 CONCLUSION

The study performed for this contract puts in evidence the absolute necessity of a reliable and effective design methodology of SoC development. It allows speeding up the architectural development phase of a large design as shown for the development of SCOC3.

This methodology is mainly based on the availability for the European space community of a library of validated IP cores. This is now well supported by ESA, as indicated by the development of the PTME, the Spacewire IP, the HurriCAN controller and a collection of small but indispensable IP. It also relies on the commercial set of IPs and main processing function coming from Gaisler Research: GRLIB and LEON3-FT.

The methodology also takes advantage from standards coming from commercial applications, military developments or space industry, such as AMBA busses for internal connections of the IP cores, and also external interface standards, that allows the reuse of the developed IP core, Mil-Std-1553, Spacewire, CCSDS TM/TC. This strategy was beneficial for SCOC3 development as it allowed reusing already developed validation tools (emulators for the simulations and standard hardware testbenches for the board evaluation).

The promotion for using these standards for ESA programmes is absolutely necessary to enhance the catalogue of available IP cores and the availability of verification/validation tools.

The availability of large commercial programmable logic devices is beneficial. They allow rapid prototyping of the system and a deeper functional validation than using only simulations. FPGA prototyping also provides a breadboard platform for early software development, well before the availability of the System-On-ASIC.

The development of a prototyping hardware platform does not suppress the essential simulation phase. Nevertheless, due to the complexity of SCOC3, the simulation time dramatically increases (while partially compensated by the increase of the simulation platform computation performances). The simulations are then used to fully verify the IP core functionality in a standalone mode, while the system simulations only partially verify the core functionality of each IP, focusing on the correct integration of SCOC3. But is has to be noticed that a very big set of simulations has been used in order to increase confidence and allow early bug detection/investigation.

The main conclusions of the SCOC3 activity are then:

EADS

- The architectural design of SCOC3 has been developed. It uses existing IP cores from Astrium, ESA and Aeroflex-Gaisler, some of them were modified, other IP cores were newly developed.
- The architectural design was verified by extensive simulation, by FPGA prototyping, and by development with software teams.
- The software tools already used for the ASIC development (for VHDL simulation and synthesis) are still suitable to the development of SoC, provided proper scripting is used.
- Hardware prototyping of the SoC using large commercial FPGA greatly improves the system verification, compensating for the reduction of verification coverage of post layout simulations.
- The development of SoC including the CPU core such as the designed SCOC3 is crucial for the development of future small space platforms and probes.
- There is a great interest of the SoC methodology for the future development of highly integrated ASIC, including or not the CPU core.
- The methodology of IP reuse has to be promoted by the Agency in order to complete the already available catalogue of IP cores, and to enhance the verification level of these IPs.

----⁰/₀----⁰/₀----⁰/₀----