
Final Report
2020-2021-IEFR020ESAIP0012-V1.2

ESA 4000122242/17/NL/LF

Deliverable: FR
Version: V1.2
Status: draft

Date: 2021/04/16

Final Report

ESA IP Core Extensions

ESA contract 4000122242

Martin Daněk, Roman Bartosiński
martin@daiteq.com

Copyright © 2020-2021 by daiteq s.r.o. All disclosure and/or reproduction rights reserved. www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

Contents

1 Executive Summary 3

2 Motivation 7

3 Architecture 9
3.1 Packed floating-point formats . 9
3.2 daiFPU . 9
3.3 SWAR unit . 10
3.4 Software toolchain . 10

4 Validation 13
4.1 daiFPU . 13
4.2 SWAR unit . 13
4.3 Software toolchain . 13

5 Evaluation 15
5.1 Tools used . 15
5.2 daiFPU . 15
5.3 SWAR unit . 18
5.4 Eficiency of the software toolchain . 19

6 Implementation characteristics 23
6.1 daiFPU . 23
6.2 SWAR unit . 24

7 Tools 27
7.1 daiteq binutils . 27
7.2 daiteq LLVM . 27
7.3 daiteq demo examples . 28

8 Deliverables and reports 29

9 Conclusions 31

10 List of tables 33

11 List of figures 35

2020-2021-IEFR020ESAIP0012-V1.2 2/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

1 Executive Summary

This report describes work undertaken under ESA contract 4000122242 by daiteq s.r.o. The foundation
for this work has been the existing LEON2-FT processor IP core that is owned and distributed by the
ESA. The aim of this activity has been to extend the computing capacity of the LEON2-FT processor so
as to support user-configurable integer and floating-point arithmetic. The rationale for the work is based
on demand for efficient execution of algorithms (e.g. satellite navigation algorithms) that work with low-
precision number representations. The approach taken has focussed on increasing the data throughput
by decreasing operation latencies and by increasing data parallelism through using the SIMD approach.
The activity has been structured as concurrent development of integer and floating-point instruction set
extensions for LEON2-FT together with extending the existing compilation tools.

On the hardware side the activity has delivered a new highly-configurable FPU for LEON2-FT for floating-
point computations, and a novel SIMD-within-a-register (SWAR) unit for integer computations.

The FPU can be configured at the synthesis time by the user to 21 distinct configurations so as to best
fit the application needs and save implementation resources (FPGA slices, ASIC area). One of the 21
configurations is fully compatible with the Meiko FPU that is used in the AT697F ASIC. In this configuration
the new FPU achieves slightly higher computation throughput than Meiko.

The SWAR unit can host a number of SWAR modules. These can implement user-defined custom com-
putations on two 32-bit data words in full synchronization with the LEON2-FT integer pipeline. Six SWAR
modules have been developed and delivered within the activity that target the domains of satellite naviga-
tion, audio and video processing. The design of the SWAR unit and SWAR modules is fully compatible with
partial dynamic reconfiguration of FPGAs that may prove useful when the SWAR unit is implemented as
an FPGA or eFPGA fabric configurable by the application at the run time. This design concept allows for
introduction of a high number of additional SWAR modules that can be specified, designed (in VHDL) and
implemented by the LEON2-FT end users.

On the software side the activity has delivered a new toolchain derived from the existing GNU binutils and
LLVM compiler by implementing new assembly instructions in the binutils and support for new user-defined
data types in the LLVM.

The binutils with daiteq extensions introduce new assembler instructions and machine operation codes for
half precision floating-point operations, packed floating-point operations and SWAR operations. Emission
of the new opcodes is controlled via new command-line switches that enable or disable the individual new
features (e.g. floating-point opcodes for just one precision, or SWAR opcodes).

The LLVM compiler with daiteq extensions introduces a new half-precision (binary16) floating point type.
In addition the LLVM compiler allows users to define half- or single-precision (binary32) data types that
form two-element vectors, denoted also as the packed floating-point format, that are mapped to the packed
floating-point opcodes that are supported in the packed-format daiFPU configurations (DAIFPU-PSP and
DAIFPU-PHP).

For the SWAR types the LLVM compiler allows users to define new sub-32 bit integer types that can form
vectors or arrays; these arrays are automatically partitioned and mapped to individual SWAR operations
that work with SWAR values fitted inside standard 32-bit integer words. The SWAR operations are sup-
ported in the LEON2-FT SWAR unit (SWAR extensions).

On the application side the activity has delivered a set of benchmarks that can be used to evaluate floating-
point performance of LEON-type processors, and a prototype implementation of a GNSS tracking loop that

2020-2021-IEFR020ESAIP0012-V1.2 3/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

has been used to evaluate the execution speed-up attributed to the SWAR instruction set extensions.

In addition, the activity has delivered four new technology mapping files for LEON2-FT that can be used
to implement the processor in Xilinx Spartan6, Xilinx Virtex7, MicroSemi PolarFire and NanoXplore NG-
Medium FPGAs.

The outputs have been documented in six project deliverables and a number of additional reports produced
beyond the requirements of the contract.

