

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 1/45

Title: [D7_D9_D10] Abstract, Executive Summary and
Final Report

 NAME AND FUNCTION DATE SIGNATURE

Prepared by

Franck Wartel
Data processing & On Board Software
TLS – TESOD5
(Airbus DS, Toulouse)

Prepared by

Sara Royuela,
Adrian Munera,
Eduardo Quinones
Predictable Parallel Computing group
(Barcelona Supercomputing Center)

Authorized by

Matthieu Couderc
Data processing & On Board Software
TLS – TESOD5
(Airbus DS, Toulouse)

This document has been written in the scope of ESA project HP4S

High Performance Parallel Payload Processing for Space

[ITI study Ref. 44, ESA-ESTEC Contract N° 4000124124/18/NL/CRS]

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 2/45

Export Control Information

This document contains EU or/and US Export Controlled technology (data):

YES NO

If YES:

1/ European/French/German regulation controlled content

 Technology contained in this document is controlled by the European Union in accordance with dual-

use regulation 428/2009 under Export Control Classification Number [xExx]. (1)

 Technology contained in this document is controlled by Export Control regulations of French Munitions

List under Export Control Classification Number [MLXX or AMAXX]. (1)

 Technology contained in this document is controlled by Export Control regulations of the German

Foreign Trade and Payments Regulation (AWV) as per Part I of Annex AL (Export List) to AWV under

Export Control Classification Number [MLXX or AMAXX]. (1)

2/ US Regulation controlled content

 Technology contained in this document is controlled under Export Control Classification Number

[xExxx] by the U.S. Department of Commerce - Export Administration Regulations (EAR). (1)

 Technology contained in this document is controlled under Export Control Classification Number

[xExxx] by the U.S. Department of State - Directorate of Defense Trade Controls - International Traffic

in Arms Regulations (ITAR). (1)

3/ Other Regulation(s)

 Technology contained in this document is controlled under Export Control Classification Number

[xExxx] by the [XXX].

(1) See applicable export control license/authorization/exception in Delivery Dispatch Note.

Dissemination is only allowed to legal or natural persons with right to know who are covered by an

appropriate export license/authorization/exception.

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 3/45

Document change log

ISSUE DATE MODIFICATIONS OBSERVATIONS

1.0 13-Dec-20 Initial draft issue for Review

Reference Documents

ALIAS TITLE REFERENCE ISSUE DATE

SoW [HP4S] Study Statement of Work ESA-TRP-TECTI-SOW-004127 1.0 27/01/2017

Proposal [HP4S] Study proposal TSES4.PC.VC.737741.17 1.0 21/04/2017

Contract [HP4S] Study Contract 4000124124/18/NL/CRS 1.0 05/06/2018

[D1]
System needs and perspective for

use of OpenMP in payload data
processing applications

 ADST-TN-1000485161 1.0 26/11/2018

[D2] OpenMP evaluation plan ADST-TN-1000485166 1.0 26/11/2018

[D4] Use Case N°1 design report ADST-TN-1000583806 1.3 12/2020

[D6] Evaluation Report ADST-TN-1000885198 1.0 12/2020

[D6.AppendixC] ICPP 2020 paper [D6_AppendixC]ICPP_2020.pdf - 06/2020

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 4/45

Table of Contents

DOCUMENT CHANGE LOG .. 3

REFERENCE DOCUMENTS .. 3

1 ABSTRACT .. 6

2 EXECUTIVE SUMMARY ... 7

3 PREPARATORY PHASE .. 9

3.1 SYSTEM NEEDS AND PERSPECTIVE FOR USE OF OPENMP .. 9
3.1.1 Needs of current and future payload data processing applications ... 9
3.1.2 Hardware solutions for high performance data processing .. 9
3.1.3 Parallel programming frameworks ... 11
3.1.4 Correctness and time predictability considerations .. 11

3.2 OPENMP EVALUATION PLAN ... 13
3.2.1 Use Cases selection ... 13
3.2.2 Hardware Targets Selection .. 16

4 IMPLEMENTATION PHASE .. 18

4.1 USE CASE SOFTWARE PORTING TO OPENMP METHODOLOGY ... 18
4.2 PORTING THE COMPILATION TOOL CHAIN AND OBSERVABILITY TOOLS ... 20
4.3 PORTED OPENMP FRAMEWORK ... 23
4.4 FINAL USE CASE PARALLELIZATION STRATEGY ... 23

4.4.1 HRGEO application .. 24
4.4.2 Mirror application ... 25

5 EVALUATION PHASE ... 27

5.1 TEST SETUPS ... 27
5.1.1 GR740 .. 27
5.1.2 KALRAY TEST SETUP .. 28

5.2 TEST SCENARIO.. 31
5.3 QUANTITATIVE METRICS .. 31

5.3.1 Executable Sizes overhead .. 31
5.3.2 Speed Up ... 33
5.3.3 Functional Correctness .. 37

5.4 QUALITATIVE METRICS ON EXTRAE EXPLOITATION ... 37
5.4.1 Load Balancing and scheduling ... 37
5.4.2 Hardware Counters ... 39

6 SUCCES CRITERIA .. 41

7 CONCLUSION AND FUTURE WORK ... 42

8 ACRONYMS AND ABBREVIATIONS ... 45

Figures

Figure 1: HRGEO Algorithm Overview ...13
Figure 2: Planar Wavefront (credit https://www.thorlabs.com) ...14
Figure 3: Distorted WaveFront (credit https://www.thorlabs.com) ..15
Figure 4: MIRROR application processing steps ..15
Figure 5: Memory hierarchy of the GR740 processor ...16
Figure 6: MPPA Coolidge architecture ..17
Figure 7: Amdhal's criteria for an 8-core target ...19

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 5/45

Figure 8; OpenMP/Extrae Framework workflow overview ..23
Figure 9: Common annotation applied to all data parallelized loops ..24
Figure 10: HRGEO algorithm phases executing in parallellel ...25
Figure 11: Mirror applicaton overview ...25
Figure 12: GR740 test setup ...27
Figure 13: MPPA® DEV 4 ...28
Figure 14: Using JTAG on one Cluster Only ..29
Figure 15: OpenCL offloading using MPPA® as an accelerator ..30
Figure 16: HRGEO executable size overhead on GR740 ..32
Figure 17: HRGEO executable size overhead on KALRAY ...32
Figure 18: MIRROR executable size overhead on GR740 ...33
Figure 19: MIRROR executable size overhead on KALRAY ..33
Figure 20: Unbalanced workload with static scheduling ...37
Figure 21: Detailed view of the unbalanced execution ...38
Figure 22: Load balancing thanks to the collapse clause ...38
Figure 23: Final optimal parallelization of legacy code ...39
Figure 24: HRGEO use case IPC (light green=low IPC, dark blue=high IPC) ...39
Figure 25: Correlating IPC with L1 and L2 cache misses ...40

Tables

Table 1 - Processing platforms comparison..10
Table 2 - Available Methods that can be intercepted through wrapping on GR74022

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 6/45

1 ABSTRACT

Next generation space missions will require more capable computers in order to implement either
advanced navigation and control algorithms needed to increase the spacecraft autonomy and
agility or on the payload side with complex scientific payload data pre-processing algorithms. The
advent of low-power multi- and many-cores processor architectures provides critical real-time
embedded systems with an unprecedented performance level, opening the door to implement
more intelligent systems. These architectures however, pressure the software development
process, as applications must be parallelised in order to exploit the huge performance capabilities
they offer.

The complexity of parallel programming has already been identified as a major challenge in
general purpose computing, and it is now exacerbated in the critical embedded systems domain,
due to the non-functional properties that these systems must fulfilled, e.g. functional safety and
time predictability.

The majority of architectures incorporate parallel programming models in their software
development kits with the objective of easing programmability and exploiting performance
capabilities. These models provide an interface that entails a level of abstraction enabling to
expose parallelism while hiding the complexity of the processor architecture. Parallelism is
accomplished by the definition of independent execution units and synchronization mechanisms
that guarantee the correct control- and data-flow.

The decision on what parallel programming model is used directly affects portability. While high
level models can be compiled and executed on different architectures supporting the same model
without modifying the application, low level APIs (e.g. Pthreads) may require some tuning before
they can be ported to another machine.

Overall, parallel programming models are a fundamental element to exploit the huge performance
capabilities offered by the newest parallel heterogeneous architectures.

The purpose of this ITI is to demonstrate the benefits of using one of the most well-known parallel
programming models, i.e. OpenMP, for the development of parallel space applications, in terms
of performance, programmability and portability.

Two main goals are identified:

 G1 - Improve overall system performance by exploiting the most advanced parallel
embedded architectures targeting the space domain

 G2 Improve the parallel programming productivity by reducing the initial
development efforts of systems based on parallel architectures,

By selecting and porting two representative payload processing use cases to OpenMP parallel
programming model, and evaluating their deployment on two high-end computing devices,
GR740 in the radiation hardened components family and latest Kalray Coolidge MPPA as COTS,
the project execution successfully demonstrated that usage of OpenMP parallel programming
could facilitate the development, and analysis of parallel real-time space applications.

