
Rev. 4168C–AERO–08/01

1

Assembly Language Syntax
The notations given in this section are taken from Sun’s SPARC Assembler and are
used to describe the suggested assembly language syntax for the instruction defini-
tions explained on page 5.

Understanding the use of type fonts is crucial to understanding the assembly lan-
guage syntax in the instruction definitions. Items in typewriterfont are literals, to be
entered exactly as they appear. Items in italic font are metasymbols that are to be
replaced by numeric or symbolic values when actual assembly language code is writ-
ten. For example, asi would be replaced by a number in the range of 0 to 255 (the
value of the bits in the binary instruction), or by a symbol that has been bound to such
a number.

Subscripts on metasymbols further identify the placement of the operand in the gener-
ated binary instruction. For example, regrs2 is a reg (i.e., register name) whose binary
value will end up in the rs2 field of the resulting instruction.

SPARC 7
Instruction Set

2

SPARC
4168C–AERO–08/01

 Register Names

reg A reg is an integer unit register. It can have a value of:

Subscripts further identify the placement of the operand in the binary instruction as one
of the following:

freg
A freg is a floating-point register. It can have a value from %f0 through %f31. Subscripts
further identify the placement of the operand in the binary instruction as one of the
following:

creg A creg is a coprocessor register. It can have a value from %c0 through %c31. Sub-
scripts further identify the placement of the operand in the binary instruction as one of
the following:

 Special Symbol Names

Certain special symbols need to be written exactly as they appear in the syntax table.
These appear in typewriter font, and are preceded by a percent sign (%). The percent
sign is part of the symbol name; it must appear as part of the literal value.

The symbol names are:

%0 through %31 all integer registers

%g0 through %g7 global registers—same as %0 through %7

%o0 through %o7 out registers—same as %8 through %15

%l0 through %l7 local registers—same as %16 through %23

%i0 through %i7 in registers—same as %24 through %31

regrs1 —rs1 field

regrs2 —rs2 field

regrd —rd field

fregrs1 —rs1 field

fregrs2 —rs2 field

fregrd —rd field

cregrs1 —rs1 field

cregrs2 —rs2 field

cregrd —rd field

%psr Processor State Register

%wim Window Invalid Mask register

%tbr Trap Base Register

3

SPARC

4168C–AERO–08/01

 Values

Some instructions use operands comprising values as follows:

simm13—A signed immediate constant that fits in 13 bits
const22—A constant that fits in 22 bits
asi—An alternate address space identifier (0 to 255)

 Label

A label is a sequence of characters comprised of alphabetic letters (a-z, A-Z (upper and
lower case distinct)), underscore (_), dollar sign ($), period (.), and decimal digits (0-9),
but which does not begin with a decimal digit.

Some instructions offer a choice of operands. These are grouped as follows:
regaddr:

regrs1
regrs1 + regrs2

address:

regrs1
regrs1 + regrs2
regrs1 + simm13
regrs1 - simm13
simm13
simm13 + regrs1

reg_or_imm:

regrs1
simm13

 Instruction Mnemonics

Figure 1. illustrates the mnemonics used to describe the SPARC instruction set. Note
that some combinations possible in Figure 1. do not correspond to valid instructions
(such as store signed or floating-point convert extended to extended). Refer to the
instruction summary on PageBreak 7 for a list of valid SPARC instructions.