Applicable documents

AD1 D05 - FPU Design Document, V1.9

AD2 D04 - ISE Design Document, V1.8

AD3 IEEE Std 754-2019 - IEEE Standard for Binary Floating-Point Arithmetic. June 13, 2019

AD4 SPARC, “The SPARC V8 specification”, 1992: http://www.sparc.com/standards/V8.pdf

AD5 D06 - SDE User Manual, V1.2

AD6 LEON2-FT daiFPU/SWAR User Manual, V1.4

Reference documents

RD1 The LEON2-FT Processor User’s Manual, Version 2014.1. July 15, 2014

2020-2021-IEFR020ESAIP0012-V1.2 4/38 www.daiteq.com

http://www.sparc.com/standards/V8.pdf

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

Abbreviations

ASIC application-specific integrated circuit

DP double precision

GNSS global navigation satellite system

HP half precision

ISE instruction set extensions

SIMD single instruction, multiple data

SP single precision

SWAR SIMD within a register, or sub-word arithmetic

VHDL VHSIC hardware description language

2020-2021-IEFR020ESAIP0012-V1.2 5/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

2020-2021-IEFR020ESAIP0012-V1.2 6/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

2 Motivation

This activity has been funded from the ESA GSTP programme. The developed IP core extensions –
a configurable floating-point unit, and configurable instruction set extensions – focus on increasing the
applicability of LEON2-FT to areas that are sensitive to power consumption as well as manufacturing cost
of the device; these are namely space-related and consumer applications. Through an explicit support of
flexibility in the manufactured device it is possible to further increase the efficiency of the user computation,
visible through increased computation throughput, decreased power consumption and increased reuse
value of the designs. This goal has been achieved namely through custom-designed processor extensions
and extending the LLVM compiler. This approach has only recently been announced by manufacturers of
other commercial embedded processors that are available on the market today, e.g. ARM and Synopsys
ARC processor. Extensibility has also been one of the drivers for creating the quickly emerging RISC-V
instruction set architecture [ris].

The configurable floating-point unit (FPU) is targeted to providing flexibility for the FPGA and ASIC technol-
ogy used in satellite applications. The key advantage is the ability to increase the actual functional density
of the silicon used on board of satellites in the context of the actual on-board computations. This is done
through allowing the user to parameterize the FPU at the synthesis time in a way to ensure the correct
function of the application while not using more resources than necessary. Classical LEON2-FT FPUs
are based on fixed data bus widths of 32 or 64 bits, often in situations where a reduced precision would
be sufficient (e.g. 16 bits), also with operations that may not be used in their application. Primarily the
configurable FPU can be used as:

1. LEON2-FT implemented in an ASIC or FPGA device, with the FPU parameters specified at the design
time and hard-configured in the ASIC.

The configurable LEON2-FT instruction set extensions (ISE) are targeted namely towards fixed-point ap-
plications that require only a sub-word precision, e.g. 3 bits (in LEON2-FT 1 word consists of 32 bits), such
as satellite navigation applications or data encryption; the performance of LEON2-FT can be increased
through an implementation of SIMD-like operations on variables that are merged in one 32-bit word, thus
sharing the data-path circuitry for two or more operations executed in one clock cycle. The extensions can
be used in three set-ups:

2. LEON2-FT implemented in an ASIC device, with the ISE specified at design time and hard-configured
in the ASIC.

3. LEON2-FT implemented in an ASIC device that also contains an embedded FPGA (eFPGA), with the
ISE specified after ASIC fabrication at the application compile time and configurable at the runtime in
the eFPGA part of the ASIC.

4. LEON2-FT implemented in an FPGA device, with the ISE specified and configured either at the FPGA
implementation time (full FPGA configuration) or after that at the application compile time (partial
FPGA reconfiguration if supported by the FPGA device used).

The partial runtime reconfiguration of the device mentioned in points 4 and 5 above can also be used in
flight to provide an increased functional density of LEON2-FT for on-board applications.

2020-2021-IEFR020ESAIP0012-V1.2 7/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

2020-2021-IEFR020ESAIP0012-V1.2 8/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

3 Architecture

3.1 Packed floating-point formats

Packed floating-point formats are supported in some daiFPU configurations. They are defined for pairs of
floating-point values that are stored in

• a single register for two half-precision values stored in one single-precision floating-point register, or

• a register pair of two consecutive registers for two single-precision values stored in a pair of even-odd
single-precision registers.

For packed word operations the result is computed as the selected operation performed independently
on the upper sub-words and lower sub-words. Exceptions and flags are computed as logical OR of the
exceptions and flags generated for the upper and lower word.

3.2 daiFPU

The developed floating-point unit, denoted as daiFPU, is an IEEE Std.754 (2019) compliant floating-point
unit that supports binary64, binary32, binary16 formats and their combinations. The unit consists of a
floating-point datapath and a floating-point controller. The datapath executes all floating-point arithmetic
operations and format conversions. The controller manages data exchange between the LEON2-FT integer
pipeline and the daiFPU. The controller also executes floating-point comparisons.

The user can select seven major daiFPU configurations at the synthesis time that support individual
floating-point formats, their combinations, or packed floating-point formats. For each major configuration
the user can specify whether floating-point division and floating-point square root should be supported.
This in total gives 21 distinct daiFPU configurations.

Figure 3.1: One-precision FPU - fpu_daiteq.vhd - a configuration that supports one precision.

2020-2021-IEFR020ESAIP0012-V1.2 9/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

The internal structure of the one-precision daiFPU is shown in Fig. 3.1. The internal structure of the dual
and packed configurations is similar.

3.3 SWAR unit

The SWAR1 instruction extensions are implemented as a new SWAR unit that is connected in parallel to
the integer ALU in the LEON2FT integer pipeline (iu.vhd). The SWAR unit (see Fig. 3.2) contains one or
more SWAR modules and an optional module with SWAR accumulators. The actual configuration of the
SWAR unit can be selected by the user before LEON2-FT synthesis using the make xconfig mechanism
(see [RD1]).