Development framework is completely based on open source solutions. Cross compiler for the
selected targets is mainstream GNU GCC and includes OpenMP 4.5 runtime and open source
observability tools provided by Barcelona Supercomputing Center (Paraver and Extrae) were
ported from HPC mainstream to the selected hardware targets, and exercised through the
selected software use cases.

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 7/45

2 EXECUTIVE SUMMARY

The principle behind OpenMP (as well as many other parallel programming models) is that
parallel computation is user-directed, but not fully controlled by the programmer. As a result, the
parallel execution is delimited by the user and orchestrated by the runtime. This has the freedom
to distribute the parallel execution among the computing resources provided by the underlying
architecture in the most convenient way, with the objective of maximising performance speed-up.

Although this principle presents clear benefits in terms of programmability, portability and
performance, it may also impact negatively on ensuring the safety properties of the system. The
reason is that the developer in charge of guaranteeing functional and non-functional requirements
has very little control on how the parallel execution is managed at run-time.

HP4S study defined two strategic end goals:

G1. Improve overall system performance.
Effectively master and exploit the most advanced parallel embedded architectures
targeting the space domain.

G2. Improve the parallel programming productivity.
Reduce the development efforts of systems based on parallel architectures, while
fulfilling system's functional and non-functional (time predictability) requirements.

These two goals derive in a set of technical measurable objectives listed hereafter:

O1. Facilitate the development, timing analysis and execution of parallel real-time space
applications using the OpenMP parallel programming model.

O2. Evaluate the interest and porting effort of a list of homogeneous and heterogeneous
foreseen COTS and RadHard hardware targets in the space domain with OpenMP
programming model and framework.

O3. Adapt the OpenMP runtime libraries to ensure that the timing guarantees devised at
analysis time can be guaranteed at deployment time.

O4. Evaluate state-of-the-art compiler techniques to guarantee that parallel OpenMP
applications are functionally correct, and so no race conditions or deadlocks will occur.

O5. Demonstrate the portability benefits of the OpenMP parallel programming model.

The key capability to achieve the goals of high performance processing to support future missions
is therefore clearly software parallelisation. Indeed, highly parallel computing devices may be
useful only if the development of efficient programming techniques for such devices is achieved.
The efficiency of programming techniques is twofold in our business where many software
applications are specific to a given mission and therefore, globally non-recurring: the technical
efficiency (i.e. the capability to use the device’s resources efficiently)and the industrial efficiency
(mastering and lowering the programmer’s efforts for software development and verification).

This study raises the TRL for on-board software parallelisation on the two selected targets –
currently at the “proof of concept” level (TRL3). For these targets, usage of laboratory
representative implementation allows to reach TRL4.

The study is structured within four technical steps:

1) A Preparatory phase dedicated to the inventory of possible application use cases that
would make sense for being evaluated during this study as well as an in-depth analysis of
the available many/multi-cores processing targets an associated resources w.r.t. their
suitability for the use cases and for supporting an OpenMP framework. This phase results
in the selection of 2 specific use cases.

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 8/45

2) A Development phase dedicated to the preparation of the OpenMP framework on the

selected targets and to the parallelisation work on the two selected use cases.

3) An Evaluation phase dedicated to the actual porting of the parallelised use cases and
benchmarks on the targets and evaluation according to the criteria’s defined during the
preparatory phase.

4) A Synthesis phase dedicated to the analysis of all collected evaluation results and a
synthesis for all the study outcomes as well as recommendations for the way forward with
respect to parallel processing and multi/many cores targets.

From the implementation perspective, the main contributors to the project are Airbus Defence
and Space and Barcelona Supercomputing Center, briefly introduced hereafter.

AIRBUS Defence and Space is a world leader as satellite prime contractor answering needs of
space programmes in the various fields of space activities: Telecommunications, Earth
observation, Space Science, Navigation, Launch vehicle, manned space flights. This expertise is
covering a wide range of activities, from the complete system including both space and ground
segments down to equipment level. It includes in particular the prime contracting of
Telecommunications, Earth observation and Science satellites and experiments. At its location in
the southwest of France, the Toulouse site specialises in satellite prime contracting, design,
assembly integration and test for communications, Earth observation and science satellites. Its
expertise also extends to avionics, optical instruments, on board software, ground systems and
space-based geo-intelligence and telecommunications services. The Data processing and On-
Board software advanced studies team involved in this project has a very high level of expertise on
topics such as high performance algorithm mapping on software execution platform and its
impact on software architectures.

Barcelona Supercomputing Center, established in 2005, serves as the National
Supercomputing facility in Spain. The Center hosts MareNostrum, one of the most powerful
supercomputers in Europe. The mission of the BSC-CNS is to research, develop and manage
information technologies in order to facilitate scientific progress. The BSC-CNS not only strives to
become a first-class research center in supercomputing, but also in scientific fields that demand
high performance computing resources such as the Life and Earth Sciences. Following this
approach, the BSC-CNS has brought together a critical mass of top-notch researchers, high
performance and embedded computing experts and cutting-edge supercomputing and high-end
embedded technologies in order to foster multidisciplinary scientific collaboration and innovation.
At an international level, the BSC-CNS has already participated in an impressive number of
activities, including the 6th, 7th and H2020 Framework Programs of the European Commission.
In the parallel programming domain, BSC has a long tradition investigating parallel programming
paradigms and intelligent runtime systems to increase the productivity when programming HPC
and embedded systems to effectively exploit performance out of the target architecture (from
embedded many-core processors to large-scale cluster systems, including both homogenous and
heterogeneous systems that use accelerators like GPUs) for many years. It is worthy mention that
BSC is member of the OpenMP Advisory Review Board (ARB), the non-profit corporation that
owns the OpenMP brand, oversees the OpenMP specification and produces and approves new
versions of the specification

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 9/45

3 PREPARATORY PHASE

The preparatory phased purpose was to refine and summarize the actual needs, analyse the
potential software solutions and associated challenges to build a solid plan for prototyping and
evaluation on relevant targets.

3.1 System Needs and perspective for use of OpenMP

3.1.1 Needs of current and future payload data processing applications

There are typically two different categories of on-board data processing platforms in spacecraft.
Some computers are responsible for spacecraft or instrument control and computers, others are
responsible for the on-board processing of instruments data, more often located on the Payload
segment.

For both categories, we foresee that next generation space missions will require more capable
computers, with respect to what we can implement today using proven technologies like the LEON
processor: On the control side, spacecraft autonomy and agility need to be improved thanks to
new sensors data acquisition and processing for in-situ real-time usage, such as for instance visual
based navigation. On the payload side, scientific data pre-processing algorithms as well as more
robotics for in-orbit/on-Planet operations are foreseen with, in the long term, the foreseeable
usage of artificial intelligence.

Two tracks are identified by Airbus Defence and space, largely shared with other European space
Industrial for achieving such goal, and supported by the technology roadmap of the European
Space Agency and national agencies:

1) The development of new processing architectures on new rad-hard technologies such as,
among others, the recent GR740 and HPDP with the STM-65nm and the future
Dahlia/Brave-Ultra targeted for the new STM 28nm FD-SOI (will) provide higher running
frequencies with more efficient processing devices. On this technology track, developments
of High performance computers are on-going which all require the capability to efficiently
develop software on Multi-Core devices.

2) The development of mitigation techniques enabling the use of commercial of the shelves
processors (COTS) both as FPGA and micro-processors in the space environment. This
way has been supported and matured through the ESA “COTS Based Computers” studies
in which Airbus Defence and Space was strongly involved. For instance, this track which is
more easily applicable for the LEO orbit has enabled the new Airbus product line
“PureLine” based on Automotive quality grade parts.

Both tracks have their specific advantages, drawbacks and limitations which make them both to be
tackled with respect to the different categories of missions and markets we face. But a common
characteristic is that both will lead to the use of devices enabling parallelisation of the processing.
In this context, the emergence of complex computing architecture embedding many processing
cores on single device is a real opportunity to drastically increase the on-board processing
capability for both of these technology development tracks.

3.1.2 Hardware solutions for high performance data processing

A wide range of devices are relevant for satisfying these needs:

 FPGAs (Field-Programmable Gate Arrays)

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 10/45

FPGAs use configurable logic blocks containing LUTs, FFs, DSPs and block RAM along
with a configurable routing matrix to implement a wide range of applications. They tend to
outperform with streamed algorithms.

 DSPs (Digital Signal Processors)
DSPs are optimized for single thread signal processing applications which mainly use
typical signal processing operations. DSPs tend to perform these operations using fewer
instructions than GPPs, and with lower power consumption. Some DSPs have a SIMD
(Single Instruction, Multiple Data) architecture giving them Data Level Parallelism (DLP)
capabilities.

