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1 ABSTRACT 

Next generation space missions will require more capable computers  in order to implement either 
advanced navigation and control algorithms needed to increase the spacecraft autonomy and 
agility or on the payload side with complex scientific payload data pre-processing algorithms. The 
advent of low-power multi- and many-cores processor architectures provides critical real-time 
embedded systems with an unprecedented performance level, opening the door to implement 
more intelligent systems. These architectures however, pressure the software development 
process, as applications must be parallelised in order to exploit the huge performance capabilities 
they offer. 

The complexity of parallel programming has already been identified as a major challenge in 
general purpose computing, and it is now exacerbated in the critical embedded systems domain, 
due to the non-functional properties that these systems must fulfilled, e.g. functional safety and 
time predictability. 

The majority of architectures incorporate parallel programming models in their software 
development kits with the objective of easing programmability and exploiting performance 
capabilities. These models provide an interface that entails a level of abstraction enabling to 
expose parallelism while hiding the complexity of the processor architecture. Parallelism is 
accomplished by the definition of independent execution units and synchronization mechanisms 
that guarantee the correct control- and data-flow. 

The decision on what parallel programming model is used directly affects portability. While high 
level models can be compiled and executed on different architectures supporting the same model 
without modifying the application, low level APIs (e.g. Pthreads) may require some tuning before 
they can be ported to another machine. 

Overall, parallel programming models are a fundamental element to exploit the huge performance 
capabilities offered by the newest parallel heterogeneous architectures. 

The purpose of this ITI is to demonstrate the benefits of using one of the most well-known parallel 
programming models, i.e. OpenMP, for the development of parallel space applications, in terms 
of performance, programmability and portability. 

Two main goals are identified: 

 G1 -  Improve overall system performance by exploiting the most advanced parallel 
embedded architectures targeting the space domain 

 G2  Improve the parallel programming productivity by reducing  the initial 
development efforts of systems based on parallel architectures,  

By selecting and porting  two representative payload processing use cases to OpenMP parallel 
programming model,  and evaluating their deployment on two high-end computing devices, 
GR740 in the radiation hardened components family and latest Kalray Coolidge MPPA as COTS, 
the project execution successfully demonstrated that usage of OpenMP parallel programming 
could facilitate the development, and analysis of parallel real-time space applications.  

Development framework is completely based on open source solutions. Cross compiler for the 
selected targets is mainstream GNU GCC and includes OpenMP 4.5 runtime and open source 
observability tools provided by Barcelona Supercomputing Center (Paraver and Extrae) were 
ported from HPC mainstream to the selected hardware targets, and exercised through the 
selected software use cases. 



 

                                                                                                     
● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date:  13-Dec-20 
 

 

 

.  
 Airbus Defence and Space SAS – All rights reserved.   

● Page 7/45 

  

2 EXECUTIVE SUMMARY 

The principle behind OpenMP (as well as many other parallel programming models) is that 
parallel computation is user-directed, but not fully controlled by the programmer. As a result, the 
parallel execution is delimited by the user and orchestrated by the runtime. This has the freedom 
to distribute the parallel execution among the computing resources provided by the underlying 
architecture in the most convenient way, with the objective of maximising performance speed-up.  

Although this principle presents clear benefits in terms of programmability, portability and 
performance, it may also impact negatively on ensuring the safety properties of the system. The 
reason is that the developer in charge of guaranteeing functional and non-functional requirements 
has very little control on how the parallel execution is managed at run-time. 

HP4S study defined two strategic end goals: 

G1. Improve overall system performance.  
Effectively master and exploit the most advanced parallel embedded architectures 
targeting the space domain. 

G2. Improve the parallel programming productivity.  
Reduce the development efforts of systems based on parallel architectures, while 
fulfilling system's functional and non-functional (time predictability) requirements. 

These two goals derive in a set of technical measurable objectives listed hereafter: 

O1. Facilitate the development, timing analysis and execution of parallel real-time space 
applications using the OpenMP parallel programming model. 

O2. Evaluate the interest and porting effort of a list of homogeneous and heterogeneous 
foreseen COTS and RadHard hardware targets in the space domain with OpenMP 
programming model and framework. 

O3. Adapt the OpenMP runtime libraries to ensure that the timing guarantees devised at 
analysis time can be guaranteed at deployment time. 

O4. Evaluate state-of-the-art compiler techniques to guarantee that parallel OpenMP 
applications are functionally correct, and so no race conditions or deadlocks will occur. 

O5. Demonstrate the portability benefits of the OpenMP parallel programming model. 

The key capability to achieve the goals of high performance processing to support future missions 
is therefore clearly software parallelisation. Indeed, highly parallel computing devices may be 
useful only if the development of efficient programming techniques for such devices is achieved. 
The efficiency of programming techniques is twofold in our business where many software 
applications are specific to a given mission and therefore, globally non-recurring: the technical 
efficiency (i.e. the capability to use the device’s resources efficiently)and the industrial efficiency 
(mastering and lowering the programmer’s efforts for software development and verification). 

This study raises the TRL for on-board software parallelisation on the two selected targets – 
currently at the “proof of concept” level (TRL3). For these targets, usage of laboratory 
representative implementation allows to reach TRL4. 

The study is structured within four technical steps: 

1) A Preparatory phase dedicated to the inventory of possible application use cases that 
would make sense for being evaluated during this study as well as an in-depth analysis of 
the available many/multi-cores processing targets an associated resources w.r.t. their 
suitability for the use cases and for supporting an OpenMP framework. This phase results 
in the selection of  2 specific use cases. 
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2) A Development phase dedicated to the preparation of the OpenMP framework on the 

selected targets and to the parallelisation work on the two selected use cases. 
 

3) An Evaluation phase dedicated to the actual porting of the parallelised use cases and 
benchmarks on the targets and evaluation according to the criteria’s defined during the 
preparatory phase. 
 

4) A Synthesis phase dedicated to the analysis of all collected evaluation results and a 
synthesis for all the study outcomes as well as recommendations for the way forward with 
respect to parallel processing and multi/many cores targets. 

From the implementation perspective, the main contributors to the project are Airbus Defence 
and Space and Barcelona Supercomputing Center, briefly introduced hereafter.  

AIRBUS Defence and Space is a world leader as satellite prime contractor answering needs of 
space programmes in the various fields of space activities: Telecommunications, Earth 
observation, Space Science, Navigation, Launch vehicle, manned space flights. This expertise is 
covering a wide range of activities, from the complete system including both space and ground 
segments down to equipment level. It includes in particular the prime contracting of 
Telecommunications, Earth observation and Science satellites and experiments. At its location in 
the southwest of France, the Toulouse site specialises in satellite prime contracting, design, 
assembly integration and test for communications, Earth observation and science satellites. Its 
expertise also extends to avionics, optical instruments, on board software, ground systems and 
space-based geo-intelligence and telecommunications services. The Data processing and On-
Board software advanced studies team involved in this project has a very high level of expertise on 
topics such as high performance algorithm mapping on software execution platform and its 
impact on software architectures. 

Barcelona Supercomputing Center, established in 2005, serves as the National 
Supercomputing facility in Spain. The Center hosts MareNostrum, one of the most powerful 
supercomputers in Europe. The mission of the BSC-CNS is to research, develop and manage 
information technologies in order to facilitate scientific progress. The BSC-CNS not only strives to 
become a first-class research center in supercomputing, but also in scientific fields that demand 
high performance computing resources such as the Life and Earth Sciences. Following this 
approach, the BSC-CNS has brought together a critical mass of top-notch researchers, high 
performance and embedded computing experts and cutting-edge supercomputing and high-end 
embedded technologies in order to foster multidisciplinary scientific collaboration and innovation. 
At an international level, the BSC-CNS has already participated in an impressive number of 
activities, including the 6th, 7th and H2020 Framework Programs of the European Commission. 
In the parallel programming domain, BSC has a long tradition investigating parallel programming 
paradigms and intelligent runtime systems to increase the productivity when programming HPC 
and embedded systems to effectively exploit performance out of the target architecture (from 
embedded many-core processors to large-scale cluster systems, including both homogenous and 
heterogeneous systems that use accelerators like GPUs) for many years. It is worthy mention that 
BSC is member of the OpenMP Advisory Review Board (ARB), the non-profit corporation that 
owns the OpenMP brand, oversees the OpenMP specification and produces and approves new 
versions of the specification 
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3 PREPARATORY PHASE 

The preparatory phased purpose was to refine and summarize the actual needs, analyse the 
potential  software solutions and associated challenges to build a solid plan for prototyping and 
evaluation on relevant targets.  