At present six SWAR modules have been developed that implement operations suitable for

• correlation of GNSS signals (sum of products for 1-4 bit data words),

• demodulation of GNSS signals (real and complex vector multiplication for 2-4 bit data words),

• sine / cosine lookup for GNSS demodulation (lookup of 1-4 bit values for 32 bit arguments)

• processing of audio signals (ADD, SUB, MUL with optional reduction for 16-bit words),

• processing of video signals (ADD, SUB, MUL with optional reduction for 8-bit words).

• generic ALU for sub 32 bit words (ADD, SUB, MUL with optional reduction for user-defined words).

The SWAR accumulator can be disabled or configured to fit the number of lanes and slice size of the SWAR
modules:

• up to 16 independent accumulator registers,

• each accumulator register up to 64 bits wide.

The internal structure of the SWAR unit is shown in Fig. 3.2.

3.4 Software toolchain

The Software Development Environment (SDE) is a set of tools for compiling and building binary executa-
bles for applications written in C. The SDE support for the LEON2-FT with the daiFPU and SWAR unit
is based on two standard packages for the SPARC architecture. One package is the GNU binutils and
the other is the LLVM Compiler Infrastructure. The implemented SDE consists of two stand-alone pack-
ages. The first package is referred to as the daiteq binutils to distinguish it from the common GNU binutils
package. The second package is referred to as the daiteq LLVM; it is the classical LLVM framework with
extensions implemented in the C compiler and the SPARC backend.

The daiteq binutils is a set of tools for working with binary object code (e.g. assembler, linker, objcopy,
objdump). The recent version (v2.34) of the GNU binutils has been used in the project.

The daiteq binutils are used the same way as the classical GNU binutils, therefore the existing documents
for GNU binutils are applicable but for the changed parts that are covered in this document.

From a user point of view the binutils have been changed in two parts:

• the assembler tool, and
1 SWAR stands for SIMD-within-a-register. The SWAR data types usually represent integer numbers encoded on fewer than

the usual 32 bits.

2020-2021-IEFR020ESAIP0012-V1.2 10/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

Figure 3.2: SWAR unit, configuration with up to six SWAR modules and a SWAR accumulator. outmux
shows connections for the sincos operation selected in the SWAR configuration register, and accmux
shows a connection for readout of SWAR accumulator #1 bit slice [31:0] selected in the SWAR accumulator
selection register.

2020-2021-IEFR020ESAIP0012-V1.2 11/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

• the ELF file processing.

The assembler assembles a source code with CPU operations presented as a text description into an
object code that contains sequences of a binary machine code which can be executed on the target CPU.

The daiteq binutils support new assembler instructions that have been added to the LEON2-FT proces-
sor in the 2020.1 release. These instructions are described in [AD1], [AD2] and [AD5]. In the binutils
the new instructions have been assigned to all architectures that are based on the SPARC V8 or LEON
architectures.

The new instructions come in four groups:

• SWAR integer instructions1 ,

• half-precision floating-point instructions,

• packed floating-point instructions, and

• complex floating-point instructions2 .

Each group of inserted instructions has to be explicitly enabled using a corresponding command-line option
when invoking the assembler tool.

The extended ELF file processing contains new hardware capability flags that correspond to new instruction
groups. The hardware capability flags indicate if the generated binary code contains at least one instruction
from the corresponding instruction group.

The daiteq LLVM extends the usual LLVM functionality in two distinct directions. The first adds a support
for new, user-defined SWAR data types and the SWAR arithmetic operations. The SWAR operations are
computed in the daiteq SWAR unit.

The second direction adds new floating-point data types and operations for the binary16 precision and
packed floating-point representations that are supported in certain configurations of the daiteq floating-
point unit (daiFPU).

At the same time the new arithmetic extensions can also be used with legacy C compilers for SPARC/LEON
(e.g. BCC1 or BCC2)3 . In this case the user has to include the corresponding new assembly instructions
in C sources by herself as needed. The selected legacy C compiler is then used to translate the C sources
to assembler sources, and the daiteq binutils are used to generate binaries from the assembler sources.

The new data types (the floating-point half, packed half, packed single data types, and the integer SWAR
data types) that are supported in the LEON2-FT with the daiteq FPU and the SWAR unit cannot be declared
directly when using a legacy GCC compiler; the user has to map the new data types to the corresponding
existing data types, usually int or a union of float/int or double/int4 .

2 The complex instructions are not supported in daiFPU. Efficient complex operations can be implemented in software using
the packed floating-point instructions.

3 The daiteq FPU in the configuration DAIFPU-DUAL-DPSP-DIVSQRT is fully compatible with the Meiko FPU, and can be used
with legacy software toolchains, that is with the common GNU binutils without the daiteq extensions.

4 Using unions of floating-point and integer values leads to lower performance due to increased use of load and store instruc-
tions in the compiled binary since in SPARC there are no instructions for direct data transfer between integer and floating-point
registers.

2020-2021-IEFR020ESAIP0012-V1.2 12/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

4 Validation

4.1 daiFPU

Validation of the developed FPU has been performed in these steps:

1. Validation of individual FPU modules and operations in self-checking stand-alone testbenches. Test
vectors were generated using the TestFloat tool that has been developed and distributed by John
Hauser.

2. Validation of the LEON2-FT / FPU integration using a simple C program that applies a limited number
of TestFloat vectors on the FPU inputs and compares the result with a reference result stored in the
TestFloat vectors.