 GP GPUs (General Purpose Graphics Processing Units)
There is a wide variety of GPU architectures, but they usually consist of up to 32 cores,
with each core containing up to hundreds of processing units. The cores have their own
instruction stream and the same stream is shared by the processing units of a core. The
cores have a private, local memory and they communicate through the GPU shared
memory.

 Many-core processors
Many-core processors are designed to reach high throughputs using Thread Level
Parallelism (TLP). Usually, the cores are quite small in order to fit a high number of them
on a chip with a reasonable power consumption.

 Multi-core GPPs (General Purpose Processors).
GPPs outperform in single-threaded applications and mostly take advantage of ILP
(Instruction Level Parallelism) thanks to complex pipelined and superscalar architectures.
This parallelization is implicit since it is automatically managed by the hardware. GPPs
rely on cache memories to reduce the latency of memory transfers. Multi-core
architectures make it possible to run some threads in parallel.

Each device has its own advantages but it is important to realize that every design is unique and
there is no universal rule for choosing among these devices. Some systems use a combination of
devices to implement the overall application. To choose the most suitable hardware solution for a
specific algorithm, several items such as cost, speed, flexibility, power and optimization as well as
the design environment (team’s skill, design tools, licensing…) should be taken into account.

The following table summarizes the characteristics of the main processing devices (note that there
can be a lot of variability within a type of processing platform and that this table only provides
trends).

Table 1: Processing platforms comparison

Device Parallelism
Gate Reuse And

Time Sharing
Flexibility/

Programmability
Absolute Power
Consumption

FPGA (SRAM) High Some Moderate Moderate

DSP Some Moderate High Low

GP GPU High High High High

Many-core High High High High

Multi-core GPP Moderate High High Moderate

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 11/45

3.1.3 Parallel programming frameworks

The complexity of parallel programming has already been identified as a major challenge in
general purpose computing, and it is now exacerbated in the critical embedded systems domain,
due to the non-functional properties that these systems must fulfil, e.g. functional safety and time
predictability.

OS’s and RTOS’s already provide all the services required to designing a parallel application.
Nonetheless, reaching a high level of parallelism by only using the services of the OS is hard as it
requires finding a good balance between the loads of the different cores with very rudimentary
tools.

The majority of architectures incorporate parallel programming models in their software
development kits with the objective of easing programmability and exploiting performance
capabilities. These models provide an interface that entails a level of abstraction enabling to
expose parallelism while hiding the complexity of both the processor architecture and the OS.
Parallelism is accomplished by the definition of independent execution units and synchronization
mechanisms that guarantee the correct control- and data-flow.

OpenMP presents the following advantages over its competitors:

 Different evaluations demonstrate that OpenMP delivers performance and efficiency
tantamount to highly tunable models such as TBB, CUDA, OpenCL, and MPI. Regarding
low-level libraries such as Pthreads, it offers multiples advantages such as: a) robustness
without sacrificing performance, and b) OpenMP does not lock the software to a specific
number of threads.

 The code can be compiled as a single-threaded application by either disabling support for
OpenMP or assigned a single computing unit (i.e., OpenMP thread), thus easing
debugging.

 OpenMP has a large and experienced community that has constantly reviewed and
augmented the language for the past 20 years achieving great expressiveness. OpenMP is
the de-facto shared-memory programming model standard. The language defines a very
powerful tasking model that allows expressing fine-grained, both regular and irregular,
and highly-dynamic task parallelism, augmented with features to express task
dependencies. The latest specification of OpenMP also incorporates new features that
facilitate the coupling of a main host processor to accelerator devices by defining both
synchronous and asynchronous communication between them.

 OpenMP is widely implemented by several chip and compiler vendors (e.g. GNU, Intel,
IBM, Kalray, Texas Instruments).

 Typically, ensuring functional correctness in languages that are not developed for such
purpose is not straightforward. Nonetheless, OpenMP static correctness techniques are
quite mature and simple compared to other parallel programming models which are not
designed with correctness in mind (e.g. the low level Pthreads API or the Message Passing
Interface, MPI).

Overall, OpenMP is a good candidate to be used in the real-time embedded domain in general, and
in the space domain specifically by virtue of its benefits.

3.1.4 Correctness and time predictability considerations

Space applications and embedded software in general, are driven by real time constraints and the
need to validate that the deadlines defined for a piece of software are met. These constraints are
linked to the performance of the system and in this context the focus is rather on worst case

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 12/45

performance than average performance. Controlling the way the software is executed on the
hardware platform is crucial when it comes to validating the timing behavior of the complete
application. It is worth noting that some space applications have softer requirements on timing
constraints.

The principle behind OpenMP (as well as many other parallel programming models) is that
parallel computation is user-directed, but not fully controlled by the programmer. As a result, the
parallel execution is delimited by the user and orchestrated by the runtime. This makes it possible
to distribute the parallel execution among the computing resources provided by the underlying
architecture in the most convenient way, while maximizing speed-up.

Although this principle presents clear benefits in terms of programmability, portability and
performance, it may also impact negatively on ensuring the safety properties of the system. The
reason is that the developer in charge of guaranteeing functional and non-functional requirements
has very little control on how the parallel execution is managed at run-time.

There is therefore an urgent necessity to ensure that decisions taken at run-time maintain the
guarantees of system correctness endorsed during design and implementation. Hence, a parallel
framework (considering both compiler and runtime) targeting a critical real-time embedded
system must ensure that processor resource allocation, either static or dynamic, maintains the
response time analysis performed at analysis time. Additionally, such a framework must also
ensure the functional correctness of the parallel execution safeguarding it from data races and
deadlocks.

OpenMP offers two ways to synchronize threads: via directives (master and synchronization
constructs such as critical and barrier), and via runtime routines (lock routines such as omp set
lock and omp unset lock). Although both mechanisms may introduce deadlocks, the latter is
much more error-prone because these routines work in pairs. The former may cause deadlocks if
various critical constructs with the same name are nested. The latter may cause errors in the
following situations: attempt to access an uninitialized lock, attempt to unset a lock owned by
another thread or attempt to set a simple lock that is in the locked state and is owned by the same
task. Moreover, OpenMP introduces the concept of nestable locks, which differ from the regular
locks in that they can be locked repeatedly by the same task without blocking.

Another important phenomenon to be considered are race conditions that appear in a concurrent
execution when two or more threads simultaneously access the same resource and at least one of
them is a write. This situation is not acceptable for a safety-critical environment since the results
of the algorithm are non-deterministic. The problem of detecting data races in a program is NP-
hard. On account of this, a large variety of static, dynamic and hybrid data race detection
techniques have been developed over the years.

On the one hand, dynamic tools extract information from the memory accesses of specific
executions. Despite this, there exist algorithms capable of finding at least one race when races are
present, as well as not reporting false positives. On the other hand, static tools still seek a
technique with no false negatives and minimal false positives. Current static tools have been
proved to work properly on specific subsets of OpenMP such as having a fixed number of threads
or using only affine constructs. A more general approach can be used to determine the regions of
code that are definitely non-concurrent. Although it is not an accurate solution, it does not
produce false negatives, which is paramount in the safety-critical domain. Therefore, the
previously mentioned techniques can be combined to deliver conservative and fairly accurate
results.

Finally, resiliency is a crucial feature in the safety-critical domain. However, OpenMP does not
prescribe how implementations must react to erroneous (or unexpected) situations. In that

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 13/45

respect, if the error is produced by the environment, users may want to define what recovery
method needs to be executed. Several approaches have been proposed with the aim of adding
resiliency mechanisms to OpenMP. There are four different strategies for error handling:
exceptions, error codes, call-backs and directives.

3.2 OpenMP Evaluation Plan

Based on the definition of those requirements, a work plan for applicability of OpenMP on
different targets was established, so as to answer the project goals objectives and provide crucial
pieces of information amongst which :

 a measurable view of the performance of high demanding algorithms with two different
multiple cores targets using an OpenMP implementation

 feedback and experience on the efficiency of OpenMP to parallelize application

 some practical view on the portability offered by the OpenMP framework

A set of criteria was defined and applied to select software and hardware to be exercised.

3.2.1 Use Cases selection

Based on a set of criteria not detailed in this public report but main objective was to optimize the
add value/project effort ratio, two image processing use cases were selected.

3.2.1.1 HRGEO use case

Correlation ResamplingImage sensor Output image

Estimated shift

Fusion Stabilisation

Reference image

Figure 1: HRGEO Algorithm Overview

The complete algorithm is divided into several computation stages. The sensor image is a RGB
image with the three composites values for each pixel (no bayering is considered here).

The algorithm includes image registration, resampling and fusion. The goal of the algorithm is to
improve the S/N ratio on a static image by merging multiple images from a stream coming out of a
more or less steady camera. The algorithm creates and manages a geometric model which fits the
image displacement. It accumulates the successive images into a single reference image after
compensating for the displacement with a sub-pixel accuracy.