3.1 System Needs and perspective for use of OpenMP 

 

3.1.1 Needs of current and future payload data processing applications 

 

There are typically two different categories of on-board data processing platforms in spacecraft. 
Some computers are responsible for spacecraft or instrument control and computers, others are 
responsible for the on-board processing of instruments data, more often located on the Payload 
segment. 

For both categories, we foresee that next generation space missions will require more capable 
computers, with respect to what we can implement today using proven technologies like the LEON 
processor: On the control side, spacecraft autonomy and agility need to be improved thanks to 
new sensors data acquisition and processing for in-situ real-time usage, such as for instance visual 
based navigation. On the payload side, scientific data pre-processing algorithms as well as more 
robotics for in-orbit/on-Planet operations are foreseen with, in the long term, the foreseeable 
usage of artificial intelligence. 

Two tracks are identified by Airbus Defence and space, largely shared with other European space 
Industrial for achieving such goal, and supported by the technology roadmap of the European 
Space Agency and national agencies:  

1) The development of new processing architectures on new rad-hard technologies such as, 
among others, the recent GR740 and HPDP with the STM-65nm and the future 
Dahlia/Brave-Ultra targeted for the new STM 28nm FD-SOI (will) provide higher running 
frequencies with more efficient processing devices. On this technology track, developments 
of High performance computers are on-going which all require the capability to efficiently 
develop software on Multi-Core devices. 

2) The development of mitigation techniques enabling the use of commercial of the shelves 
processors (COTS) both as FPGA and micro-processors in the space environment. This 
way has been supported and matured through the ESA “COTS Based Computers” studies 
in which Airbus Defence and Space was strongly involved. For instance, this track which is 
more easily applicable for the LEO orbit has enabled the new Airbus product line 
“PureLine” based on Automotive quality grade parts. 

Both tracks have their specific advantages, drawbacks and limitations which make them both to be 
tackled with respect to the different categories of missions and markets we face. But a common 
characteristic is that both will lead to the use of devices enabling parallelisation of the processing. 
In this context, the emergence of complex computing architecture embedding many processing 
cores on single device is a real opportunity to drastically increase the on-board processing 
capability for both of these technology development tracks.  

3.1.2 Hardware solutions for high performance data processing 
 

A wide range of devices are relevant for satisfying these needs: 
 

 FPGAs (Field-Programmable Gate Arrays) 
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FPGAs use configurable logic blocks containing LUTs, FFs, DSPs and block RAM along 
with a configurable routing matrix to implement a wide range of applications. They tend to 
outperform with streamed algorithms. 

 

 DSPs (Digital Signal Processors) 
DSPs are optimized for single thread signal processing applications which mainly use 
typical signal processing operations. DSPs tend to perform these operations using fewer 
instructions than GPPs, and with lower power consumption. Some DSPs have a SIMD 
(Single Instruction, Multiple Data) architecture giving them Data Level Parallelism (DLP) 
capabilities. 

 

 GP GPUs (General Purpose Graphics Processing Units) 
There is a wide variety of GPU architectures, but they usually consist of up to 32 cores, 
with each core containing up to hundreds of processing units. The cores have their own 
instruction stream and the same stream is shared by the processing units of a core. The 
cores have a private, local memory and they communicate through the GPU shared 
memory. 

 

 Many-core processors 
Many-core processors are designed to reach high throughputs using Thread Level 
Parallelism (TLP). Usually, the cores are quite small in order to fit a high number of them 
on a chip with a reasonable power consumption. 

 

 Multi-core GPPs (General Purpose Processors). 
GPPs outperform in single-threaded applications and mostly take advantage of ILP 
(Instruction Level Parallelism) thanks to complex pipelined and superscalar architectures. 
This parallelization is implicit since it is automatically managed by the hardware. GPPs 
rely on cache memories to reduce the latency of memory transfers. Multi-core 
architectures make it possible to run some threads in parallel. 

 
Each device has its own advantages but it is important to realize that every design is unique and 
there is no universal rule for choosing among these devices. Some systems use a combination of 
devices to implement the overall application. To choose the most suitable hardware solution for a 
specific algorithm, several items such as cost, speed, flexibility, power and optimization as well as 
the design environment (team’s skill, design tools, licensing…) should be taken into account. 
 

The following table summarizes the characteristics of the main processing devices (note that there 
can be a lot of variability within a type of processing platform and that this table only provides 
trends). 
 

Table 1: Processing platforms comparison 

Device Parallelism 
Gate Reuse And 

Time Sharing 
Flexibility/ 

Programmability 
Absolute Power 
Consumption 

FPGA (SRAM) High Some Moderate Moderate 

DSP Some Moderate High Low 

GP GPU High High High High 

Many-core High High High High 

Multi-core GPP Moderate High High Moderate 
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3.1.3 Parallel programming frameworks 
 

The complexity of parallel programming has already been identified as a major challenge in 
general purpose computing, and it is now exacerbated in the critical embedded systems domain, 
due to the non-functional properties that these systems must fulfil, e.g. functional safety and time 
predictability. 

OS’s and RTOS’s already provide all the services required to designing a parallel application. 
Nonetheless, reaching a high level of parallelism by only using the services of the OS is hard as it 
requires finding a good balance between the loads of the different cores with very rudimentary 
tools. 

The majority of architectures incorporate parallel programming models in their software 
development kits with the objective of easing programmability and exploiting performance 
capabilities. These models provide an interface that entails a level of abstraction enabling to 
expose parallelism while hiding the complexity of both the processor architecture and the OS. 
Parallelism is accomplished by the definition of independent execution units and synchronization 
mechanisms that guarantee the correct control- and data-flow. 

OpenMP presents the following advantages over its competitors: 

 Different evaluations demonstrate that OpenMP delivers performance and efficiency 
tantamount to highly tunable models such as TBB, CUDA, OpenCL, and MPI. Regarding 
low-level libraries such as Pthreads, it offers multiples advantages such as: a) robustness 
without sacrificing performance, and b) OpenMP does not lock the software to a specific 
number of threads.  

 The code can be compiled as a single-threaded application by either disabling support for 
OpenMP or assigned a single computing unit (i.e., OpenMP thread), thus easing 
debugging. 

 OpenMP has a large and experienced community that has constantly reviewed and 
augmented the language for the past 20 years achieving great expressiveness. OpenMP is 
the de-facto shared-memory programming model standard. The language defines a very 
powerful tasking model that allows expressing fine-grained, both regular and irregular, 
and highly-dynamic task parallelism, augmented with features to express task 
dependencies. The latest specification of OpenMP also incorporates new features that 
facilitate the coupling of a main host processor to accelerator devices by defining both 
synchronous and asynchronous communication between them. 

 OpenMP is widely implemented by several chip and compiler vendors (e.g. GNU, Intel, 
IBM, Kalray, Texas Instruments). 

 Typically, ensuring functional correctness in languages that are not developed for such 
purpose is not straightforward. Nonetheless, OpenMP static correctness techniques are 
quite mature and simple compared to other parallel programming models which are not 
designed with correctness in mind (e.g. the low level Pthreads API or the Message Passing 
Interface, MPI). 

Overall, OpenMP is a good candidate to be used in the real-time embedded domain in general, and 
in the space domain specifically by virtue of its benefits.  

3.1.4 Correctness and time predictability considerations 

Space applications and embedded software in general, are driven by real time constraints and the 
need to validate that the deadlines defined for a piece of software are met. These constraints are 
linked to the performance of the system and in this context the focus is rather on worst case 
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performance than average performance. Controlling the way the software is executed on the 
hardware platform is crucial when it comes to validating the timing behavior of the complete 
application. It is worth noting that some space applications have softer requirements on timing 
constraints.  