%y Y register

%fsr Floating-point State Register

%csr Coprocessor State Register

%fq Floating-point Queue

%cq Coprocessor Queue

%hi Unary operator that extracts high 22 bits of its operand

%lo Unary operator that extracts low 10 bits of its operand

4

SPARC
4168C–AERO–08/01

Figure 1. SPARC Instruction Mnemonic Summary

Data Transfer

LoaD
STore

Signed
Unsigned

single
Double

Byte
Halfword
word
Doubleword

Floating-point
Coprocessor

normal
Alternate

register
Status Register
Queue

Integer Operations

AND
OR
XOR

normal
Not

normal
set CC Shift

Left
Right

Logical
Arithmetic

ADD
SUB

normal
eXtended

normal
set CC Tagged

ADD
SUB set CC

normal
Trap oVerflow

ReaD
WRite

Y
PSR
WIM
TBR

MULtiply Step set CC
SETHI
SAVE
RESTORE

Floating-Point Operations

Control Transfer

Fp convert

Integer Sin-
gle
Double
eXtended TO

Fp

MOVe
NEGate
ABSolute Single

Fp

ADD
SUBtract
MULtiply
DIVide
SQuare RooT
CoMPare
CoMPare and Exception

Single
Double
eXtended

Integer
Single
Double
eXtended

Integer CC
Floating-point CC
Coprocessor CCBranch

normal
Anull delay
instruction CALL

Trap on Integer CC

JuMP and Link
RETurn from Trap

atomic SWAP word atomic Load-Store Unsigned Byte

5

SPARC

4168C–AERO–08/01

 Definitions
This section provides a detailed definition for each ERC 32 instruction. Each definition
includes: the instruction operation; suggested assembly language syntax; a description
of the salient features, restrictions and trap conditions; a list of synchronous or floating-
point\coprocessor traps which can occur as a consequence of executing the instruction;
and the instruction format and op codes. Instructions are defined in alphabetical order
with the instruction mnemonic shown in large bold type at the top of the PageBreak for
easy reference. The instruction set summary that precedes the definitions, (Table 2),
groups the instructions by type.

Table 1. identifies the abbreviations and symbols used in the instruction definitions. An
example of how some of the description notations are used is given below in Figure 2.
Register names, labels and other aspects of the syntax used in these instructions are
described in the previous section.

Figure 2. Instruction Description

LDD Load Doubleword
Operation : r[rd] [r[rs1] + (r[rs2] or sign_extend(simm13))]

r[rd + 1] [(r[rs1] + (r[rs2] or sign_extend(simm13))) + 4]

Assembler
Syntax : ldd [address], regrd

Load data into destination register rd
Contents of source register 1

Contents of source register 2

An example of this instruction would be :
ldd [%g1 + 4], %6
which would add the contents of global register g1 to signed immediate
value (4) to determine the load address.
The resulting address is used to fetch and load doubleword data into
the destination registers 6 and 7.

 Sign-extended immediate 13-bit field of instruction

Brackets indicate data located at address specified by contents

Description :The LDD instruction moves a doubleword from memory into a destination register pair, r[rd] and r[rd+1].
The effective memory address is derived by summing the contents of r[rs1] and either the....

6

SPARC
4168C–AERO–08/01

Table 1. Instruction Description Notations
Symbol Description

a Instruction field that controls instruction annulling during control transfers

AND, OR XOR, etc. AND, OR, XOR, etc operators

asr_reg Any implemented ASR (Ancillary State)

c The icc carry bit

ccc The coprocessor condition code field of the CCSR

CONCAT Concatenate

cond Instruction field that selects the condition code test for branches

creg Communication Coprocessor Register : can be %ccsr, %ccfr, %ccpr, %cccrc

CWP PSR‘s Current Window Pointer field

disp22 Instruction field that contains the 22-bit sign-extended displacement for branches

ET PSR‘s Enable Traps bit

i Instruction field that selects rs2 or sign_extend(simm13) as the second operand

icc The integer condition code field of the PSR

imm22 Instruction field that contains the 22-bit constant used by SETHI

n The icc negative bit

not Logical complement operator

nPC next Program Counter

opc Instruction field that specifies the count for Coprocessor-operate instructions

operand2 Either r[rs2] or sign_extend(simm13)

PC Program Counter

pS PSR‘s previous Supervisor bit

PSR Processor State Register

r[15] A directly addressed register (could be floating-point or coprocessor)

rd Instruction field that specifies the destination register (except for store)

r[rd]
Depending on context, the integer register (or its contents) specified by the
instruction field, e.g. , rd, rs1, rs2

r[rd]<31> <> are used to specify bit fields of a particular register or I/O signal

[r[rs1] + r[rs2]] The contents of the address specified by r[rs1] + r[rs2]

rs1 Instruction field that specifies the source 1 register

rs2 Instruction field that specifies the source 2 register

S PSR‘s Supervisor bit

shcnt Instruction field that specifies the count for shift instructions

sign_extend(simm13) Instruction field that contains the 13-bit, sign-extended immediate value