The algorithm considers chips (fraction of the whole image) and searches the maximum
correlation between the chip from the reference image (accumulation) and the chip from the
current image along both dimensions and within the exploration range. The geometric model
considers only translation. When all the chips displacements have been estimated then the
average displacement over all the chips is computed and applied to the resampling function which

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 14/45

moves the accumulated image (reference) in the same position as the current image. This function
resamples the reference image by using a bank of convolution filters. Together, the correlation and
the resampling stages perform the registration. The fusion stage applies a configurable gain to the
current image and adds it to the reference image.

This algorithm while not being the state of the art of this type of processing in Airbus Defence and
Space is representative of a complex algorithm implementation process.

The implementation uses fixed-point representation for image correlation and keeps only a few
operations in double precision.

3.2.1.2 Adaptive Mirror use case

Future earth observation satellites with high resolution requirements will need primary mirrors of
huge size. Due to their big size, they will suffer thermoelastic deformations. Adaptive optics allows
fixing these defaults thanks to a deformable mirror actuated by a myriad of piezo actuators. The
wave front defaults are measured on board by a Shack-Hartmann analyzer with its image sensor.

Wavefront sensors aim at analyzing the shape of an incident beam's wavefront in order to identify
aberrations caused by light traveling through individual optics or optical assemblies.

Shack-Hartmann wavefront sensors achieve this by dividing the beam into an array of discrete
intensity points using a microlens array. To measure the wavefront of a beam, the light is aligned
so that it is normally incident on the microlens array at the front of the wavefront sensor. Each
lens collects the light filling its aperture and forms a single focal spot on the CMOS camera sensor,
which is located at the focal plane of the microlens array. If the wavefront is planar, all focal spots
are centered directly behind each respective lens, coincident with the optical axis of each. The
result is a regularly spaced grid of spots on the camera sensor, as illustrated in Figure 1Figure 2.
These spot locations are called reference spot positions, and they compose the reference spot field.

Figure 2: Planar Wavefront (credit https://www.thorlabs.com)

Error! Reference source not found.Figure 3. By comparing the locations of the spots in the
measured spot field with those in the reference spot field, the shape of the wavefront can be
calculated, and this is the aim of the image processing algorithm of this use case.

https://www.thorlabs.com/images/tabimages/Shack_Hartmann_Wavefront_Planar_D2-780.gif

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 15/45

Figure 3: Distorted WaveFront (credit https://www.thorlabs.com)

For robustness reasons and to have several measurements on several points on the mirror, 3
detectors provide the images. It has been demonstrated in previous studies that the processing of
one detector could fit in a LEON processor. The control of the piezo actuators would require
another LEON processor. In the use case of this study, we integrate the processing of the 3
detectors actuators on the same multicore processor.

The algorithm is composed of two steps. It is applied on a 12x12 matrix of lenses for 3 detectors
that are independent. But not all lenses must be processed, only the ones with a light intensity
above a certain threshold. The light intensity is a constant, thus the number of lenses to be
processed can be defined beforehand. 104 lenses have to be processed in the current
implementation.

Figure 4: MIRROR application processing steps

As illustrated in Figure 4, the image processing partition is composed of two parts: one that
computes a first rough estimate of the shifts and interpolates the image with this shift; and
another one that uses the interpolated image to compute a very precise shift.

https://www.thorlabs.com/images/TabImages/Shack_Hartmann_Wavefront_Distorted_D2-780.gif

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 16/45

The coarse offset is composed of a normalization of the images with the light matrix, then the
sliders algorithm is applied on all valid lenses, finally a bilinear interpolation applies the shift
computed for the next step. The sliders are composed of two steps of convolution, but the second
step is executed only if the first shift is bigger than 0.5 on the X axis. For the reference batch
provided with the algorithm, it happens on 26% of the lenses and represents an increase in the
number of operations of 20% when it is applied. It means that the duration of the coarse offset has
a small variability in duration due to the data processed.

The fine offset first computes the reference lens from all the other lenses then it uses the Lucas-
Kanade algorithm to compute the shift between the reference lens and the others. The execution
time of this algorithm does not depend on the data. This part of the algorithm cannot be started
for a detector before all lenses (for the same detector) have been resampled by the previous step.

3.2.2 Hardware Targets Selection

Based on a set of criteria not detailed in this public report on purpose, two hardware targets were
selected amongst the following candidates { GR740, HPDP, RC64 } for the radiation hardened
targets and { Zynq, Zynq MPSoC, Kalray Coolidge MPPA } for the COTS ones.

The GR740, the Coolidge and the Zynq 7000/UltraScale+ appeared to be the targets the best
suited to the HP4S study. This is mostly because they implement hardware cache coherency
mechanisms, they support SMP and their software stack is based on open-source tools. On the
other hand, the other two targets that are considered (the RC64 and the HPDP) have software
stacks based on proprietary tools and a high effort would be required to implement a reduced
OpenMP runtime on these targets.

Final selected ones GR740 and MPPA Coolidge are briefly presented hereafter:

3.2.2.1 GR740

The GR740 device is a radiation-hard quad-core fault-tolerant LEON4 SPARC V8 processor. The
processor is organized around five AMBA AHB buses. For the purpose of this study, we are
interested on those impacting on the parallel computation, i.e., the 128-bit Processor AHB bus and
the 128-bit Memory AHB bus. The former connects the four LEON4 cores connected to the shared
L2 cache. The latter connects the L2 cache and the main external memory interface (SDRAM) and
attaches a memory scrubber (see Figure 19). The cache system is composed of 4KB L1 instruction
and data caches per core, and a 2MB L2 unified cache shared among cores. The L1 data caches
have one valid bit per cache line and implements a write-through policy with a double-word write-
buffer. Data may exist in both the L1 and L2 caches, or only in L1 or L2. The cache system
implements an AMBA AHB master to load and store data to/from the caches. A bus-snooping on
the AHB bus maintains cache coherency for L1 data caches. The L2 cache works as an AHB-to-
AHB bridge, caching the data that is read or written via the bridge. A front-side AHB interface is
connected to the Processor AHB bus, while a backend AHB interface is connected to the Memory
AHB bus.

Figure 5: Memory hierarchy of the GR740 processor

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 17/45

Software Environment

GR740 supports RTEMS-SMP version 5.x, a POSIX-based operating system targeting the
embedded computing domain. RTEMS-SMP implements all the primitives needed to support
parallel execution, including the pthread library upon which the implementation of OpenMP in
GNU-GCC (named libgomp) is based on. Concretely, the selected RTEMS-SMP for GR740
supports GCC 7.2 This version implements the OpenMP specification 4.5, which will be the one
considered in this project. ESA is working towards a qualifiable RTEMS-SMP based on 5.x, and a
evaluation is based on beta version of RTEMS-SMP 5.1 supporting GR740 released and
incorporated in Cobham Gaisler RCC SDK.

3.2.2.2 MPPA Coolidge

The MPPA Coolidge is a none radiation-hardened 80-core processor architecture from Kalray. The
Coolidge architecture, which is the evolution of the Bostan architecture, is organized in 5 clusters,
each featuring 16 cores and a local memory of 4MB that can be configured as a L2 cache and/or
scratchpad (see Figure 6). Each VLIW core includes a coherent 16KB L1 instruction and data cache
and a Memory Management Unit (MMU). Cache coherence among L2 caches from different
clusters is supported as well for a complete SMP configuration. By doing so, a single application
can be spawned across the 80-cores. Coolidge can be configured as an AMP machine as well at
cluster level, guaranteeing isolation across clusters as defined by ISO26262 ASIL B and C
criticality levels. Coolidge is available since Q1-2020.

Figure 6: MPPA Coolidge architecture

Software Environment

Coolidge provides a linux-based environment build on GCC 7.5 and supporting OpenMP v4.5 at
clustering level. The offloading mechanisms are based on the native MPPA API, and Coolidge also
supports OpenCL, allowing to manage clusters as OpenCL Compute Units.

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 18/45

4 IMPLEMENTATION PHASE

4.1 Use case software porting to OpenMP methodology

The implementation was divided into two stages for this study:

o Porting for first sequential execution on the targets.

o Parallelization of the applications with OpenMP (low optimization effort).

The sequential version of application serves as a reference for the considered evaluation metrics,
such as memory occupation and of course execution time performance speed up with the
parallelized version.

A single parallel implementation is performed for each use-case and the efficiency of this
implementation is evaluated on the different targets to evaluate portability capabilities of
OpenMP.

The methodology followed to parallelize the use-cases is presented below:

A. Identifying the hotspots of the algorithm

The hotspots can be identified by theoretical analysis of the algorithm or empirically, by profiling
the sequential program. Initial measurements and profiling executed on x86_64 benefited from
standard HPC tools through GNU gprof x86_64 and Intel VTune Analyzer.