The principle behind OpenMP (as well as many other parallel programming models) is that 
parallel computation is user-directed, but not fully controlled by the programmer. As a result, the 
parallel execution is delimited by the user and orchestrated by the runtime. This makes it possible 
to distribute the parallel execution among the computing resources provided by the underlying 
architecture in the most convenient way, while maximizing speed-up.  

Although this principle presents clear benefits in terms of programmability, portability and 
performance, it may also impact negatively on ensuring the safety properties of the system. The 
reason is that the developer in charge of guaranteeing functional and non-functional requirements 
has very little control on how the parallel execution is managed at run-time. 

There is therefore an urgent necessity to ensure that decisions taken at run-time maintain the 
guarantees of system correctness endorsed during design and implementation. Hence, a parallel 
framework (considering both compiler and runtime) targeting a critical real-time embedded 
system must ensure that processor resource allocation, either static or dynamic, maintains the 
response time analysis performed at analysis time. Additionally, such a framework must also 
ensure the functional correctness of the parallel execution safeguarding it from data races and 
deadlocks. 

OpenMP offers two ways to synchronize threads: via directives (master and synchronization 
constructs such as critical and barrier), and via runtime routines (lock routines such as omp set 
lock and omp unset lock). Although both mechanisms may introduce deadlocks, the latter is 
much more error-prone because these routines work in pairs. The former may cause deadlocks if 
various critical constructs with the same name are nested. The latter may cause errors in the 
following situations: attempt to access an uninitialized lock, attempt to unset a lock owned by 
another thread or attempt to set a simple lock that is in the locked state and is owned by the same 
task. Moreover, OpenMP introduces the concept of nestable locks, which differ from the regular 
locks in that they can be locked repeatedly by the same task without blocking. 
 
Another important phenomenon to be considered are race conditions that appear in a concurrent 
execution when two or more threads simultaneously access the same resource and at least one of 
them is a write. This situation is not acceptable for a safety-critical environment since the results 
of the algorithm are non-deterministic. The problem of detecting data races in a program is NP-
hard. On account of this, a large variety of static, dynamic and hybrid data race detection 
techniques have been developed over the years.  
 
On the one hand, dynamic tools extract information from the memory accesses of specific 
executions. Despite this, there exist algorithms capable of finding at least one race when races are 
present, as well as not reporting false positives. On the other hand, static tools still seek a 
technique with no false negatives and minimal false positives. Current static tools have been 
proved to work properly on specific subsets of OpenMP such as having a fixed number of threads 
or using only affine constructs. A more general approach can be used to determine the regions of 
code that are definitely non-concurrent. Although it is not an accurate solution, it does not 
produce false negatives, which is paramount in the safety-critical domain. Therefore, the 
previously mentioned techniques can be combined to deliver conservative and fairly accurate 
results.  
 
Finally, resiliency is a crucial feature in the safety-critical domain. However, OpenMP does not 
prescribe how implementations must react to erroneous (or unexpected) situations. In that 
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respect, if the error is produced by the environment, users may want to define what recovery 
method needs to be executed. Several approaches have been proposed with the aim of adding 
resiliency mechanisms to OpenMP. There are four different strategies for error handling: 
exceptions, error codes, call-backs and directives.  

3.2 OpenMP Evaluation Plan 
 

Based on the definition of those requirements, a work plan for applicability of OpenMP on 
different targets was established, so as to answer the project goals objectives and provide crucial 
pieces of information amongst which : 

 a measurable view of the performance of high demanding algorithms with two different 
multiple cores targets using an OpenMP implementation  

 feedback and experience on the efficiency of OpenMP to parallelize application  

 some practical view on the portability offered by the OpenMP framework 

 
A set of criteria was defined and applied to select software and hardware to be exercised.  
 

3.2.1 Use Cases selection 
 

Based on a set of criteria not detailed in this public report but main objective was to optimize the 
add value/project effort ratio, two image processing use cases were selected.  

3.2.1.1 HRGEO use case 

 

Correlation ResamplingImage sensor Output image

Estimated shift

Fusion Stabilisation

Reference image

 

Figure 1: HRGEO Algorithm Overview 

The complete algorithm is divided into several computation stages. The sensor image is a RGB 
image with the three composites values for each pixel (no bayering is considered here).  

The algorithm includes image registration, resampling and fusion. The goal of the algorithm is to 
improve the S/N ratio on a static image by merging multiple images from a stream coming out of a 
more or less steady camera. The algorithm creates and manages a geometric model which fits the 
image displacement. It accumulates the successive images into a single reference image after 
compensating for the displacement with a sub-pixel accuracy. 

The algorithm considers chips (fraction of the whole image) and searches the maximum 
correlation between the chip from the reference image (accumulation) and the chip from the 
current image along both dimensions and within the exploration range. The geometric model 
considers only translation. When all the chips displacements have been estimated then the 
average displacement over all the chips is computed and applied to the resampling function which 
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moves the accumulated image (reference) in the same position as the current image. This function 
resamples the reference image by using a bank of convolution filters. Together, the correlation and 
the resampling stages perform the registration. The fusion stage applies a configurable gain to the 
current image and adds it to the reference image. 

This algorithm while not being the state of the art of this type of processing in Airbus Defence and 
Space is representative of a complex algorithm implementation process.  

The implementation uses fixed-point representation for image correlation and keeps only a few 
operations in double precision. 

3.2.1.2 Adaptive Mirror use case 

 
Future earth observation satellites with high resolution requirements will need primary mirrors of 
huge size. Due to their big size, they will suffer thermoelastic deformations. Adaptive optics allows 
fixing these defaults thanks to a deformable mirror actuated by a myriad of piezo actuators. The 
wave front defaults are measured on board by a Shack-Hartmann analyzer with its image sensor. 
 
Wavefront sensors aim at analyzing the shape of an incident beam's wavefront in order to identify 
aberrations caused by light traveling through individual optics or optical assemblies.  
 

Shack-Hartmann wavefront sensors achieve this by dividing the beam into an array of discrete 
intensity points using a microlens array. To measure the wavefront of a beam, the light is aligned 
so that it is normally incident on the microlens array at the front of the wavefront sensor. Each 
lens collects the light filling its aperture and forms a single focal spot on the CMOS camera sensor, 
which is located at the focal plane of the microlens array. If the wavefront is planar, all focal spots 
are centered directly behind each respective lens, coincident with the optical axis of each. The 
result is a regularly spaced grid of spots on the camera sensor, as illustrated in Figure 1Figure 2.  
These spot locations are called reference spot positions, and they compose the reference spot field. 

 

Figure 2: Planar Wavefront (credit https://www.thorlabs.com) 

Error! Reference source not found.Figure 3. By comparing the locations of the spots in the 
measured spot field with those in the reference spot field, the shape of the wavefront can be 
calculated, and this is the aim of the image processing algorithm of this use case.  

https://www.thorlabs.com/images/tabimages/Shack_Hartmann_Wavefront_Planar_D2-780.gif
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Figure 3: Distorted WaveFront (credit https://www.thorlabs.com) 

For robustness reasons and to have several measurements on several points on the mirror, 3 
detectors provide the images. It has been demonstrated in previous studies that the processing of 
one detector could fit in a LEON processor. The control of the piezo actuators would require 
another LEON processor. In the use case of this study, we integrate the processing of the 3 
detectors actuators on the same multicore processor. 

The algorithm is composed of two steps. It is applied on a 12x12 matrix of lenses for 3 detectors 
that are independent. But not all lenses must be processed, only the ones with a light intensity 
above a certain threshold. The light intensity is a constant, thus the number of lenses to be 
processed can be defined beforehand. 104 lenses have to be processed in the current 
implementation.  

 

Figure 4: MIRROR application processing steps 

As illustrated in Figure 4, the image processing partition is composed of two parts: one that 
computes a first rough estimate of the shifts and interpolates the image with this shift; and 
another one that uses the interpolated image to compute a very precise shift.  