Symbol Description

TBR Trap Base Register

tt TBR‘s trap type field

uf Floating-point exception : underflow

v The icc overflow bit

7

SPARC

4168C–AERO–08/01

Symbol Description

WIM Window Invalid Mask register

Y Y Register

z The icc zero bit

- Subtract

x Multiply

/ Divide

<-- Replaced by

7FFFFFF H Hexadecimal number representation

+ Add

8

SPARC
4168C–AERO–08/01

Table 2. Instruction Set Summary
Name Operation

LDSB(LDSBA*)
LDSH(LDSHA*)
LDUB(LDUBA*)
LDUH(LDUHA*)
LD(LDA*)
LDD(LDDA*)
LDF
LDDF
LDFSR
LDC
LDDC
LDCSR
STB(STBA*)
STH(STHA*)
ST(STA*)
STD(STDA*)
STF
STDF
STFSR
STDFQ*
STC
STDC
STCSR
STDCQ*
LDSTUB(LDSTUBA*)
SWAP(SWAPA*)
ADD(ADDcc)
ADDX(ADDXcc)
TADDcc(TADDccTV)
SUB(SUBcc)
SUBX(SUBXcc)
TSUBcc(TSUBccTV)
MULScc
AND(ANDcc)
ANDN(ANDNcc)
OR(ORcc)
ORN(ORNcc)
XOR(XORcc)
XNOR(XNORcc)
SLL
SRL
SRA
SETHI
SAVE
RESTORE
Bicc
FBicc
CBccc
CALL

Load Signed Byte
Load Signed Halfword
Load Unsigned Byte

(from Alternate Space)

Load Unsigned Halfword
Load Word
Load Doubleword

(from Alternate Space)

Load Floating Point
Load Double Floating Point
Load Floating Point StateRegister
Load Coprocessor
Load Double Coprocessor
Load Coprocessor State Register
Store Byte
Store Halfword
Store Word
Store Doubleword

(into Alternate Space)
(into Alternate Space)
(into Alternate Space)
(into Alternate Space)

Store Floating Point
Store Double Floating Point
Store Floating Point State Register
Store Double Floating Point Queue

Store Coprocessor
Store Double Coprocessor
Store Coprocessor State Register
Store Double Coprocessor Queue
Atomic Load/Store Unsigned Byte
Swap r Register with Memory

(in Alternate Space)
(in Alternate Space)

Add
Add with Carry

(and modify icc)
(and modify icc)

Tagged Add and modify icc (and Trap on overflow)

Tagged Subtract and modify icc (and Trap on overflow)

Subtract
Subtract with Carry

(and modify icc)
(and modify icc)

Multiply Step and modifyicc
And
And Not
Inclusive Or
Inclusive Or Not
Exclusive Or
Exclusive Nor

(and modify icc)
(and modify icc)
(and modify icc)
(and modify icc)
(and modify icc)
(and modify icc)

Shift Left Logical
Shift Right Logical
Shift Right Arithmetic
Set High 22 Bits of r Register
Save caller’s window
Restore caller’s window
Branch on Integer Condition Codes
Branch on Floating PointCondition Codes
Branch on Coprocessor Condition Codes
Call

(from Alternate Space)
(from Alternate Space)

(from Alternate Space)

Cycles

2
2
2
2
2
3
2
3
2
2
3
2
3
3
3
4
3
4
3
4

3
4
3
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1**
1**
1**
1**

JMPL
RETT
Ticc
RDY
RDPSR*
RDWIM*
RDTBR*
WRY
WRPSR*
WRWIM*
WRTBR*
UNIMP
IFLUSH
FPop
CPop

Jump and Link
Return from Trap
Trap on Integer Condition Codes
Read Y Register
Read Processor State Register
Read Window Invalid Mask
Read Trap Base Register
Write Y Register
Write Processor State Register
Write Window Invalid Mask
Write Trap Base Register
Unimplemented Instruction
Instruction Cache Flush
Floating Point Unit Operations
Coprocessor Operations

2**
2**

1
1
1
1
1
1
1
1
1
1

* privileged instruction ** assuming delay slot is filled with useful instruction

(from Alternate Space)