This allowed selecting the main functions to parallelize for each use case, yielding 99.8% of the
sequential execution time for HRGEO application and 90% for the adaptive mirror one.

The theoretical speed-up achieved by parallelizing the hotspots is provided by Amdhal’s law
recalled hereafter.

𝑆𝑁 =
1

𝐹𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
𝑁

+ 𝐹𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

 𝑆𝑁 is the theoretical speed-up of the whole program with N cores.

 𝐹𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 is the fraction of time consumed by the regions considered for parallelization.

 𝐹𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 is the fraction of time consumed by the sequential regions (𝐹𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 = 1 − 𝐹𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙).

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 19/45

Figure 7: Amdhal's criteria for an 8-core target

B. Choosing an appropriate parallelization strategy for each hotspot

Selecting a parallelization strategy consists in identifying the appropriate type of parallelism and
the appropriate OpenMP constructs to implement it. With a good parallelization strategy, it is
possible to achieve high performance with minor modifications to the serial code.

The different types of parallelism are:

o Data parallelism, where each thread executes the same task on different sets of data.
o Task parallelism, where each thread executes a different task. This can be used to

parallelize recursive algorithms or to create pipelines.

Both data and task parallelism can be implemented with different OpenMP constructs:

o Worksharing constructs: The work is divided into work items which are distributed
over a team of threads, either statically or dynamically. The following constructs are used
to divide the work into work items:

• The loop constructs do and for (data-parallel constructs).

• The sections construct (task-parallel construct).
o Tasking constructs: Although writing task-parallel programs with worksharing

constructs is possible, it is often inconvenient. Tasking constructs have been introduced to
provide a convenient syntax and more flexibility for task parallelism. With tasking
constructs, tasks are generated by threads whenever they encounter a tasking directive.
The generated tasks can be assigned to available threads or they can be queued for deferred
execution. The following constructs are used to generate tasks:

• The task construct (task-parallel construct).

• The taskloop construct (data-parallel construct).

To summarize, worksharing constructs are suited to data parallelism (do/for loop constructs)
while tasking constructs implement task and data parallelism more conveniently and with more
flexibility.

C. Applying parallelization constructs

The parallelization constructs are applied using compilation pragmas.

1

2

3

4

5

6

7

8

0 0,2 0,4 0,6 0,8 1

S8

Fparallel

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 20/45

For both worksharing and tasking constructs, the parallel threads must be created by declaring a
parallel region (with the parallel construct) in which a team of OpenMP threads is created. The
parallel construct clause num_threads can be used to locally define the number of threads in the
team. Then, the appropriate worksharing and/or tasking constructs can be applied in the parallel
region. If not specified default parameters are applied based on OMP environment variables, such
as max number of threads, or thread scheduling polcies.

D. Applying synchronization and data management clauses

The synchronization and data management clauses are applied to the different worksharing and
tasking constructs. Synchronization points can also be added at specific points of the program.

E. Checking the acceleration achieved with the parallelization

For a region parallelized with N cores, the execution time should be theoretically N times smaller
than with a single core. If this acceleration factor is not reached, the program is likely to suffer
from one of the issue listed in the next point. Depending on the application, achieving an
acceleration factor of N can be very challenging and a lower acceleration should be targeted.
Under certain conditions, achieving an accelerator factor higher than N is also possible. This
phenomenon, named super-speedup, occurs when processor resources are used more efficiently
when the program is parallelized, e.g. when the data-set fits within the L1 cache.

F. Investigating the potential issues when the targeted acceleration is not met

The following points can be responsible for low performances:

i. Poor memory accesses due to an inefficient use of cache memory.

To maximize the cache efficiency, each thread should be able to work on independent sets of data
and the cache spatial and temporal locality principles should be taken into account. Achieving this
may require source code modifications.

ii. Overhead due to synchronization, scheduling or context switching.

Several solutions can be considered depending on the origin of the overhead. For instance:

 Avoid coarse-grain synchronization mechanisms, e.g. barrier or taskwait constructs.
 Use fine-grain synchronization mechanisms by means of the depend task clause
 Merging some tasks to increase the granularity (size) of tasks.

iii. Unbalanced workload across threads.

Several solutions can be considered depending on the origin of the unbalance. For instance:

 Using dynamic scheduling in case of loop constructs.
 Using fine-grained parallelization instead of coarse-grained parallelization

4.2 Porting the compilation tool chain and observability tools

Compilation tool chain already supporting OpenMP 4.5 on both targets through RCC 1.3-rc6 and ACE SDK
4.1.0 respectively on GR740 and Kalray Coolidge targets.

There are two main additional tools used during this evaluation: Extrae which is used to
instrument code and Paraver which displays the data collected by Extrae. Both have been

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 21/45

developed and are maintained as open-source project by the Barcelona Supercomputing Centre
(BSC). Extrae is a rich tool which takes advantages of reusing packages from others developers’
community.

It supports natively CUDA, OpenCL and OpenMP environments. In its basic version it allows to
measure time and the number of instructions executed. To get memory usage information (which
could be very interesting for optimization) then the PAPI library should be used. PAPI provides a
consistent interface and methodology for use of the performance counter hardware found in most
major microprocessors but the usage of this library requires a lot of re-compilation, including the
kernel.

Extrae is enabled by linking with its tracing libraries, which inserts probes inside the functions of
the HPC framework (OpenMP, OpenCL, …) used for the implementation. Extrae uses an XML
configuration file at runtime. This configuration file is used to enable or disable some profiling
features, and to set some parameters. Once the program has been executed, the profiling data can
be displayed and analysed with Paraver.

Paraver does not have to be installed on the same target used for the measurement. For this study,
Paraver is installed on the x86 host and the trace files are copied from the targets to this host for
visualization.

Extrae adaptation to the embedded targets consisted in replacing some of the techniques applied
on regular HPC context to comply with the embedded constraints, main changes are:

o Intercepting calls in a static environment
o Managing POSIX dependence
o Retrieving function names
o Traces generation
o Support for hardware counters
o Static environment definition

Ported extrae intends to keep benefiting from all the features of the HPC mainstream version,
however ports realized during this study present some limitations due to their alpha version and
bounded effort. IT is however important to highlight that main features such as manual, automatic
instrumentation as well as hardware counter automatic gathering are fully functional.

One of the main change is related to automatic instrumentation. Originally based on the
LD_PRELOAD dynamic calls interception at runtime, it had to be adapted for embedded targets
using symbol wrapping at compile time using linker flags, as illustrated in Error! Reference
source not found..

Table 2 describes the (super-set of) methods that have to be wrapped based on the OpenMP
constructs used when using the sparc-gaisler-rtems5-gcc compiler version 7.2. This relation has
been obtained by compiling the source code with the mentioned compiler, and then analysing the

generated binary.

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 22/45

Table 2 - Available Methods that can be intercepted through wrapping on GR740

Another modification lies in the hardware counter gathering process originally based on PAPI
library. While PAPI library is natively available on Kalray Coolidge MPPA, hardware counters
function was enhanced to also benefit from GR740 L4STAT counters, through L4STAT driver.

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 23/45

4.3 Ported OpenMP framework

Annotated
Source files

Legacy
Source files

OpenMP
Annotation

openMP
runtime

(libgomp.a)

Compilation Link

Makefile
C(XX)FLAGS += -fopenmp

LDFLAGS += -lgomp

LDFRAGS += -lomptrace
LDFLAGS += extrae wraps

Object filesLegacy
Include files

POSIX/OS
support
libraries

OpenMP
Include files Extrae

library

Link
Executable

Binary
Execution on

target

Extrae Traces
files

Paraver
Vizualization

tool

uses
outputs/inputs

Exrae activation
+

Manual traces

Figure 8; OpenMP/Extrae Framework workflow overview

As illustrated in Figure 8, on the hypothesis that an POSIX operating system is already in place for
the sequential version, the current application building process is only lightly impacted in order to
introduce OpenMP and Extrae support.

The main changes are indeed limited to:

 • OpenMP parallelization (in red):

- Annotation of the source code through #omp pragmas
- Introduction -fopenmp flag at compilation time and import of omp related include files
- Introduction of the runtime library through -libgomp at link time

 • Extrae instrumentation (in blue):
- Source code modification to initialize tracing and potentially add manual tracing events
- Introduction of the extrae library through -libomptrace linker flag

With Extrae instrumentation enabled execution on target allows to retrieve OpenMP runtime
useful information such as thread dispatches and overall load balancing, which can be naturally be
used to tune and iteratively improve the omp annotations or explore other parallelization
parameters. Hardware counters can as well be used to detect hardware resource usage bottlenecks
or interferences that eventually might be mitigated by algorithm implementation tuning, and can
be applied as well on the omp with one single thread mimicking sequential behaviour.