 

https://www.thorlabs.com/images/TabImages/Shack_Hartmann_Wavefront_Distorted_D2-780.gif
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The coarse offset is composed of a normalization of the images with the light matrix, then the 
sliders algorithm is applied on all valid lenses, finally a bilinear interpolation applies the shift 
computed for the next step. The sliders are composed of two steps of convolution, but the second 
step is executed only if the first shift is bigger than 0.5 on the X axis. For the reference batch 
provided with the algorithm, it happens on 26% of the lenses and represents an increase in the 
number of operations of 20% when it is applied. It means that the duration of the coarse offset has 
a small variability in duration due to the data processed. 

The fine offset first computes the reference lens from all the other lenses then it uses the Lucas-
Kanade algorithm to compute the shift between the reference lens and the others. The execution 
time of this algorithm does not depend on the data. This part of the algorithm cannot be started 
for a detector before all lenses (for the same detector) have been resampled by the previous step. 

3.2.2 Hardware Targets Selection 
 

Based on a set of criteria not detailed in this public report on purpose, two hardware targets were 
selected amongst the following candidates { GR740, HPDP, RC64 } for the radiation hardened 
targets and { Zynq, Zynq MPSoC, Kalray Coolidge MPPA } for the COTS ones.  

The GR740, the Coolidge and the Zynq 7000/UltraScale+ appeared to be the targets the best 
suited to the HP4S study. This is mostly because they implement hardware cache coherency 
mechanisms, they support SMP and their software stack is based on open-source tools. On the 
other hand, the other two targets that are considered (the RC64 and the HPDP) have software 
stacks based on proprietary tools and a high effort would be required to implement a reduced 
OpenMP runtime on these targets.  

Final selected ones GR740 and MPPA Coolidge are briefly presented hereafter: 

3.2.2.1 GR740 

The GR740 device is a radiation-hard quad-core fault-tolerant LEON4 SPARC V8 processor. The 
processor is organized around five AMBA AHB buses. For the purpose of this study, we are 
interested on those impacting on the parallel computation, i.e., the 128-bit Processor AHB bus and 
the 128-bit Memory AHB bus. The former connects the four LEON4 cores connected to the shared 
L2 cache. The latter connects the L2 cache and the main external memory interface (SDRAM) and 
attaches a memory scrubber (see Figure 19).  The cache system is composed of 4KB L1 instruction 
and data caches per core, and a 2MB L2 unified cache shared among cores. The L1 data caches 
have one valid bit per cache line and implements a write-through policy with a double-word write-
buffer. Data may exist in both the L1 and L2 caches, or only in L1 or L2. The cache system 
implements an AMBA AHB master to load and store data to/from the caches. A bus-snooping on 
the AHB bus maintains cache coherency for L1 data caches. The L2 cache works as an AHB-to-
AHB bridge, caching the data that is read or written via the bridge. A front-side AHB interface is 
connected to the Processor AHB bus, while a backend AHB interface is connected to the Memory 
AHB bus. 

 

Figure 5: Memory hierarchy of the GR740 processor 
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Software Environment 

GR740 supports RTEMS-SMP version 5.x, a POSIX-based operating system targeting the 
embedded computing domain. RTEMS-SMP implements all the primitives needed to support 
parallel execution, including the pthread library upon which the implementation of OpenMP in 
GNU-GCC (named libgomp) is based on. Concretely, the selected RTEMS-SMP for GR740 
supports GCC 7.2 This version implements the OpenMP specification 4.5, which will be the one 
considered in this project. ESA is working towards a qualifiable RTEMS-SMP based on 5.x, and a 
evaluation is based on beta version of RTEMS-SMP 5.1 supporting GR740 released and 
incorporated in Cobham Gaisler RCC SDK.  

 

3.2.2.2 MPPA Coolidge 

 
The MPPA Coolidge is a none radiation-hardened 80-core processor architecture from Kalray. The 
Coolidge architecture, which is the evolution of the Bostan architecture, is organized in 5 clusters, 
each featuring 16 cores and a local memory of 4MB that can be configured as a L2 cache and/or 
scratchpad (see Figure 6). Each VLIW core includes a coherent 16KB L1 instruction and data cache 
and a Memory Management Unit (MMU). Cache coherence among L2 caches from different 
clusters is supported as well for a complete SMP configuration. By doing so, a single application 
can be spawned across the 80-cores. Coolidge can be configured as an AMP machine as well at 
cluster level, guaranteeing isolation across clusters as defined by ISO26262 ASIL B and C 
criticality levels. Coolidge is available since Q1-2020.  
 

 

Figure 6: MPPA Coolidge architecture 

 
Software Environment 

Coolidge provides a linux-based environment build on GCC 7.5 and supporting OpenMP v4.5 at 
clustering level. The offloading mechanisms are based on the native MPPA API, and Coolidge also 
supports OpenCL, allowing to manage clusters as OpenCL Compute Units. 
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4 IMPLEMENTATION PHASE 

4.1 Use case software porting to OpenMP  methodology 
 

The implementation was divided into two stages for this study: 

o Porting for first sequential execution on the targets. 

o Parallelization of the applications with OpenMP (low optimization effort). 

 

The sequential version of application serves as a reference for the considered evaluation metrics, 
such as memory occupation and of course execution time performance speed up with the 
parallelized version.  

A single parallel implementation is performed for each use-case and the efficiency of this 
implementation is evaluated on the different targets to evaluate portability capabilities of 
OpenMP. 

The methodology followed to parallelize the use-cases is presented below: 

 

A. Identifying the hotspots of the algorithm 
 
The hotspots can be identified by theoretical analysis of the algorithm or empirically, by profiling 
the sequential program. Initial measurements and profiling executed on x86_64 benefited from 
standard HPC tools through GNU gprof  x86_64 and Intel VTune Analyzer.  
 
This allowed selecting the main functions to parallelize for each use case, yielding 99.8% of the 
sequential execution time for HRGEO application and 90% for the adaptive mirror one.  
 
The theoretical speed-up achieved by parallelizing the hotspots is provided by Amdhal’s law 
recalled hereafter. 
 

𝑆𝑁 =
1

𝐹𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
𝑁

+ 𝐹𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

 

 𝑆𝑁 is the theoretical speed-up of the whole program with N cores. 

 𝐹𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 is the fraction of time consumed by the regions considered for parallelization. 

 𝐹𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 is the fraction of time consumed by the sequential regions (𝐹𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 = 1 − 𝐹𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙). 
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Figure 7: Amdhal's criteria for an 8-core target 

 
B. Choosing an appropriate parallelization strategy for each hotspot 

 
Selecting a parallelization strategy consists in identifying the appropriate type of parallelism and 
the appropriate OpenMP constructs to implement it. With a good parallelization strategy, it is 
possible to achieve high performance with minor modifications to the serial code. 
 
The different types of parallelism are: 

o Data parallelism, where each thread executes the same task on different sets of data. 
o Task parallelism, where each thread executes a different task. This can be used to 

parallelize recursive algorithms or to create pipelines. 
 
Both data and task parallelism can be implemented with different OpenMP constructs: 

o Worksharing constructs: The work is divided into work items which are distributed 
over a team of threads, either statically or dynamically. The following constructs are used 
to divide the work into work items: 

• The loop constructs do and for (data-parallel constructs). 

• The sections construct (task-parallel construct). 
o Tasking constructs: Although writing task-parallel programs with worksharing 

constructs is possible, it is often inconvenient. Tasking constructs have been introduced to 
provide a convenient syntax and more flexibility for task parallelism. With tasking 
constructs, tasks are generated by threads whenever they encounter a tasking directive. 
The generated tasks can be assigned to available threads or they can be queued for deferred 
execution. The following constructs are used to generate tasks: 

• The task construct (task-parallel construct). 

• The taskloop construct (data-parallel construct). 
 
To summarize, worksharing constructs are suited to data parallelism (do/for loop constructs) 
while tasking constructs implement task and data parallelism more conveniently and with more 
flexibility.  
 