3. Validation of the LEON2-FT / FPU integration using the paranoia program originally developed by
Prof. Kahan.

4. Validation of correct floating-point computation in LEON2-FT with the new FPU using the C-Ray
benchmark, and comparing the computed results with results computed by C-Ray on a desktop PC.

4.2 SWAR unit

The SWAR unit has been validated in several independent ways:

1. By hand-transforming the GNSS tracking loop code to work with 2-, 3- and 4-bit values, and by
transforming elementary computation kernels into SWAR modules while verifying that the tracking
loop can still decode bits of the navigation message. First the SWAR modules were represented by
their functional models in C. The functional models were then replaced by actual SWAR modules
implemented in VHDL.

2. By validating SWAR modules developed in VHDL against their functional models writted in C.

3. By validating LEON2-FT execution of the tracking loop, using the SWAR functional models in C or
the actual SWAR modules in VHDL against desktop execution of the tracking loop using the SWAR
functional models in C.

4.3 Software toolchain

The daiteq binutils and the daiteq LLVM were validated in a functional simulator of the LEON2-FT with the
new extensions, ModelSim and hardware. The testing was carried out in the following test phases:

1. Simple assembler programs were used to validate correct translation of assembler instructions to
binaries and their dissassembling. The programs used all the new assembler instructions

2. Legacy C programs with inline assembler instructions were compiled with a legacy C compiler (e.g.
BCC1) to assembler programs. The assembler programs were translated to program binaries with
the daiteq binutils. The C programs included new assembler instructions through inline assembler
statements. Both the new floating-point types and SWAR types were covered. The programs checked
correct execution of the new instructions for a number of input operands, or test vectors, using either

2020-2021-IEFR020ESAIP0012-V1.2 13/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

golden reference output vectors or golden reference functional models written in C to verify the correct
function of each instruction.

3. C programs with the new data types were compiled with the daiteq LLVM and the program binaries
generated with the daiteq binutils. The C programs included the new floating-point and integer data
types supported in the daiFPU and the SWAR unit. The new assembler instructions were gener-
ated by the LLVM compiler. Both the new floating-point types and SWAR types were covered. The
programs checked correct execution of the new instructions for a number of input operands, or test
vectors, using either golden reference output vectors or golden reference functional models written in
C to verify the correct function of each instruction.

4. More complex C programs with the new floating-point and SWAR data types, like prime number
generation, FIR filtering or Mandelbrot set generation, were compiled with the daiteq LLVM and the
program binaries generated with the daiteq binutils.

2020-2021-IEFR020ESAIP0012-V1.2 14/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

5 Evaluation

5.1 Tools used

The tools used for compilation and generation of the binary files used in this section consisted of

• the daiteq binutils, derived from GPU binutils 2.34,

• the daiteq LLVM compiler, derived from LLVM 10.0,

• the SoftFloat library, version 3e, written by John Hauser,

• the daiteq math library, derived from OpenLibm.

More details about the toolchain are provided in [AD5].

5.2 daiFPU

The daiFPU achieves slightly better performance than the Meiko FPU, which can be observed in Tables 5.1
to 5.4.

Table 5.1: Whetstone, normalized performance for daiFPU
and Meiko.

Whetstone - normalized performance kWIPS/MHz
Optim. daiFPU Meiko
flag DP SP DP SP
daifpu_dual_dpsp_divsqrt
-O0 163.52 222.72 147.02 221.3
-O1 210.09 323.35 196.73 332.21
-O2 285.85 427.58 261.33 444.67
-O3 286.47 424.82 261.68 445.71
daifpu_dual_dpsp_divonly
-O0 158.45 212.86 134.21 198.14
-O1 201.11 298.47 172.37 285.87
-O2 269.25 385.44 223.46 353.02
-O3 267.8 382.52 223.72 353.67
daifpu_dual_dpsp_none
-O0 88.95 124.61 44.56 74.05
-O1 103.35 148.79 48.91 78.92
-O2 187.48 267.14 108.66 165.94
-O3 187.85 264.92 103.92 166.08

2020-2021-IEFR020ESAIP0012-V1.2 15/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

Table 5.2: Linpack, normalized average performance for
daiFPU and Meiko.

Linpack - normalized average performance [kFLOPS/MHz]
Optim. Linpack daiFPU Meiko
flag version DP SP DP SP
daifpu_dual_dpsp_divsqrt
-O0 ROLLED 31.93 36.63 28.12 39.57
-O1 ROLLED 49.57 57.97 48.11 65.89
-O2 ROLLED 51.58 66.68 49.12 83.03
-O3 ROLLED 51.24 66.49 49.25 83.49
-O0 UNROLLED 38.58 46.34 33.77 50.89
-O1 UNROLLED 55.07 65.67 48.36 69.39
-O2 UNROLLED 55.9 72.56 49.37 83.58
-O3 UNROLLED 55.51 72.32 49.51 84.07
daifpu_dual_dpsp_divonly
-O0 ROLLED 31.93 36.63 28.12 39.57
-O1 ROLLED 49.57 57.97 48.11 65.89
-O2 ROLLED 51.58 66.68 49.12 83.03
-O3 ROLLED 51.24 66.49 49.25 83.49
-O0 UNROLLED 38.58 46.34 33.77 50.89
-O1 UNROLLED 55.07 65.67 48.36 69.39
-O2 UNROLLED 55.9 72.56 49.37 83.58
-O3 UNROLLED 55.51 72.32 49.51 84.07
daifpu_dual_dpsp_none
-O0 ROLLED 31.7 36.29 27.83 39.21
-O1 ROLLED 49.25 57.68 47.22 64.94
-O2 ROLLED 51.21 66.32 1.59 81.61
-O3 ROLLED 50.85 66.11 48.37 82.05
-O0 UNROLLED 38.28 46.03 33.35 50.3
-O1 UNROLLED 54.7 65.28 47.44 68.29
-O2 UNROLLED 55.51 72.74 2.11 82.08
-O3 UNROLLED 55.06 71.76 48.61 82.5

2020-2021-IEFR020ESAIP0012-V1.2 16/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

Table 5.3: Stanford composite results for daiFPU and Meiko.