L
o

ad
 a

n
d

 S
to

re
 In

st
ru

ct
io

n
s

A
ri

th
m

et
ic

/L
o

g
ic

al
/S

h
if

t
C

o
n

tr
o

l
T

ra
n

sf
er

R
ea

d
/W

ri
te

C
o

n
tr

o
l R

eg
is

te
rs

O
p

s

F
P

(C
P

)

1 (4 if Taken)

1 to Launch
1 to Launch

9

SPARC

4168C–AERO–08/01

ADD Add

Operation: r[rd] r[rs1] + (r[rs2] or sign extnd(simm13))

Assembler
Syntax:

add regrs1, reg_or_imm, regrd

Description: The ADD instruction adds the contents of the register named in the rs1 field ,r[rs1], to
either the contents of r[rs2] if the instruction’s i bit equals zero, or to the 13-bit, sign-
extended immediate operand contained in the instruction if i equals one. The result is
placed in the register specified in the rd field.

Traps: none

Format:

1 0 rd 000 000 rs1 i=0 ignored rs2

31 30 29 25 24 19 18 14 13 12 5 4 0

31 30 29 25 24 19 18 14 13 12 0

1 0 rd 000 000 rs1 i=1 simm13

10

SPARC
4168C–AERO–08/01

ADDcc Add and modify icc

Operation: r[rd] r[rs1] + operand2, where operand2 = (r[rs2] or sign extnd(simm13))
n r[rd]<31>
z if r[rd] =0 then 1, else 0
v (r[rs1]<31> AND operand2<31> AND not r[rd]<31>)

OR (not r[rs1]<31> AND not operand2<31> AND r[rd]<31>)
c (r[rs1]<31> AND operand2<31>)

OR (not r[rd]<31> AND (r[rs1]<31> OR operand2<31>))

Assembler
Syntax:

addcc regrs1, reg_or_imm, regrd

Description: ADDcc adds the contents of r[rs1] to either the contents of r[rs2] if the instruction’s i bit
equals zero, or to a 13-bit, sign-extended immediate operand if i equals one. The result
is placed in the register specified in the rd field. In addition, ADDcc modifies all the inte-
ger condition codes in the manner described above.

Traps: none

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 0 1 0 0 0 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 0 1 0 0 0 0

11

SPARC

4168C–AERO–08/01

ADDX Add with Carry

Operation: r[rd] r[rs1] + (r[rs2] or sign extnd(simm13)) + c

Assembler
Syntax:

addx regrs1, reg_or_imm, regrd

Description: ADDX adds the contents of r[rs1] to either the contents of r[rs2] if the instruction’s i bit
equals zero, or to a 13-bit, sign-extended immediate operand if i equals one. It then
adds the PSR’s carry bit (c) to that result. The final result is placed in the register spec-
ified in the rd field.

Traps: none

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 0 0 1 0 0 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 0 0 1 0 0 0

12

SPARC
4168C–AERO–08/01

ADDXcc Add with Carry and modify icc

Operation: r[rd] r[rs1] + operand2 + c, where operand2 = (r[rs2] or sign extnd(simm13))
n r[rd]<31>
z if r[rd] =0 then 1, else 0
v (r[rs1]<31> AND operand2<31> AND not r[rd]<31>)

OR (not r[rs1]<31> AND not operand2<31> AND r[rd]<31>)
c (r[rs1]<31> AND operand2<31>)

OR (not r[rd]<31> AND (r[rs1]<31> OR operand2<31>))

Assembler
Syntax:

addxcc regrs1, reg_or_imm, regrd

Description: ADDXcc adds the contents of r[rs1] to either the contents of r[rs2] if the instruction’s i bit
equals zero, or to a 13-bit, sign-extended immediate operand if i equals one. It then
adds the PSR’s carry bit (c) to that result. The final result is placed in the register spec-
ified in the rd field. ADDXcc also modifies all the integer condition codes in the manner
described above.

Traps: none

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 0 1 1 0 0 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 0 1 1 0 0 0

13

SPARC

4168C–AERO–08/01

AND And

Operation: r[rd] r[rs1] AND (r[rs2] or sign extnd(simm13))

Assembler
Syntax:

and regrs1, reg_or_imm, regrd

Description: This instruction does a bitwise logical AND of the contents of register r[rs1] with either
the contents of r[rs2] (if if bit field i=0) or the 13-bit, sign-extended immediate value con-
tained in the instruction (if if bit field i=1). The result is stored in register r[rd].