C. Applying parallelization constructs 
 

The parallelization constructs are applied using compilation pragmas. 
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For both worksharing and tasking constructs, the parallel threads must be created by declaring a 
parallel region (with the parallel construct) in which a team of OpenMP threads is created. The 
parallel construct clause num_threads can be used to locally define the number of threads in the 
team. Then, the appropriate worksharing and/or tasking constructs can be applied in the parallel 
region. If not specified default parameters are applied based on OMP environment variables, such 
as max number of threads, or thread scheduling polcies. 

 
D. Applying synchronization and data management clauses 

 

The synchronization and data management clauses are applied to the different worksharing and 
tasking constructs. Synchronization points can also be added at specific points of the program. 

 
E. Checking the acceleration achieved with the parallelization 

 

For a region parallelized with N cores, the execution time should be theoretically N times smaller 
than with a single core. If this acceleration factor is not reached, the program is likely to suffer 
from one of the issue listed in the next point. Depending on the application, achieving an 
acceleration factor of N can be very challenging and a lower acceleration should be targeted. 
Under certain conditions, achieving an accelerator factor higher than N is also possible. This 
phenomenon, named super-speedup, occurs when processor resources are used more efficiently 
when the program is parallelized, e.g. when the data-set fits within the L1 cache. 
 

F. Investigating the potential issues when the targeted acceleration is not met 

The following points can be responsible for low performances: 

i. Poor memory accesses due to an inefficient use of cache memory. 

To maximize the cache efficiency, each thread should be able to work on independent sets of data 
and the cache spatial and temporal locality principles should be taken into account. Achieving this 
may require source code modifications. 

 
ii. Overhead due to synchronization, scheduling or context switching. 

Several solutions can be considered depending on the origin of the overhead. For instance: 

 Avoid coarse-grain synchronization mechanisms, e.g. barrier or taskwait constructs. 
 Use fine-grain synchronization mechanisms by means of the depend task clause 
 Merging some tasks to increase the granularity (size) of tasks. 

 
iii. Unbalanced workload across threads. 

 
Several solutions can be considered depending on the origin of the unbalance. For instance: 
 

 Using dynamic scheduling in case of loop constructs. 
 Using fine-grained parallelization instead of coarse-grained parallelization 

4.2 Porting the compilation tool chain and  observability tools 
 
Compilation tool chain already supporting OpenMP 4.5 on both targets through RCC 1.3-rc6 and ACE SDK 
4.1.0 respectively on GR740 and Kalray Coolidge targets.  
 

There are two main additional  tools used during this evaluation: Extrae which is used to 
instrument code and Paraver which displays the data collected by Extrae. Both have been 



 

                                                                                                     
● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date:  13-Dec-20 
 

 

 

.  
 Airbus Defence and Space SAS – All rights reserved.   

● Page 21/45 

  

developed and are maintained as open-source project by the Barcelona Supercomputing Centre 
(BSC). Extrae is a rich tool which takes advantages of reusing packages from others developers’ 
community.  

It supports natively CUDA, OpenCL and OpenMP environments. In its basic version it allows to 
measure time and the number of instructions executed. To get memory usage information (which 
could be very interesting for optimization) then the PAPI library should be used. PAPI provides a 
consistent interface and methodology for use of the performance counter hardware found in most 
major microprocessors but the usage of this library requires a lot of re-compilation, including the 
kernel.   

Extrae is enabled by linking with its tracing libraries, which inserts probes inside the functions of 
the HPC framework (OpenMP, OpenCL, …) used for the implementation. Extrae uses an XML 
configuration file at runtime. This configuration file is used to enable or disable some profiling 
features, and to set some parameters. Once the program has been executed, the profiling data can 
be displayed and analysed with Paraver.  

Paraver does not have to be installed on the same target used for the measurement. For this study, 
Paraver is installed on the x86 host and the trace files are copied from the targets to this host for 
visualization. 

Extrae adaptation to the embedded targets consisted in replacing some of the techniques applied 
on regular HPC context to comply with the embedded constraints, main changes are: 

o Intercepting calls in a static environment 
o Managing POSIX dependence 
o Retrieving function names 
o Traces generation 
o Support for hardware counters 
o Static environment definition 

 

Ported extrae intends to keep benefiting from all the features of the HPC mainstream version, 
however ports realized during this study present some limitations due to their alpha version and 
bounded effort. IT is however important to highlight that main features such as manual, automatic 
instrumentation as well as hardware counter automatic gathering are fully functional.  

One of the main change is related to automatic instrumentation. Originally based on the 
LD_PRELOAD dynamic calls interception at runtime, it had to be adapted for embedded targets 
using symbol wrapping at compile time using linker flags, as illustrated in Error! Reference 
source not found..  

 

 

Table 2 describes the (super-set of) methods that have to be wrapped based on the OpenMP 
constructs used when using the sparc-gaisler-rtems5-gcc compiler version 7.2. This relation has 
been obtained by compiling the source code with the mentioned compiler, and then analysing  the 

generated binary. 
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Table 2 - Available Methods that can be intercepted through  wrapping on GR740 

 

 

Another modification  lies in the hardware counter gathering process originally based on PAPI 
library. While PAPI library is natively available on Kalray Coolidge MPPA, hardware counters 
function was enhanced to also benefit from GR740 L4STAT counters, through L4STAT driver.  
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4.3 Ported OpenMP framework 
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Figure 8; OpenMP/Extrae Framework workflow overview 

 

As illustrated in Figure 8, on the hypothesis that an POSIX operating system is already in place for 
the sequential version, the current application building process is only lightly impacted in order to 
introduce OpenMP and Extrae support.  
 
The main changes are indeed limited to: 
 
     • OpenMP parallelization (in red): 

- Annotation of the source code through #omp pragmas 
- Introduction -fopenmp flag at compilation time and import of omp related include files 
- Introduction of the runtime library through -libgomp at link time 

    • Extrae instrumentation (in blue): 
- Source code modification to initialize tracing and potentially add manual tracing events 
- Introduction of the extrae library through  -libomptrace linker flag  

 
With Extrae instrumentation enabled execution on target allows to retrieve OpenMP runtime 
useful information such as thread dispatches and overall load balancing, which can be naturally be 
used to tune and iteratively improve the omp annotations or explore other parallelization 
parameters. Hardware counters can as well be used to detect hardware resource usage bottlenecks 
or interferences that eventually might be mitigated by algorithm implementation tuning, and can 
be applied as well on the omp with one single thread mimicking sequential behaviour. 

4.4 Final Use Case parallelization strategy 
  

For both HRGEO and MIRROR application use cases results presented in this document in 
section Error! Reference source not found. and Error! Reference source not found. 
comply with the following rules: 



 

                                                                                                     
● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date:  13-Dec-20 
 

 

 

.  
 Airbus Defence and Space SAS – All rights reserved.   

● Page 24/45 

  

- Data parallelism model is applied 

- OMP schedule is set to static for determinism, with unspecified chunk-size. 

- collapse clauses are used as fine grain optimization for load balancing 

- OMP parallel loops are declared ordered so as to allow Extrae observability, and force 
instrumented runtime calls. This is not expected to induce any major overhead as the 
parallel sections do not contain any actual ordered statements. Without the ordered 
pragma, gcc might bypass gomp library and Extrae wrapping functions and limit the 
observability.  

- Functional legacy C code remained untouched, and parallelization of actual algorithmic 
parts only consisted in  #pragma omp annotations. No modifications of Legacy code 
were applied to improve performance. 

- Code discrepancies between sequential and parallelized versions are limited to: 

o wrapper functions for I/Os 

o adaptation for OS integration and configuration  

o OpenMP runtime environment initialization 

o Extrae initialization and manual instrumentation 

 
An actual example of such OpenMP annotations for one of the use case parallelized loop is given 
below. 
 