Stanford daiFPU Meiko
time[ms] DP SP DP SP
Opt.flags non

FP
FP non

FP
FP non

FP
FP non

FP
FP

divsqrt
-O0 86 132 86 126 95 147 95 138
-O1 45 69 45 70 52 81 52 81
-O2 28 50 27 52 27 55 27 55
-O3 27 48 27 50 26 53 26 53
divonly
-O0 86 131 86 127 94 147 95 138
-O1 45 69 45 70 52 81 52 81
-O2 28 50 27 52 27 55 27 55
-O3 27 48 27 50 26 53 26 54
none
-O0 86 132 86 127 95 150 95 139
-O1 45 69 45 71 52 82 52 81
-O2 27 50 28 52 27 56 27 55
-O3 26 48 27 50 26 54 26 53

Table 5.4: C-ray performance for daiFPU and Meiko.
C-Ray - time to render one pixel [ms]
Optim. Image daiFPU Meiko
flag resolution DP SP DP SP
daifpu_dual_dpsp_divsqrt
-O0 100x75 4.4779 1.6984 4.9841 1.6787
-O1 100x75 1.8585 0.9907 1.8325 0.8788
-O2 100x75 1.2369 0.7847 1.3237 0.6952
-O3 100x75 1.2379 0.7844 1.3237 0.6952
-O0 200x150 4.4496 1.6667 4.9840 1.6788
-O1 200x150 1.8269 0.9942 1.8326 0.8798
-O2 200x150 1.2370 0.7846 1.3239 0.6952
-O3 200x150 1.2379 0.7843 1.3239 0.6952
-O0 400x300 4.4727 1.6908 . .
-O1 400x300 1.8517 0.9816 . .
-O2 400x300 1.2295 0.7767 . .
-O3 400x300
daifpu_dual_dpsp_divonly
-O0 100x75 4.6732 1.8291 5.5491 1.9360
-O1 100x75 2.0204 1.1255 2.2579 1.1801
-O2 100x75 1.3921 0.9343 1.7364 0.9897
-O3 100x75 1.3896 0.9192 1.7439 0.9897
-O0 200x150 4.6449 1.8283 5.5554 1.9361
-O1 200x150 1.9934 1.1255 2.2580 1.1802
-O2 200x150 1.3922 0.9233 1.7491 0.9898

Continued on next page

2020-2021-IEFR020ESAIP0012-V1.2 17/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

Table 5.4 – continued from previous page
C-Ray - time to render one pixel [ms]
Optim. Image daiFPU Meiko
flag resolution DP SP DP SP
-O3 200x150 1.3897 0.9192 1.7368 0.9898
-O0 400x300 4.6678 1.7969 . .
-O1 400x300 2.0461 1.1180 . .
-O2 400x300 1.3847 0.9105 . .
-O3 400x300
daifpu_dual_dpsp_none
-O0 100x75 5.4147 2.2395 7.4891 2.9645
-O1 100x75 2.5708 1.5233 3.9139 2.1657
-O2 100x75 1.9607 1.3233 3.4047 2.0065
-O3 100x75 1.9479 1.3249 3.4052 1.9836
-O0 200x150 5.3868 2.2081 7.4899 2.9650
-O1 200x150 2.5395 1.4919 3.9147 2.1662
-O2 200x150 1.9247 1.3235 3.4056 2.0129
-O3 200x150 1.9166 1.3252 3.4060 1.9841
-O0 400x300 5.4100 2.2328 . .
-O1 400x300 2.5649 1.5162 . .
-O2 400x300 1.9415 1.3158 . .
-O3 400x300

5.3 SWAR unit

The SWAR unit can increase the performance of the GNSS tracking loop by about 5x. A joint benefit of
using the daiFPU with the SWAR unit over using a LEON2-FT without any FPU is about 382x. This is
documented in Table 5.5. The table shows results for iteration 0 and iteration 1 of given configurations.
Iteration 0 corresponds to a cold instruction cache, while Iteration 1 in a way corresponds to a warmed
instruction cache. Due to the dynamic nature of the processed data nothing can be said about the data
cache.

The following configurations have been analysed (not all are listed in the table):

1. Octave-equivalent [BAB+07], [Roj11], i.e. all samples and computations in floating point, original
USRP file, buffered execution (store all intermediate results in arrays like in Octave). Computed
correlation results are identical to those computed in Octave.

2. Like the previous step, but navigation samples and sine/cosine values quantized to 2 bits.

3. Samples quantized to 2b values, integer arguments for spreading code expansion and carrier gen-
eration, expand separate E, P, L codes, do not use SWAR instructions, buffered execution

4. Like the previous step, but use SWAR for demodulation

5. Like the previous step, but use SWAR also for demodulation and correlation

6. Like the previous step, but use SWAR also for sine/cosine lookup

2020-2021-IEFR020ESAIP0012-V1.2 18/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

7. Samples quantized to 2b values, integer arguments for spreading code expansion and carrier genera-
tion, expand separate E, P, L codes, use SWAR for sine/cosine lookup, demodulation and correlation,
fused carrier generation and demodulation. Navigation samples are read from the FIFO and
stored in a buffer at the beginning of the processing.