Traps: none

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 0 0 0 0 0 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 0 0 0 0 0 1

14

SPARC
4168C–AERO–08/01

ANDcc And and modify icc

Operation: r[rd] r[rs1] AND (r[rs2] or sign extnd(simm13))
n r[rd]<31>
z if r[rd] =0 then 1, else 0
v 0
c 0

Assembler
Syntax:

andcc regrs1, reg_or_imm, regrd

Description: This instruction does a bitwise logical AND of the contents of register r[rs1] with either
the contents of r[rs2] (if if bit field i=0) or the 13-bit, sign-extended immediate value con-
tained in the instruction (if if bit field i=1). The result is stored in register r[rd]. ANDcc
also modifies all the integer condition codes in the manner described above.

Traps: none

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 0 1 0 0 0 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 0 1 0 0 0 1

15

SPARC

4168C–AERO–08/01

ANDN And Not

Operation: r[rd] r[rs1] AND (r[rs2] or sign extnd(simm13))

Assembler
Syntax:

andn regrs1, reg_or_imm, regrd

Description: ANDN does a bitwise logical AND of the contents of register r[rs1] with the logical com-
pliment (not) of either r[rs2] (if if bit field i=0) or the 13-bit, sign-extended immediate
value contained in the instruction (if if bit field i=1). The result is stored in register r[rd].

Traps: none

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 0 0 0 1 0 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 0 0 0 1 0 1

16

SPARC
4168C–AERO–08/01

ANDNcc And Not and modify icc

Operation: r[rd] r[rs1] AND (r[rs2] or sign extnd(simm13))
n r[rd]<31>
z if r[rd] =0 then 1, else 0
v 0
c 0

Assembler
Syntax:

andncc regrs1, reg_or_imm, regrd

Description: ANDNcc does a bitwise logical AND of the contents of register r[rs1] with the logical
compliment (not) of either r[rs2] (if bit field i=0) or the 13-bit, sign-extended immediate
value contained in the instruction (if bit field i=1). The result is stored in register r[rd].
ANDNcc also modifies all the integer condition codes in the manner described above.

Traps: none

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 0 1 0 1 0 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 0 1 0 1 0 1

17

SPARC

4168C–AERO–08/01

Bicc Integer Conditional Branch

Operation: PC nPC
If condition true then nPC PC + (sign extnd(disp22) x 4)
else nPC nPC + 4

Assembler
Syntax:

ba{,a} label

bn{,a} label
bne{,a}labelsynonym: bnz
be{,a} labelsynonym: bz
bg{,a} label
ble{,a}label
bge{,a}abel
bl{,a} label
bgu{,a}label
bleu{,a}label
bcc{,a}labelsynonym: bgeu
bcs{,a}labelsynonym: blu
bpos{,a}label
bneg{,a}label
bvc{,a}label
bvs{,a}label

Note: The instruction’s annul bit field, a, is set by appending “,a” after the branch name. If it is
not appended, the a field is automatically reset. “,a” is shown in braces because it is
optional.

Description: The Bicc instructions (except for BA and BN) evaluate specific integer condition code
combinations (from the PSR’s icc field) based on the branch type as specified by the
value in the instruction’s cond field. If the specified combination of condition codes eval-
uates as true, the branch is taken, causing a delayed, PC-relative control transfer to the
address (PC + 4) + (sign extnd(disp22) x 4). If the condition codes evaluate as false, the
branch is not taken.

If the branch is not taken, the annul bit field (a) is checked. If a is set, the instruction
immediately following the branch instruction (the delay instruction) is not executed (i.e.,
it is annulled). If the annul field is zero, the delay instruction is executed. If the branch is
taken, the annul field is ignored, and the delay instruction is executed.

Branch Never (BN) executes like a NOP, except it obeys the annul field with respect to
its delay instruction.

Branch Always (BA), because it always branches regardless of the condition codes,
would normally ignore the annul field. Instead, it follows the same annul field rules: if
a=1, the delay instruction is annulled; if a=0, the delay instruction is executed.