 

Figure 9: Common annotation applied to all data parallelized loops 

 
 
 

4.4.1 HRGEO application 
 

Profiling of the sequential version of HRGEO determined that 99% of computation time was spent 
in the function highlighted in blue in Figure 10,  and then parallelized with OpenMP. 
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Figure 10: HRGEO algorithm phases executing in parallellel 

 

4.4.2 Mirror application 

 

Figure 11: Mirror applicaton overview 

 
As illustrated in the Mirror application consists of a main loop that, after a pre-loop initialization, 
iterates over a series of images. For each image, it performs four successive erent steps, as 
depicted in Figure 1a, that proceed as follows: 
 

- The first step, Image reading, loads an image as a matrix of 

NB_LENS*NB_LENS*SIZE_X*SIZE_Y elements (where NB_LENS = 12 and SIZE_X 
= SIZE_Y= 34). 
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- The second step, Coarse offset, iterates over the two most signicant dimensions of 

the matrix, (NB_LENS * NB LENS). Each iteration executes three actions: 
normalize, sliders, and interpolation. These steps end up traversing the two 
less significant dimensions of each element, SIZE X _ SIZE Y ). 

 
- The third step, Fine offset, performs two actions: buildReference and 

lucasKanade. These phases work on a different matrix of NB_LENS  * NB_LENS *  
SIZE_INTER_X * SIZE_INTER_Y elements. While the first action is just called once, 
the second one iterates over the two most significant dimensions, calling the actual 
kernel for each element. In both cases, all elements of the matrix are visited NB_LENS 
* NB_LENS * SIZE X * SIZE Y. 

 
- The fourth step, Final shifts, generates the final results. 

 
-  The fifth step, Dump results, dumps the results in a file. 

Image reading 

Evaluation focused on the evaluation of parallelization of second step Coarse Offset and 

lucasKanade subpart  of Fine offset step,  totalizing 90 % of the sequential execution time. 
 
An infructuous attempt not detailed in this report of parallelizing the buidRef offset  led to the 
conclusion of either an non acceptable overhead induced by openMP runtime  vs small footprint of 
the function. Reducing the overhead would require modification of the code so as not to jeopardize 
computanioanl correctness and such a modification was not applied as we wanted to measure the 
naïve potential gain without modifying the legacy code. 
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5 EVALUATION PHASE 

5.1 Test Setups 
 

5.1.1 GR740 
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Figure 12: GR740 test setup 

 

As illustrated in Figure 12, the test setup is mainly composed of a GR-CPCI-GR740 Quad-Core 
LEON4FT Development Board, connected to a Linux host development machine. 

 

I/Os consist of input data file either directly linked with the application or retrieved from 
development host through NFS over a 1Gbps Ethernet link. This NFS share is also used to retrieve 
both functional and instrumentation outputs. 

 

The software stack  on the development host is composed of : 
- RCC 1.3-rc6 : cross compiler for LEON4 target with RTEMS 5 OS, based on gcc 7.2.0 
- grmon Pro 2.0.98 : used for executable load and serial output 
- nfs-kernel-service : basic nfs client  to support a remote file system 
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- BSC Paraver trace visualization tool for Linux, version 4.8.1.  
 

The software stack  on the embedded platform is composed of : 
- RTEMS 5 SMP OS with POSIX support, with Ethernet and NFS support 
- Actual Use Case algorithm linked 
- OpenMP 4.5 runtime  
- Extrae 3.7.1 instrumentation library from BSC ported to GR740 
-  

5.1.2 KALRAY TEST SETUP 
 

The Kalray test setup is based on the MPPA® DEV4 workstation which is a complete X86 – 
MPPA® based environment, packaged with Kalray S/W, for easy benchmarking and development 
of accelerated systems.  
 

 

Figure 13: MPPA® DEV 4 

 

This development is composed of a x86_64 host part running a standard Linux distribution and a 
KONIC200 PCIe Programmable accelerator card, hosting the Coolidge MPPA device. 
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Two modes of operation were exploited during the study. The first one is the JTAG mode on single 
cluster illustrated in Figure 14. It consists on the generation of a standalone executable intended to 
be run and parallelized on a single cluster on top of the Kalray Cluster OS.  Deployment of the 
executable on target relies a JTAG link with PCIe acceleration for executable or binary blobs 
transfer to/from MPPA® Coolidge target. The JTAG mode also offer semi-hosting capabilities 
allowing to access host file system through regular file manipulation calls, with inherent  
 
 

 

Figure 14: Using JTAG on one Cluster Only 
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Second mode of operation explored is OpenCL offloading where the Coolidge  manycore is 
considered as an accelerator.  The kernels that will run in the accelerator must be compiled in 
isolation with the OpenCL compiler, and then linked with the host application part. All the 
communication is done through PCIe.  
 

 

Figure 15: OpenCL offloading using MPPA® as an accelerator 

 
The software stack on the host platform is composed of Kalray SDK ACE 4.1.0, based on gcc 7.5.0, 
and same x86 4.8.1 Paraver version than the one used for GR740.  
 
On the embedded part the stack is composed of ClusterOS, which is a light OS optimized for 
MPPA® cluster, with openMP 4.5 support and multithreading support through pThread POSIX, 
as well as a port of Extrae 3.7.1 to the Coolidge architecture. 
 
As far as application mapping is concerned we selected amongst the authorized configurations, the 
one maximizing size of L2 cache: 
 

- The local cluster SMEM is split in 2 parts: a 2MB TCM plus a 2MB level-2 cache 

- ClusterOS and its execution kernel and user stack are stored in SMEM 

- User code and associated data sections,  including openMP and instrumentation libraries 

are stored in global DDR external to the Cluster  

 
This is mapping would be more likely to be optimized to improve performance, but was deemed 
sufficient to perform the openMP deployment and performance measurements relative to 
equivalent sequential version with similar memory mapping.  
 
Additionally it allowed to have a first evaluation of the performance of the cluster programmed as 
a generic GPPU, which was not so trivial with previous generation of the MPPA®.  
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5.2 Test Scenario  
 
 

Test scenario for both HRGEO and MIRROR use cases execution on target follows an incremental 
approach.  
 
First the algorithm is executed in its pure sequential form to obtain a reference baseline.  
 
Then algorithm is executed with OpenMP runtime integrated but only 1 core mainly to measure 
open MP overhead in terms executable size overhead Error! Reference source not found.and 
execution time overhead. 
 
Then the number of exploited cores are incrementally increased to measure actual multicore 
performance gain thanks to parallelization. 
The selected multicore scheme are:  

- 1,2,4 cores for GR740 target 
- 1,4,8,16 cores for Kalray Coolidge target 

 
Finally OpenMP Extrae is integrated on th scenario with the maximum number of cores active to 
check the observability mechanism and verify proper and efficient parallelization of the code. 
 
For each of those tests functional correctness of parallelized code is verified by comparing outputs 
against expected ones for the predefined set of inputs.  
 
For each use case the procedure is  

1. Provide reference inputs 
2. Execute algorithm  
3. Retrieve Performance measurements  
4. Retrieve algorithm output   
5. Retrieve Traces and Generate  

 

5.3 Quantitative metrics  
 

As set of measurable metrics were captured during the evaluation: 
 

1) OpenMP and Instrumentation executable size overhead 
2) Parallelized version speed up, based on local figure of merit and overall speed up vs 

Amdahl’s law 
3) Functional Correctness  

 

5.3.1 Executable Sizes overhead 
 

Section present the  parallel executable sizes ratio against sequential version, in terms of code and 
data sections overhead.   
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Figure 16: HRGEO executable size overhead on GR740 

 

 

 

Figure 17: HRGEO executable size overhead on KALRAY 
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Figure 18: MIRROR executable size overhead on GR740 

 

 

Figure 19: MIRROR executable size overhead on KALRAY 

 

For all use cases and use cases the overhead of both runtime and instrumentation library is 
compatible with actual amount of memory available on embedded targets, with an absolute 
overhead of ~100KiB of rthe openMP runtime and ~1MIB for the Extrae library.  

 

5.3.2 Speed Up 
 

This section presents the measure figure of merit for each individual parallelized loop as well as 
the overall total algorithm time speed up, including remaining sequential phases, to be compared 
to theoretical execution time obtained with Amdahl’s law. 