8. Like the previous step, but all processing steps fused, i.e. carrier generation, demodulation and
correlation. Navigation samples are read from the FIFO when needed (without buffering).

9. Like the previous step, but expand just one spreading code and use it for all E, P and L codes

10. Like the previous step, but use HW support for spreading code expansion

Table 5.5: GNSS tracking loop - execution times for the main
processing steps.

Config FIFO Codes Carrier Demodulation Correlation Total
/Iter [us] [us] [us] [us] [us] [us]

A - Original reference code, 2-bit values, SoftFloat
2 / 0 63‘942 4‘874‘978 9‘624‘254 56‘033 108‘136 14‘530‘587
2 / 1 63‘943 4‘874‘998 9‘756‘074 56‘033 108‘136 14‘862‘450

B - like A plus SWAR instructions and daiFPU
5 / 0 2‘343 82‘868 105‘190 9‘186 5‘771 208‘005
5 / 1 2‘125 82‘849 105‘185 9‘190 6‘077 205‘427
6 / 0 2‘430 82‘689 20‘601 9‘182 6‘204 121‘286
6 / 1 2‘125 82‘935 20‘595 9‘187 6‘074 120‘915

C - like B plus fused steps
7 / 0 2‘413 83‘874 20‘753 5‘812 113‘396
7 / 1 2‘207 83‘844 20‘753 5‘809 112‘914
8 / 0 83‘873 20‘129 6‘116 110‘118
8 / 1 84‘847 20‘131 5‘943 109‘920

D - like C plus just one expanded code
9 / 0 27‘772 18‘245 4‘366 50‘802
9 / 1 27‘751 18‘234 4‘366 50‘625
10 / 0 15‘286 18‘300 4‘501 38‘502
10 / 1 15‘269 18‘286 4‘502 38‘451

5.4 Eficiency of the software toolchain

Simple programs that used the SWAR data types showed that the SWAR data types are useful for com-
putations with repetitive operations on a data vector rather than for single operations, at least because the
SWAR unit must be configured before each different operation5 . The performance advantage of the SWAR
data types and operations for an online FIR filter is shown in Fig. 5.1.

The SWAR accumulators and the optional SWAR computation with saturation or reduction provide a big
performance advantage that should be used whenever possible. Results from all the evaluated examples
show that computations with very short data vectors stored in SWAR variables can be worse than using

5 Setting the configuration requires at least two processor instructions.

2020-2021-IEFR020ESAIP0012-V1.2 19/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

classical data types. In the cases that use processor intrinsic data types and compiler optimization the
difference can be even more significant.

Figure 5.1: Online FIR filter - number of executed instructions for integer vs. SWAR implementations with
a linear buffer, ring buffer and ring buffer aligned to 2n. Sources compiled with the daiteq LLVM toolchain,
optimization level -O2.

The use of the packed-half and packed-float data types in C sources compiled with the daiteq LLVM
toolchain and executed in daiFPU provides a performance advantage of 23-36% (also demonstrated in
Fig. 5.2).

More details can be found in [AD5].

2020-2021-IEFR020ESAIP0012-V1.2 20/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

Figure 5.2: FFT kernels - execution profiles for hard-float, TABLE_SIZE=14, float (9713, 9714) vs. packed-
float (9712) implementation. Shown are processor ticks, executed instructions, floating-point operations,
floating-point loads and stores to compute FFT kernels.

2020-2021-IEFR020ESAIP0012-V1.2 21/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

2020-2021-IEFR020ESAIP0012-V1.2 22/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

6 Implementation characteristics

6.1 daiFPU

Resource requirements of the daiFPU are demonstrated for the Xilinx Virtex7 FPGA. Table 6.1 lists re-
source requirements for all the supported daiFPU configurations, while Table 6.2 lists the maximal operating
frequency for LEON2-FT with the daiFPU.

Table 6.1: daiFPU - XC7V - FPU-only, resources used.

Flavour Slices Slice regs LUTs LUTRAM DSP48E1
daifpu-dual-dpsp

divsqrt 3777 3402 9446 385 15
divonly 3222 2920 8119 362 15
none 2237 2587 6719 279 15

daifpu-dual-sphp
divsqrt 2197 2197 5239 150 2
divonly 1800 1988 4516 148 2
none 1629 1824 3700 121 2

daifpu-dp
divsqrt 2523 2585 6202 324 15
divonly 2073 2259 5257 296 15
none 1719 1917 4205 233 15

daifpu-sp
divsqrt 1381 1534 3277 164 2
divonly 1109 1393 2816 106 2
none 920 1189 2331 109 2

daifpu-hp
divsqrt 786 947 1816 73 1
divonly 655 875 1526 60 1
none 546 783 1301 57 1

daifpu-psp
divsqrt 2867 2921 6604 303 4
divonly 2233 2732 5742 213 4
none 1531 2332 4678 211 4

daifpu-php
divsqrt 1439 1791 3636 159 2
divonly 1182 1740 3047 116 2
none 1099 1445 2611 121 2

2020-2021-IEFR020ESAIP0012-V1.2 23/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

Table 6.2: daiFPU - XC7V - maximal frequency.
Flavour Target[MHz] Final[MHz]
nofpu
. 120 120
daifpu-dual-dpsp
divsqrt 120 102
divonly 120 105
none 120 106
daifpu-dual-sphp
divsqrt 120 118
divonly 120 120
none 120 120
daifpu-dp
divsqrt 120 115
divonly 120 116
none 120 98
daifpu-sp
divsqrt 120 114
divonly 120 118
none 120 116
daifpu-hp
divsqrt 120 111
divonly 120 114
none 120 120
daifpu-psp
divsqrt 120 112
divonly 120 105
none 120 110
daifpu-php
divsqrt 120 118
divonly 120 120
none 120 111

6.2 SWAR unit

Resource requirements of the daiFPU are demonstrated for the Xilinx Virtex7 FPGA. Table 6.3 lists re-
source requirements for representative SWAR configurations, while Table 6.4 lists the maximal operating
frequency for LEON2-FT with the SWAR unit.