4.4 Final Use Case parallelization strategy

For both HRGEO and MIRROR application use cases results presented in this document in
section Error! Reference source not found. and Error! Reference source not found.
comply with the following rules:

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 24/45

- Data parallelism model is applied

- OMP schedule is set to static for determinism, with unspecified chunk-size.

- collapse clauses are used as fine grain optimization for load balancing

- OMP parallel loops are declared ordered so as to allow Extrae observability, and force
instrumented runtime calls. This is not expected to induce any major overhead as the
parallel sections do not contain any actual ordered statements. Without the ordered
pragma, gcc might bypass gomp library and Extrae wrapping functions and limit the
observability.

- Functional legacy C code remained untouched, and parallelization of actual algorithmic
parts only consisted in #pragma omp annotations. No modifications of Legacy code
were applied to improve performance.

- Code discrepancies between sequential and parallelized versions are limited to:

o wrapper functions for I/Os

o adaptation for OS integration and configuration

o OpenMP runtime environment initialization

o Extrae initialization and manual instrumentation

An actual example of such OpenMP annotations for one of the use case parallelized loop is given
below.

Figure 9: Common annotation applied to all data parallelized loops

4.4.1 HRGEO application

Profiling of the sequential version of HRGEO determined that 99% of computation time was spent
in the function highlighted in blue in Figure 10, and then parallelized with OpenMP.

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 25/45

Figure 10: HRGEO algorithm phases executing in parallellel

4.4.2 Mirror application

Figure 11: Mirror applicaton overview

As illustrated in the Mirror application consists of a main loop that, after a pre-loop initialization,
iterates over a series of images. For each image, it performs four successive erent steps, as
depicted in Figure 1a, that proceed as follows:

- The first step, Image reading, loads an image as a matrix of

NB_LENS*NB_LENS*SIZE_X*SIZE_Y elements (where NB_LENS = 12 and SIZE_X
= SIZE_Y= 34).

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 26/45

- The second step, Coarse offset, iterates over the two most signicant dimensions of

the matrix, (NB_LENS * NB LENS). Each iteration executes three actions:
normalize, sliders, and interpolation. These steps end up traversing the two
less significant dimensions of each element, SIZE X _ SIZE Y).

- The third step, Fine offset, performs two actions: buildReference and

lucasKanade. These phases work on a different matrix of NB_LENS * NB_LENS *
SIZE_INTER_X * SIZE_INTER_Y elements. While the first action is just called once,
the second one iterates over the two most significant dimensions, calling the actual
kernel for each element. In both cases, all elements of the matrix are visited NB_LENS
* NB_LENS * SIZE X * SIZE Y.

- The fourth step, Final shifts, generates the final results.

- The fifth step, Dump results, dumps the results in a file.

Image reading

Evaluation focused on the evaluation of parallelization of second step Coarse Offset and

lucasKanade subpart of Fine offset step, totalizing 90 % of the sequential execution time.

An infructuous attempt not detailed in this report of parallelizing the buidRef offset led to the
conclusion of either an non acceptable overhead induced by openMP runtime vs small footprint of
the function. Reducing the overhead would require modification of the code so as not to jeopardize
computanioanl correctness and such a modification was not applied as we wanted to measure the
naïve potential gain without modifying the legacy code.

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 27/45

5 EVALUATION PHASE

5.1 Test Setups

5.1.1 GR740

GR740Linux Development Host

(Ethernet 1 Gbps)

 (ftdi 25 Mhz for UART and GRMON)

data
Development

PC (X64) GR740 Processing Board

Ethernet/IP/TCP NFS CLient

RTEMS5 SMP OS

OpenMP runtime

Ethernet Driver

NFS Ethernet client for I/Os

Use Case application

Extrae 3.7.1 instrumentation lib for observability

Cobham RCC 1.3-rc6

GRMON for upload/execution/serial
Linux NFS server for I/Os

Paraver traces visualization tool

OPENMP RUNTIME EXTRAE LIB

NFS Server HRGEO
Processing

Figure 12: GR740 test setup

As illustrated in Figure 12, the test setup is mainly composed of a GR-CPCI-GR740 Quad-Core
LEON4FT Development Board, connected to a Linux host development machine.

I/Os consist of input data file either directly linked with the application or retrieved from
development host through NFS over a 1Gbps Ethernet link. This NFS share is also used to retrieve
both functional and instrumentation outputs.

The software stack on the development host is composed of :
- RCC 1.3-rc6 : cross compiler for LEON4 target with RTEMS 5 OS, based on gcc 7.2.0
- grmon Pro 2.0.98 : used for executable load and serial output
- nfs-kernel-service : basic nfs client to support a remote file system

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 28/45

- BSC Paraver trace visualization tool for Linux, version 4.8.1.

The software stack on the embedded platform is composed of :
- RTEMS 5 SMP OS with POSIX support, with Ethernet and NFS support
- Actual Use Case algorithm linked
- OpenMP 4.5 runtime
- Extrae 3.7.1 instrumentation library from BSC ported to GR740
-

5.1.2 KALRAY TEST SETUP

The Kalray test setup is based on the MPPA® DEV4 workstation which is a complete X86 –
MPPA® based environment, packaged with Kalray S/W, for easy benchmarking and development
of accelerated systems.

Figure 13: MPPA® DEV 4

This development is composed of a x86_64 host part running a standard Linux distribution and a
KONIC200 PCIe Programmable accelerator card, hosting the Coolidge MPPA device.

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 29/45

Two modes of operation were exploited during the study. The first one is the JTAG mode on single
cluster illustrated in Figure 14. It consists on the generation of a standalone executable intended to
be run and parallelized on a single cluster on top of the Kalray Cluster OS. Deployment of the
executable on target relies a JTAG link with PCIe acceleration for executable or binary blobs
transfer to/from MPPA® Coolidge target. The JTAG mode also offer semi-hosting capabilities
allowing to access host file system through regular file manipulation calls, with inherent

Figure 14: Using JTAG on one Cluster Only

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 30/45

Second mode of operation explored is OpenCL offloading where the Coolidge manycore is
considered as an accelerator. The kernels that will run in the accelerator must be compiled in
isolation with the OpenCL compiler, and then linked with the host application part. All the
communication is done through PCIe.

Figure 15: OpenCL offloading using MPPA® as an accelerator

The software stack on the host platform is composed of Kalray SDK ACE 4.1.0, based on gcc 7.5.0,
and same x86 4.8.1 Paraver version than the one used for GR740.

On the embedded part the stack is composed of ClusterOS, which is a light OS optimized for
MPPA® cluster, with openMP 4.5 support and multithreading support through pThread POSIX,
as well as a port of Extrae 3.7.1 to the Coolidge architecture.

As far as application mapping is concerned we selected amongst the authorized configurations, the
one maximizing size of L2 cache:

- The local cluster SMEM is split in 2 parts: a 2MB TCM plus a 2MB level-2 cache

- ClusterOS and its execution kernel and user stack are stored in SMEM

- User code and associated data sections, including openMP and instrumentation libraries

are stored in global DDR external to the Cluster

This is mapping would be more likely to be optimized to improve performance, but was deemed
sufficient to perform the openMP deployment and performance measurements relative to
equivalent sequential version with similar memory mapping.

Additionally it allowed to have a first evaluation of the performance of the cluster programmed as
a generic GPPU, which was not so trivial with previous generation of the MPPA®.

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 31/45

5.2 Test Scenario

Test scenario for both HRGEO and MIRROR use cases execution on target follows an incremental
approach.

First the algorithm is executed in its pure sequential form to obtain a reference baseline.

Then algorithm is executed with OpenMP runtime integrated but only 1 core mainly to measure
open MP overhead in terms executable size overhead Error! Reference source not found.and
execution time overhead.

Then the number of exploited cores are incrementally increased to measure actual multicore
performance gain thanks to parallelization.
The selected multicore scheme are:

- 1,2,4 cores for GR740 target
- 1,4,8,16 cores for Kalray Coolidge target

Finally OpenMP Extrae is integrated on th scenario with the maximum number of cores active to
check the observability mechanism and verify proper and efficient parallelization of the code.

For each of those tests functional correctness of parallelized code is verified by comparing outputs
against expected ones for the predefined set of inputs.

For each use case the procedure is

1. Provide reference inputs
2. Execute algorithm
3. Retrieve Performance measurements
4. Retrieve algorithm output
5. Retrieve Traces and Generate

5.3 Quantitative metrics

As set of measurable metrics were captured during the evaluation:

1) OpenMP and Instrumentation executable size overhead
2) Parallelized version speed up, based on local figure of merit and overall speed up vs

Amdahl’s law
3) Functional Correctness

5.3.1 Executable Sizes overhead

Section present the parallel executable sizes ratio against sequential version, in terms of code and
data sections overhead.