 

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

OMP 1 core OMP 2 cores OMP 4 cores OMP 4 cores +
extrae

GR740 Executable Size OpenMP overhead 

.text overhead

data.overhead

bss.overhead

0,00
0,50
1,00
1,50
2,00
2,50
3,00
3,50
4,00
4,50
5,00

OMP 1 core OMP 4 cores OMP 8 cores OMP 16
cores

OMP 16
cores +
extrae

Kalray Coolidge Executable Size OpenMP overhead 

 

.text overhead

data.overhead

bss.overhead



 

                                                                                                     
● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date:  13-Dec-20 
 

 

 

.  
 Airbus Defence and Space SAS – All rights reserved.   

● Page 34/45 

  

 
 

 

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

HRGEO OpenMP Speed up on GR740  

SpeedUp
OMP 1 thread

SpeedUp
OMP 2 thread

SpeedUp
OMP 4 threads

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

Speed Up
1 thread

Speed Up
2 thread

Speed Up
4 thread

MIRROR OpenMP Speed Up on GR740 

Coarse

LK

Total algorithm



 

                                                                                                     
● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date:  13-Dec-20 
 

 

 

.  
 Airbus Defence and Space SAS – All rights reserved.   

● Page 35/45 

  

 
 

 
 
 
 

 

0,00
2,00
4,00
6,00
8,00

10,00
12,00
14,00
16,00
18,00

HRGEO OpenMP Speed up on KALRAY  

SpeedUp
OMP 1 thread

SpeedUp
OMP 4 threads

SpeedUp
OMP 8 threads

SpeedUp
OMP 16 threads

0,00

2,00

4,00

6,00

8,00

10,00

12,00

Speed Up
1 core

Speed Up
4 core

Speed Up
8 core

Speed Up
16 core

MIRROR OpenMP Speed Up on KALRAY 

Coarse

LK

Total algorithm

0,00

1,00

2,00

3,00

4,00

5,00

SpeedUp
OMP 1 thread

SpeedUp
OMP 2 thread

SpeedUp
OMP 4 threads

HRGEO actual speed up vs Amdahl on GR740 

total algorithm

Amdahl



 

                                                                                                     
● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date:  13-Dec-20 
 

 

 

.  
 Airbus Defence and Space SAS – All rights reserved.   

● Page 36/45 

  

 

 
 

 
 

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

Speed Up
1 thread

Speed Up
2 thread

Speed Up
4 thread

MIRROR actual speed up vs Amdahl on GR740 

Total algorithm

Amdahl

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

SpeedUp
OMP 1
thread

SpeedUp
OMP 4
threads

SpeedUp
OMP 8
threads

SpeedUp
OMP 16
threads

HRGEO actual speed up vs Amdahl on Kalray 

total algorithm

Amdahl



 

                                                                                                     
● Reference: RDT-ADST-RP-1000887005 ●● Issue: 1.0 ●●● Date:  13-Dec-20 
 

 

 

.  
 Airbus Defence and Space SAS – All rights reserved.   

● Page 37/45 

  

 
 

5.3.3 Functional Correctness 
 

All tests presented correct outputs, checked based on md5sum signature. 

5.4 Qualitative metrics on Extrae exploitation 
 

During the project we evaluated the benefit of Extrae instrumentation and Paraver visualization to 
provide better visibility and understanding of parallel execution of the algorithm on actual target, 
providing crucial pieces of information in the efficient usage of the multicore resources.   

Two examples regarding load balancing and hardware counters exploitation on HRGEO use case 
on GR740 targets are presented hereafter. 

5.4.1 Load Balancing and scheduling 
 

During HRGEO initial parallelization no fine tuning  was used and static scheduling was applied, 
resulting in unbalanced execution illustrated below where fourth core starves.  
 

 

Figure 20: Unbalanced workload with static scheduling 
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Zooming  and activating event flags visualization allow to visualize the activity and highlight the 
four parallelized loops composing the chipCorrelation function, spotting the fourth loop and 
highlighting additional unbalance at the early stage of the processing.  
 

 

Figure 21: Detailed view of the unbalanced execution 

Analysis of the last loop code shows that it traverses a really small iteration space and static 
partitioning cannot divide the space perfectly into 4 threads, so the last one gets less workload. 
The processing consists of two nested loops and only outer one is actually parallel. As the loops are 
perfectly nested they can be collapsed so as to increase the iteration space and better balance the 
chunks split.  
 

 

Figure 22: Load balancing thanks to the collapse clause 

 

Finally as some threads do not get enough work in the first loop of chipsCorrelation, a switch to 
guided schedule could help by forcing a mode dynamic scheduling with big chunks at the 
beginning then small at the end. 
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Figure 23: Final optimal parallelization of legacy code 

 

Initial omp annotation:  #pragma parallel for schedule(static)  

Final omp annotation:    #pragma parallel for schedule(guided) collapse(2) 
 

5.4.2 Hardware Counters 
 

Hardware counters are very useful to measure actual performance, and potential 
underperformance of the executed code. Extrae instrumentation can be used to retrieve such 
counters automatically alongside OpenMP runtime calls or periodically through configurable 
sampling.  
 
Figure 24 gives an example of (IPC) Instruction Per Cycle metric automatically captured for the 
HRGEO use case.  

 

Figure 24: HRGEO use case IPC (light green=low IPC, dark blue=high IPC) 
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Here we can see that resampling (pink) and adaptiveFusion (dark red) present poor IPC metrics.  
We can use additional counters to try to explain the poor IPC, as an example by retrieving  cache 
misses counters. This is illustrated in Figure 25, which highlights from top to bottom, L1 data cache 
miss ratio, L2 cache miss ratio and IPC, with color code being the higher the darker.  
 

 

Figure 25: Correlating IPC with L1 and L2 cache misses 

The first low IPC region can be explained by high L1D cache miss ration (~50) and descent L2 
miss ratio (~5) , while the second can be explain by high L2 cache miss ratio (~20). This 
conveniently  give some precious hints to try to track area of improvement in the algorithm 
detailed implementation. 
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6 SUCCES CRITERIA 

Success Criteria GR740 KALRAY 

[ Criteria#1 ] OpenMP runtime execution time overhead PASSED PASSED 

[ Criteria#2 ] OpenMP runtime code / data size overhead PASSED PASSED 

[ Criteria#3 ] Extrae library timing overhead PASSED PASSED 

[ Criteria#4 ] Extrae timing measurement accuracy PASSED PASSED 

[ Criteria#5 ] Multicore achieved speed up PASSED PASSED 

[ Criteria#6 ] Multicore efficient exploitation, explored with Extrae 

instrumentation 
PASSED PASSED 

[ Criteria#7 ] Functional Correctness of parallelized code PASSED PASSED 

[ Criteria#8 ] Initial Instrumentation Effort PASSED PASSED 

[ Criteria#9 ] Porting effort when switching to a new target PASSED PASSED 

[ Criteria#10 ] Observability through instrumentation PASSED PASSED 
 

 

 Rationale 

Criteria#1  

Execution time overhead is absolutely acceptable in the order of magnitude of a few 

percents on single core execution, and only one blocking point was found on Mirror use 

case when trying to parallelize one of the remaining sequential execution contributors 

Criteria#2  
Executable size overhead is in the order of 5% for the considered use case which are not 

that big. Absolute overhead size is in the order of magnitude of a hundred of kbytes 

Criteria#3  Extrae execution time overhead is very low  

Criteria#4  

Extrae measurement is as accurate as the available Performance Monitor or core timers 

can be. So as precise as what would be added through manual source instrumentation, 

with the advantage of not modifying the source code for those openMP runtime calls that 

can be automatically trapped thanks to wrapping 

Criteria#5  

Achieved speed up is very good, following Amdahl’s considering the amount proportion of 

the algorithm actually parallelized. Instrumentation provides a convenient way to retrieve 

performance counters, and internal insights, in order  to help profiling and support 

investigation of the areas with limited speedup 

Criteria#6  
Load balancing amongst core is quite easy to monitor thanks to Extrae instrumentation, 

allowing to tune parallelization annotations appropriately 

Criteria#7  
No errors were detected during tests: expected functional behavior with parallelized 

version of the algorithm was preserved.  

Criteria#8  

Initial parallelization effort was quite low, limited to a few omp pragma added to the code. 