2020-2021-IEFR020ESAIP0012-V1.2 24/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

Table 6.3: SWAR unit - XC7V - SWAR unit, resources used.

Flavour Slices Slice regs LUTs LUTRAM DSP48E1
swarall 870 253 2941 0 9
swaralu 91 95 331 0 3
swaraudio 92 98 310 0 2
swargnss 736 85 1816 0 0
swargnss-2b 261 83 696 0 0
swargnss-3b 131 78 760 0 0
swargnss-4b 308 82 897 0 0
swarvideo 136 139 456 0 4

Table 6.4: SWAR w/ daiFPU configuration DAIFPU-DUAL-
DPSP w/ FDIV and FSQRT - XC7V - processor core, maxi-
mal frequency.

Flavour Target[MHz] Final[MHz]
no swar 120 102
swarall 120 94
swaralu 120 103
swaraudio 120 106
swargnss 120 105
swargnss-
2b

120 103

swargnss-
3b

120 107

swargnss-
4b

120 96

swarvideo 120 103

2020-2021-IEFR020ESAIP0012-V1.2 25/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

2020-2021-IEFR020ESAIP0012-V1.2 26/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

7 Tools

7.1 daiteq binutils

The daiteq binutils can be downloaded using the following commands:

$ git clone https://devsrv.daiteq.com/martin/daiteq-binutils.git

$ cd daiteq-binutils

$./run.sh all

The compiled binary files will be located in daiteq-binutils/install/bin. Add this path to the $PATH variable.

$ export PATH=`pwd`/install/bin:$PATH

$ cd ..

Modify your Makefiles to use the prefix sparc-daiteq-elf- instead of, for example, the common sparc-elf-.

Test if the toolchain is accessible

$ sparc-daiteq-elf-as --version

GNU assembler (GNU Binutils) 2.34

Copyright (C) 2020 Free Software Foundation, Inc.

This program is free software; you may redistribute it under the terms of

the GNU General Public License version 3 or later.

This program has absolutely no warranty.

This assembler was configured for a target of `sparc-daiteq-elf'.

7.2 daiteq LLVM

C programs with the new integer and floating-point types for the daiFPU and the SWAR unit can be compiled
using the daiteq LLVM compiler. Download and install the daiteq LLVM using the following commands:

$ git clone https://devsrv.daiteq.com/martin/daiteq-llvm10.git

$ cd daiteq-llvm10

$./run.sh all

The compiled binary files will be located in daiteq-llvm10/install/bin. Add this path to the $PATH variable.

$ export PATH=`pwd`/install/bin:$PATH

$ cd ..

2020-2021-IEFR020ESAIP0012-V1.2 27/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

7.3 daiteq demo examples

The new toolchain is accompanied by example programs written in C and assembler to demonstrate the
use of the new floating-point and integer data types and operations. The examples can be downloaded as
a git repository by executing

$ git clone https://devsrv.daiteq.com/martin/daiteq-demo.git

Instructions for building and executing the examples can be found in the daiteq-demo/README file, e.g.
by typing

$ cd daiteq-demo

$ less README

The simplest way to build and execute the examples is by running the shell script test.sh as follows:

$ cd examples

$./test.sh build ./test_list.txt

The compiled binaries will be stored in the directory BUILD.

2020-2021-IEFR020ESAIP0012-V1.2 28/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

8 Deliverables and reports

The following deliverables and reports have been produced within this contract.

Deliverables

• ISE Specification (D01)

• FPU Specification (D02)

• FPU Survey Report (D03)

• ISE Design Document (D04)

• FPU Design Document (D05)

• SDE User Manual (D06)

• Final Report (FR)

Databases

• Benchmarking framework (DB1)

• leon2ft_2020.1_daifpu_swar (DB2, DB3)

• standalone_swar_leon2ft_2020.1_daifpu_swar (DB2)

• standalone_daifpu_leon2ft_2020.1_daifpu_swar (DB3)

• Extended GNU binutils (DB4)

• Extended LLVM (DB4)

CCN deliverables

• NG-Medium Techmap Report (CCN/D3)

Additional items

• LEON2-FT daiFPU/SWAR User Manual (IEUM020ESAIP0010)

• Tracking Loop Document (IETN018ESAIP004)

• BMFWK Document (IETN018ESAIP005)

• Prototype GNSS tracking loop (SW)

• tests-leon2ft (SW for leon2ft_2020.1_daifpu_swar)

• test-set (DATA for standalone_daifpu_leon2ft_2020.1_daifpu_swar)

• codes (DATA for the Prototype GNSS tracking loop)

• datasets (DATA for the Prototype GNSS tracking loop)

2020-2021-IEFR020ESAIP0012-V1.2 29/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

2020-2021-IEFR020ESAIP0012-V1.2 30/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

9 Conclusions

This activity has produced extensions to the LEON2-FT IP Core that significantly increase the potential
of the LEON2-FT processor for on-board data processing, e.g. for the GNSS domain the demonstrated
speedup is 382x6. The use of the packed floating-point operations has demonstrated a speedup in the
range of 23-35%7. The developed toolchain provides means for programmers to fine-tune integer and
floating-point data types used in applications, and ensures efficient processing of these data types in the
daiFPU and in the SWAR unit.