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 32/45

Figure 16: HRGEO executable size overhead on GR740

Figure 17: HRGEO executable size overhead on KALRAY

0,00

0,50

1,00

1,50

2,00

2,50

OMP 1 core OMP 2 cores OMP 4 cores OMP 4 cores +
extrae

GR740 Executable Size OpenMP overhead on GR740

.text overhead

data.overhead

bss.overhead

0,00
0,20
0,40
0,60
0,80
1,00
1,20
1,40
1,60
1,80

OMP 1 core OMP 4 cores OMP 8 cores OMP 16
cores

OMP 16
cores +
extrae

Kalray Coolidge Executable Size OpenMP overhead

.text overhead

data.overhead

bss.overhead

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 33/45

Figure 18: MIRROR executable size overhead on GR740

Figure 19: MIRROR executable size overhead on KALRAY

For all use cases and use cases the overhead of both runtime and instrumentation library is
compatible with actual amount of memory available on embedded targets, with an absolute
overhead of ~100KiB of rthe openMP runtime and ~1MIB for the Extrae library.

5.3.2 Speed Up

This section presents the measure figure of merit for each individual parallelized loop as well as
the overall total algorithm time speed up, including remaining sequential phases, to be compared
to theoretical execution time obtained with Amdahl’s law.

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

OMP 1 core OMP 2 cores OMP 4 cores OMP 4 cores +
extrae

GR740 Executable Size OpenMP overhead

.text overhead

data.overhead

bss.overhead

0,00
0,50
1,00
1,50
2,00
2,50
3,00
3,50
4,00
4,50
5,00

OMP 1 core OMP 4 cores OMP 8 cores OMP 16
cores

OMP 16
cores +
extrae

Kalray Coolidge Executable Size OpenMP overhead

.text overhead

data.overhead

bss.overhead

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 34/45

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

HRGEO OpenMP Speed up on GR740

SpeedUp
OMP 1 thread

SpeedUp
OMP 2 thread

SpeedUp
OMP 4 threads

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

Speed Up
1 thread

Speed Up
2 thread

Speed Up
4 thread

MIRROR OpenMP Speed Up on GR740

Coarse

LK

Total algorithm

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 35/45

0,00
2,00
4,00
6,00
8,00

10,00
12,00
14,00
16,00
18,00

HRGEO OpenMP Speed up on KALRAY

SpeedUp
OMP 1 thread

SpeedUp
OMP 4 threads

SpeedUp
OMP 8 threads

SpeedUp
OMP 16 threads

0,00

2,00

4,00

6,00

8,00

10,00

12,00

Speed Up
1 core

Speed Up
4 core

Speed Up
8 core

Speed Up
16 core

MIRROR OpenMP Speed Up on KALRAY

Coarse

LK

Total algorithm

0,00

1,00

2,00

3,00

4,00

5,00

SpeedUp
OMP 1 thread

SpeedUp
OMP 2 thread

SpeedUp
OMP 4 threads

HRGEO actual speed up vs Amdahl on GR740

total algorithm

Amdahl

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 36/45

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

Speed Up
1 thread

Speed Up
2 thread

Speed Up
4 thread

MIRROR actual speed up vs Amdahl on GR740

Total algorithm

Amdahl

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

SpeedUp
OMP 1
thread

SpeedUp
OMP 4
threads

SpeedUp
OMP 8
threads

SpeedUp
OMP 16
threads

HRGEO actual speed up vs Amdahl on Kalray

total algorithm

Amdahl

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 37/45

5.3.3 Functional Correctness

All tests presented correct outputs, checked based on md5sum signature.

5.4 Qualitative metrics on Extrae exploitation

During the project we evaluated the benefit of Extrae instrumentation and Paraver visualization to
provide better visibility and understanding of parallel execution of the algorithm on actual target,
providing crucial pieces of information in the efficient usage of the multicore resources.

Two examples regarding load balancing and hardware counters exploitation on HRGEO use case
on GR740 targets are presented hereafter.

5.4.1 Load Balancing and scheduling

During HRGEO initial parallelization no fine tuning was used and static scheduling was applied,
resulting in unbalanced execution illustrated below where fourth core starves.

Figure 20: Unbalanced workload with static scheduling

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

Speed Up
1 core

Speed Up
4 core

Speed Up
8 core

Speed Up
16 core

MIRROR actual speed up vs Amdahl on KALRAY

Total algorithm

Amdahl

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 38/45

Zooming and activating event flags visualization allow to visualize the activity and highlight the
four parallelized loops composing the chipCorrelation function, spotting the fourth loop and
highlighting additional unbalance at the early stage of the processing.

Figure 21: Detailed view of the unbalanced execution

Analysis of the last loop code shows that it traverses a really small iteration space and static
partitioning cannot divide the space perfectly into 4 threads, so the last one gets less workload.
The processing consists of two nested loops and only outer one is actually parallel. As the loops are
perfectly nested they can be collapsed so as to increase the iteration space and better balance the
chunks split.

Figure 22: Load balancing thanks to the collapse clause

Finally as some threads do not get enough work in the first loop of chipsCorrelation, a switch to
guided schedule could help by forcing a mode dynamic scheduling with big chunks at the
beginning then small at the end.

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 39/45

Figure 23: Final optimal parallelization of legacy code

Initial omp annotation: #pragma parallel for schedule(static)

Final omp annotation: #pragma parallel for schedule(guided) collapse(2)

5.4.2 Hardware Counters

Hardware counters are very useful to measure actual performance, and potential
underperformance of the executed code. Extrae instrumentation can be used to retrieve such
counters automatically alongside OpenMP runtime calls or periodically through configurable
sampling.

Figure 24 gives an example of (IPC) Instruction Per Cycle metric automatically captured for the
HRGEO use case.

Figure 24: HRGEO use case IPC (light green=low IPC, dark blue=high IPC)

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 40/45

Here we can see that resampling (pink) and adaptiveFusion (dark red) present poor IPC metrics.
We can use additional counters to try to explain the poor IPC, as an example by retrieving cache
misses counters. This is illustrated in Figure 25, which highlights from top to bottom, L1 data cache
miss ratio, L2 cache miss ratio and IPC, with color code being the higher the darker.

Figure 25: Correlating IPC with L1 and L2 cache misses

The first low IPC region can be explained by high L1D cache miss ration (~50) and descent L2
miss ratio (~5) , while the second can be explain by high L2 cache miss ratio (~20). This
conveniently give some precious hints to try to track area of improvement in the algorithm
detailed implementation.

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 41/45

6 SUCCES CRITERIA

Success Criteria GR740 KALRAY

[Criteria#1] OpenMP runtime execution time overhead PASSED PASSED

[Criteria#2] OpenMP runtime code / data size overhead PASSED PASSED

[Criteria#3] Extrae library timing overhead PASSED PASSED

[Criteria#4] Extrae timing measurement accuracy PASSED PASSED

[Criteria#5] Multicore achieved speed up PASSED PASSED

[Criteria#6] Multicore efficient exploitation, explored with Extrae

instrumentation
PASSED PASSED

[Criteria#7] Functional Correctness of parallelized code PASSED PASSED

[Criteria#8] Initial Instrumentation Effort PASSED PASSED

[Criteria#9] Porting effort when switching to a new target PASSED PASSED

[Criteria#10] Observability through instrumentation PASSED PASSED

 Rationale

Criteria#1

Execution time overhead is absolutely acceptable in the order of magnitude of a few

percents on single core execution, and only one blocking point was found on Mirror use

case when trying to parallelize one of the remaining sequential execution contributors

Criteria#2
Executable size overhead is in the order of 5% for the considered use case which are not

that big. Absolute overhead size is in the order of magnitude of a hundred of kbytes

Criteria#3 Extrae execution time overhead is very low

Criteria#4

Extrae measurement is as accurate as the available Performance Monitor or core timers

can be. So as precise as what would be added through manual source instrumentation,

with the advantage of not modifying the source code for those openMP runtime calls that

can be automatically trapped thanks to wrapping

Criteria#5

Achieved speed up is very good, following Amdahl’s considering the amount proportion of

the algorithm actually parallelized. Instrumentation provides a convenient way to retrieve

performance counters, and internal insights, in order to help profiling and support

investigation of the areas with limited speedup

Criteria#6
Load balancing amongst core is quite easy to monitor thanks to Extrae instrumentation,

allowing to tune parallelization annotations appropriately

Criteria#7
No errors were detected during tests: expected functional behavior with parallelized

version of the algorithm was preserved.

Criteria#8

Initial parallelization effort was quite low, limited to a few omp pragma added to the code.

Most of the coding effort was dedicated to wrapping of the algorithm to the target,

operating system integration and configuration, and I/O management, rather than actual

parallelization.

Criteria#9
Annotations or functional algorithm code was not modified from a target to another, only

specific target init or I/O management functions.

Criteria#10
Extrae provides good automatic observables, user friendly way to defined additional

manual events, and assistance for automatic accurate Hardware Counters retrieval.