Most of the coding effort was dedicated to wrapping of the algorithm to the target, 

operating system integration and configuration, and I/O management, rather than actual 

parallelization.  

Criteria#9  
Annotations or functional algorithm code was not modified from a target to another, only 

specific target init or I/O management functions. 

Criteria#10  
Extrae provides good automatic observables, user friendly way to defined additional 

manual events, and assistance for automatic accurate  Hardware Counters retrieval.  
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7 CONCLUSION AND FUTURE WORK 

Both selected targets SDKs were already supporting a mature openMP runtime, demonstrating the 
ecosystem is ready on both for radiation hardened and COTS components perspective. Porting 
based on a GNU GCC mainstream compiler is completely in line with current state of the art and 
golden rules applied in the scope of embedded software development as far as compiler choice is 
concerned.. 

The initial parallelization effort of legacy code revealed to be low, as expected, thanks to non-
intrusive openMP annotations scheme. Selected annotations used to reach the decent 
performance improvement presented in this report were very limited in number and complexity, 
and selected so as to preserve determinism from one execution to another. An opposite choice 
could have been taken so as to introduce some more random dynamic scheduling schemes to 
capitalize on complexity to avoid deterministic worst cases.  

The porting effort when switching from the first radiation hardened hardware target to the second 
COTS other proved to be inexistent as openMP annotations remained strictly unchanged. This is 
applicable as well to Extrae activation and manual instrumentations. The only customization 
consisted in openMP environment, .i.e. number of available cores. 

Open source Extrae observability library and its associated Paraver visualization tool both 
provided by BSC and so far mainly targeting HPC mainstream world, were successfully ported to 
GR740 and MPPA Coolidge ManyCore. They provided all the expected features to sustain efficient 
profiling, verification and parallelization tuning. The tooling required a reasonable learning phase, 
is well documented and offers a standardized hardware agnostic interface allowing focusing on the 
actual data providing added value to the final end user mainly in the form of graphical intuitive 
load dispatch representations, timing information, and hardware counters. Such knowledge is 
mandatory to ensure efficient usage of multi and many cores, and support production delay 
shortening.  

However it is important to remind that despite we demonstrated during this evaluation phase that 
the selected algorithms can be efficiently parallelized and observed, this is only valid for those two 
selected representative algorithms, and of course cannot prove applicable to any legacy code. We 
also found some limitation in the strategy for some of the functions where the ideal speed up 
cannot be reached either due to openMP overhead or due to actual hardware resource usage 
bottlenecks. While mitigation of the detected poor IPCs performance in well balanced parallel 
phase remain to be defined, we however confirmed that all possible observables would be 
available through the evaluated OpenMP framework to detect such corner cases and support such 
analysis.   

 As a result this evaluation comforts the idea that OpenMP could and should be seriously 
considered in the scope of future R&D multicore roadmap, as well as for rapid prototyping in 
advanced studies, especially when considering new space approaches.  

As stated before HP4S defined two strategic end goals:  

G1. Improve overall system performance. Effectively master and exploit the most advanced parallel 
embedded architectures targeting the space domain. 
 
G2. Improve the parallel programming productivity. Reduce the development efforts of systems 
based on parallel architectures, while fulfilling system's functional and non-functional (time 
predictability) requirements 
 

Those two goals derived in a set of technical measurable objectives, listed hereafter: 
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O1. Facilitate the development, timing analysis and execution of parallel real-time space 
applications using the OpenMP parallel programming model.  
 
O2. Evaluate the interest and porting effort of a list of homogeneous and heterogeneous foreseen 
COTS and RadHard hardware targets in the space domain with OpenMP programming model and 
framework.  
 
O3. Adapt the OpenMP runtime libraries to ensure that the timing guarantees devised at analysis 
time can be guaranteed at deployment time.  
 
O4. Evaluate state-of-the-art compiler techniques to guarantee that parallel OpenMP  
 
O5. Demonstrate the portability benefits of the OpenMP parallel programming model.  

 

The outcomes of the previous preparatory and implementation phase, completed by the 
experiments results obtained during the evaluation phase and presented in the report allow us to 
state that O1, O2, and O5 are achieved while O3 and O4 remain open for future work.  
 

Main foreseen follow up activities are suggested hereafter:  

 Extrae/Paraver improvements and industrialization 
 

While Paraver tool could be deemed quite mature, the Extrae library porting resulting from the 
HP4S project can still be matured in terms of minor bugs or additional features but also in term of 
process. One of the current main show stoppers for industrial exploitation would relate to trace 
dumping, which could benefit from modern debug tracing features available on modern SoCs and 
Manycore and final Paraver report generation which would have to be somehow deported to the 
development host.   

 

 OpenMP Qualification strategy and development process impacts 
 

Parallelization with OpenMP while being quite seamless regarding source code is far more 
impacting when considering generated object code and final executable. While it does only 
marginally impacts the high level TS validation strategy it clearly jeopardizes some of the well-
established steps starting with unit testing and coverage measurement Adoption of new 
programming models will more likely require to adapt our current processes, and rely on a 
combination of current process enhanced with state-of-the-art compiler and runtime correctness 
techniques so as to demonstrate functional safety of the parallelized software and absence  a data 
races (i.e. the definition of data-sharing attributes and synchronization mechanisms) or deadlocks 
(i.e. locking routines and synchronization mechanisms). 

 

 OpenMP Time Predictability and WCET estimation for parallelized software 
 

Obtained results with static scheduling proved to be quite stable and deterministic, however there 
is a necessity to ensure that decisions taken at run-time maintain the guarantees of system 
correctness endorsed during design and implementation. Hence, a parallel framework 
(considering both compiler and runtime) targeting a critical real-time embedded system must 
ensure that processor resource allocation, either static or dynamic, maintains the response time 
analysis performed at analysis time. Additionally, such a framework must also ensure the 
functional correctness of the parallel execution safeguarding it from data races and deadlocks as 
mentioned in previous point. 
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 OpenMP Offloading features 
 

Current study did not explore the openMP offloading capabilities, and only considered an 
homogeneous model where the thread that executes the implicit parallel region executes on 
the same processing device. An implementation may support other target devices. If supported, 
one or more devices are available to the host device for offloading code and data. Each device has 
its own threads that are distinct from threads that execute on another device. Threads cannot 
migrate from one device to another device. The execution model becomes host-centric such that 
the host device offloads target regions to target devices. This might be of particular interest in the 
scope of a standard interfacing and offloading to FPGA hardware accelerators IPs, potentially 
exploring benefits from partial reconfiguration, exploitation of additional clusters on MPPA 
Coolidge manycore, or exploitation of IA accelerators.  

 

 Extension of the study to ARM MPSoCs, and heterogeneous targets 
 

 Exploration of usage of OpenMP on “non-friendly” target, such as ones with no hardware 
cache coherency assistance 
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8 ACRONYMS AND ABBREVIATIONS 

Specific acronyms and abbreviations used in this document are given below. 

ALU  Arithmetic-Logic Unit 

API  Application Programming Interface 

APU  Application Processing Unit 

BSC  Barcelona Supercomputing Center 

COTS     Commercial Of The Shelf 

CPU  Central Processing Unit 

FDIR  Fault Detection, Isolation and Recovery 

FPGA  Field Programmable Gate Array 

FPU  Floating-Point Unit 

GPGPU General Purpose Graphic Processing Unit 

GPPU  General Purpose Processing Unit 

GSD   Ground Sampling Distance 

HPC  High Performance Computing 

HW   Hardware 

HW IP  HardWare Intellectual Property (a custom logic function implemented in HW) 

IPC  Instructions per Cycle 

MPPA® Massively Parallel Processor Array 

MPI  Message Passing Interface 

MPSoC Multi-Processor SoC 

NFS  Network File System 

OS  Operating System 

PAPI  Performance API 

PE  Processing Element 

RGB  Red Green Blue 

SIMD  Single Instruction Multiple Data 

S/N  Signal/Noise 

SoC  System On Chip 

SSE  Streaming SIMD Extension 

SW  SoftWare 

TCM  Tightly Coupled Memory 

VLIW  Very Long Instruction Word 
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