The development of the prototype GNSS tracking loop, derived from [BAB+07] and [Roj11], has provided a
valuable insight into proper identification of computing kernels in this class of algorithms, and also an insight
into efficient mapping of floating-point values to integer ranges for range reduction of function arguments.

The developed IP cores are advertised on daiteq’s website [dai].

The developed IP cores will be ported to the NOEL RISC-V processor.

The new software development tools can be downloaded from https://www.daiteq.com/en/software .

6 speedup related to leon2ft_2015.3_nomeiko
7 speedup related to implementations that use standard SPARC V8 floating-point operations

2020-2021-IEFR020ESAIP0012-V1.2 31/38 www.daiteq.com

https://www.daiteq.com/en/software

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

2020-2021-IEFR020ESAIP0012-V1.2 32/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

10 List of tables

5.1 Whetstone, normalized performance for daiFPU and Meiko. 15
5.2 Linpack, normalized average performance for daiFPU and Meiko. 16
5.3 Stanford composite results for daiFPU and Meiko. 17
5.4 C-ray performance for daiFPU and Meiko. 17
5.5 GNSS tracking loop - execution times for the main processing steps. 19

6.1 daiFPU - XC7V - FPU-only, resources used. 23
6.2 daiFPU - XC7V - maximal frequency. 24
6.3 SWAR unit - XC7V - SWAR unit, resources used. 25
6.4 SWAR w/ daiFPU configuration DAIFPU-DUAL-DPSP w/ FDIV and FSQRT - XC7V - pro-

cessor core, maximal frequency. 25

2020-2021-IEFR020ESAIP0012-V1.2 33/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

2020-2021-IEFR020ESAIP0012-V1.2 34/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

11 List of figures

3.1 One-precision FPU - fpu_daiteq.vhd - a configuration that supports one precision. 9
3.2 SWAR unit, configuration with up to six SWAR modules and a SWAR accumulator. outmux

shows connections for the sincos operation selected in the SWAR configuration register, and
accmux shows a connection for readout of SWAR accumulator #1 bit slice [31:0] selected
in the SWAR accumulator selection register. 11

5.1 Online FIR filter - number of executed instructions for integer vs. SWAR implementations
with a linear buffer, ring buffer and ring buffer aligned to 2n. Sources compiled with the
daiteq LLVM toolchain, optimization level -O2. 20

5.2 FFT kernels - execution profiles for hard-float, TABLE_SIZE=14, float (9713, 9714) vs.
packed-float (9712) implementation. Shown are processor ticks, executed instructions,
floating-point operations, floating-point loads and stores to compute FFT kernels. 21

2020-2021-IEFR020ESAIP0012-V1.2 35/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

2020-2021-IEFR020ESAIP0012-V1.2 36/38 www.daiteq.com

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

Bibliography

[ris] RISC-V: The Free and Open RISC Instruction Set Architecture. accessed on 2020-09-27. URL:
http://riscv.org.

[dai] http://www.daiteq.com. Accessed: 2020-09-02.

[BAB+07] K. Borre, D.M. Akos, N. Bertelsen, P. Rinder, and S.H. Jensen. A Software-Defined GPS and
Galileo Receiver: A Single-Frequency Approach. Applied and Numerical Harmonic Analysis.
Birkhäuser Boston, 2007. ISBN 9780817645403.

[Roj11] Cristian Paul Peñaranda Rojas. SoftGNSS - octave version. 2011. accessed on 2018-06-13.
URL: https://github.com/kristianpaul/SoftGNSS/.

2020-2021-IEFR020ESAIP0012-V1.2 37/38 www.daiteq.com

http://riscv.org
https://github.com/kristianpaul/SoftGNSS/

ESA 4000122242/17/NL/LF
2021/04/16

Final Report. ESA IP Core Extensions. ESA contract 4000122242
draft

FR
V1.2

Revision

Date Author Description
2020/09/02 M.Daněk Initial version
2020/09/27 M.Daněk Document updated based on feedback from the FR
2021/04/16 M.Daněk Updated information on the SDE toolchain

Disclaimer:

Copyright © 2020-2021 by daiteq s.r.o. All rights reserved.

This report has been issued without any warranty, without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. Specifications are subject to change without notice.

Brand and product names are trademarks or registered trademarks of their respective owners.

2020-2021-IEFR020ESAIP0012-V1.2 38/38 www.daiteq.com

	1 Executive Summary
	2 Motivation
	3 Architecture
	3.1 Packed floating-point formats
	3.2 daiFPU
	3.3 SWAR unit
	3.4 Software toolchain

	4 Validation
	4.1 daiFPU
	4.2 SWAR unit
	4.3 Software toolchain

	5 Evaluation
	5.1 Tools used
	5.2 daiFPU
	5.3 SWAR unit
	5.4 Eficiency of the software toolchain

	6 Implementation characteristics
	6.1 daiFPU
	6.2 SWAR unit

	7 Tools
	7.1 daiteq binutils
	7.2 daiteq LLVM
	7.3 daiteq demo examples

	8 Deliverables and reports
	9 Conclusions
	10 List of tables
	11 List of figures