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 42/45

7 CONCLUSION AND FUTURE WORK

Both selected targets SDKs were already supporting a mature openMP runtime, demonstrating the
ecosystem is ready on both for radiation hardened and COTS components perspective. Porting
based on a GNU GCC mainstream compiler is completely in line with current state of the art and
golden rules applied in the scope of embedded software development as far as compiler choice is
concerned..

The initial parallelization effort of legacy code revealed to be low, as expected, thanks to non-
intrusive openMP annotations scheme. Selected annotations used to reach the decent
performance improvement presented in this report were very limited in number and complexity,
and selected so as to preserve determinism from one execution to another. An opposite choice
could have been taken so as to introduce some more random dynamic scheduling schemes to
capitalize on complexity to avoid deterministic worst cases.

The porting effort when switching from the first radiation hardened hardware target to the second
COTS other proved to be inexistent as openMP annotations remained strictly unchanged. This is
applicable as well to Extrae activation and manual instrumentations. The only customization
consisted in openMP environment, .i.e. number of available cores.

Open source Extrae observability library and its associated Paraver visualization tool both
provided by BSC and so far mainly targeting HPC mainstream world, were successfully ported to
GR740 and MPPA Coolidge ManyCore. They provided all the expected features to sustain efficient
profiling, verification and parallelization tuning. The tooling required a reasonable learning phase,
is well documented and offers a standardized hardware agnostic interface allowing focusing on the
actual data providing added value to the final end user mainly in the form of graphical intuitive
load dispatch representations, timing information, and hardware counters. Such knowledge is
mandatory to ensure efficient usage of multi and many cores, and support production delay
shortening.

However it is important to remind that despite we demonstrated during this evaluation phase that
the selected algorithms can be efficiently parallelized and observed, this is only valid for those two
selected representative algorithms, and of course cannot prove applicable to any legacy code. We
also found some limitation in the strategy for some of the functions where the ideal speed up
cannot be reached either due to openMP overhead or due to actual hardware resource usage
bottlenecks. While mitigation of the detected poor IPCs performance in well balanced parallel
phase remain to be defined, we however confirmed that all possible observables would be
available through the evaluated OpenMP framework to detect such corner cases and support such
analysis.

 As a result this evaluation comforts the idea that OpenMP could and should be seriously
considered in the scope of future R&D multicore roadmap, as well as for rapid prototyping in
advanced studies, especially when considering new space approaches.

As stated before HP4S defined two strategic end goals:

G1. Improve overall system performance. Effectively master and exploit the most advanced parallel
embedded architectures targeting the space domain.

G2. Improve the parallel programming productivity. Reduce the development efforts of systems
based on parallel architectures, while fulfilling system's functional and non-functional (time
predictability) requirements

Those two goals derived in a set of technical measurable objectives, listed hereafter:

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 43/45

O1. Facilitate the development, timing analysis and execution of parallel real-time space
applications using the OpenMP parallel programming model.

O2. Evaluate the interest and porting effort of a list of homogeneous and heterogeneous foreseen
COTS and RadHard hardware targets in the space domain with OpenMP programming model and
framework.

O3. Adapt the OpenMP runtime libraries to ensure that the timing guarantees devised at analysis
time can be guaranteed at deployment time.

O4. Evaluate state-of-the-art compiler techniques to guarantee that parallel OpenMP

O5. Demonstrate the portability benefits of the OpenMP parallel programming model.

The outcomes of the previous preparatory and implementation phase, completed by the
experiments results obtained during the evaluation phase and presented in the report allow us to
state that O1, O2, and O5 are achieved while O3 and O4 remain open for future work.

Main foreseen follow up activities are suggested hereafter:

 Extrae/Paraver improvements and industrialization

While Paraver tool could be deemed quite mature, the Extrae library porting resulting from the
HP4S project can still be matured in terms of minor bugs or additional features but also in term of
process. One of the current main show stoppers for industrial exploitation would relate to trace
dumping, which could benefit from modern debug tracing features available on modern SoCs and
Manycore and final Paraver report generation which would have to be somehow deported to the
development host.

 OpenMP Qualification strategy and development process impacts

Parallelization with OpenMP while being quite seamless regarding source code is far more
impacting when considering generated object code and final executable. While it does only
marginally impacts the high level TS validation strategy it clearly jeopardizes some of the well-
established steps starting with unit testing and coverage measurement Adoption of new
programming models will more likely require to adapt our current processes, and rely on a
combination of current process enhanced with state-of-the-art compiler and runtime correctness
techniques so as to demonstrate functional safety of the parallelized software and absence a data
races (i.e. the definition of data-sharing attributes and synchronization mechanisms) or deadlocks
(i.e. locking routines and synchronization mechanisms).

 OpenMP Time Predictability and WCET estimation for parallelized software

Obtained results with static scheduling proved to be quite stable and deterministic, however there
is a necessity to ensure that decisions taken at run-time maintain the guarantees of system
correctness endorsed during design and implementation. Hence, a parallel framework
(considering both compiler and runtime) targeting a critical real-time embedded system must
ensure that processor resource allocation, either static or dynamic, maintains the response time
analysis performed at analysis time. Additionally, such a framework must also ensure the
functional correctness of the parallel execution safeguarding it from data races and deadlocks as
mentioned in previous point.

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 44/45

 OpenMP Offloading features

Current study did not explore the openMP offloading capabilities, and only considered an
homogeneous model where the thread that executes the implicit parallel region executes on
the same processing device. An implementation may support other target devices. If supported,
one or more devices are available to the host device for offloading code and data. Each device has
its own threads that are distinct from threads that execute on another device. Threads cannot
migrate from one device to another device. The execution model becomes host-centric such that
the host device offloads target regions to target devices. This might be of particular interest in the
scope of a standard interfacing and offloading to FPGA hardware accelerators IPs, potentially
exploring benefits from partial reconfiguration, exploitation of additional clusters on MPPA
Coolidge manycore, or exploitation of IA accelerators.

 Extension of the study to ARM MPSoCs, and heterogeneous targets

 Exploration of usage of OpenMP on “non-friendly” target, such as ones with no hardware
cache coherency assistance

● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date: 13-Dec-20

.
 Airbus Defence and Space SAS – All rights reserved.

● Page 45/45

8 ACRONYMS AND ABBREVIATIONS

Specific acronyms and abbreviations used in this document are given below.

ALU Arithmetic-Logic Unit

API Application Programming Interface

APU Application Processing Unit

BSC Barcelona Supercomputing Center

COTS Commercial Of The Shelf

CPU Central Processing Unit

FDIR Fault Detection, Isolation and Recovery

FPGA Field Programmable Gate Array

FPU Floating-Point Unit

GPGPU General Purpose Graphic Processing Unit

GPPU General Purpose Processing Unit

GSD Ground Sampling Distance

HPC High Performance Computing

HW Hardware

HW IP HardWare Intellectual Property (a custom logic function implemented in HW)

IPC Instructions per Cycle

MPPA® Massively Parallel Processor Array

MPI Message Passing Interface

MPSoC Multi-Processor SoC

NFS Network File System

OS Operating System

PAPI Performance API

PE Processing Element

RGB Red Green Blue

SIMD Single Instruction Multiple Data

S/N Signal/Noise

SoC System On Chip

SSE Streaming SIMD Extension

SW SoftWare

TCM Tightly Coupled Memory

VLIW Very Long Instruction Word

	1 ABSTRACT
	2 EXECUTIVE SUMMARY
	3 PREPARATORY PHASE
	3.1 System Needs and perspective for use of OpenMP
	3.1.1 Needs of current and future payload data processing applications
	3.1.2 Hardware solutions for high performance data processing
	3.1.3 Parallel programming frameworks
	3.1.4 Correctness and time predictability considerations

	3.2 OpenMP Evaluation Plan
	3.2.1 Use Cases selection
	3.2.1.1 HRGEO use case
	3.2.1.2 Adaptive Mirror use case

	3.2.2 Hardware Targets Selection
	3.2.2.1 GR740
	3.2.2.2 MPPA Coolidge

	4 IMPLEMENTATION PHASE
	4.1 Use case software porting to OpenMP methodology
	4.2 Porting the compilation tool chain and observability tools
	4.3 Ported OpenMP framework
	4.4 Final Use Case parallelization strategy
	4.4.1 HRGEO application
	4.4.2 Mirror application

	5 EVALUATION PHASE
	5.1 Test Setups
	5.1.1 GR740
	5.1.2 KALRAY TEST SETUP

	5.2 Test Scenario
	5.3 Quantitative metrics
	5.3.1 Executable Sizes overhead
	5.3.2 Speed Up
	5.3.3 Functional Correctness

	5.4 Qualitative metrics on Extrae exploitation
	5.4.1 Load Balancing and scheduling
	5.4.2 Hardware Counters

	6 SUCCES CRITERIA
	7 CONCLUSION AND FUTURE WORK
	8 Acronyms and Abbreviations