The delay instruction following a Bicc (other than BA) should not be a delayed-control-
transfer instruction. The results of following a Bicc with another delayed control transfer
instruction are implementation-dependent and therefore unpredictable.

18

SPARC
4168C–AERO–08/01

Traps: none

Format:

Mnemonic Cond. Operation icc Test

BN 0000 Branch Never No test

BE 0001 Branch on Equal z

BLE 0010 Branch on Less or Equal z OR (n XOR v)

BL 0011 Branch on Less n XOR v

BLEU 0100 Branch on Less or Equal, Unsigned c OR z

BCS 0101
Branch on Carry Set
(Less than, Unsigned)

c

BNEG 0110 Branch on Negative n

BVS 0111 Branch on oVerflow Set v

BA 1000 Branch Always No test

BNE 1001 Branch on Not Equal not z

BG 1010 Branch on Greater not(z OR (n XOR v))

BGE 1011 Branch on Greater or Equal not(n XOR v)

BGU 1100 Branch on Greater, Unsigned not(c OR z)

BCC 1101
Branch on Carry Clear
(Greater than or Equal, Unsigned)

not c

BPOS 1110 Branch on Positive not n

BVC 1111 Branch on oVerflow Clear not v

31 30 29 28 25 22 21 0

0 0 a 0 1 0 disp22

24

cond.

19

SPARC

4168C–AERO–08/01

CALL Call

Operation: r[15] PC
PC nPC
nPC PC + (disp30 x 4)

Assembler
Syntax:

call label

Description: The CALL instruction causes a delayed, unconditional, PC-relative control transfer to
the address (PC + 4) + (disp30 x 4). The CALL instruction does not have an annul bit,
therefore the delay slot instruction following the CALL instruction is always executed.
CALL first writes its return address (PC) into the outs register, r[15], and then adds 4 to
the PC. The 32-bit displacement which is added to the new PC is formed by appending
two low-order zeros to the 30-bit word displacement contained in the instruction. Con-
sequently, the target address can be anywhere in the ERC 32’s user or supervisor
address space.

If the instruction following a CALL uses register r[15] as a source operand, hardware
interlocks add a one cycle delay.

Programming note: a register-indirect CALL can be constructed using a JMPL instruc-
tion with rd set to 15.

Traps: none

Format:

31 30 29 0

0 1 disp30

20

SPARC
4168C–AERO–08/01

CBccc Coprocessor Conditional Branch

Operation: PC nPC
If condition true then nPC PC + (sign extnd(disp22) x 4)
else nPC nPC + 4

Assembler
Syntax:

cba{,a}label

cbn{,a}label
cb3{,a}abel
cb2{,a}abel
cb23{,a}label
cb1{,a}label
cb13{,a}label
cb12{,a}label
cb123{,a}label
cb0{,a}abel
cb03{,a}label
cb02{,a}label
cb023{,a}label
cb01{,a}label
cb013{,a}label
cb012{,a}label

Note: The instruction’s annul bit field, a, is set by appending “,a” after the branch name. If it is
not appended, the a field is automatically reset. “,a” is shown in braces because it is
optional.

Description: The CBccc instructions (except for CBA and CBN) evaluate specific coprocessor condi-
tion code combinations (from the CCC<1:0> inputs) based on the branch type as
specified by the value in the instruction’s cond field. If the specified combination of con-
dition codes evaluates as true, the branch is taken, causing a delayed, PC-relative
control transfer to the address (PC + 4) + (sign extnd(disp22) x 4). If the condition codes
evaluate as false, the branch is not taken.

If the branch is not taken, the annul bit field (a) is checked. If a is set, the instruction
immediately following the branch instruction (the delay instruction) is not executed (i.e.,
it is annulled). If the annul field is zero, the delay instruction is executed. If the branch is
taken, the annul field is ignored, and the delay instruction is executed.

Branch Never (CBN) executes like a NOP, except it obeys the annul field with respect to
its delay instruction.

Branch Always (CBA), because it always branches regardless of the condition codes,
would normally ignore the annul field. Instead, it follows the same annul field rules: if
a=1, the delay instruction is annulled; if a=0, the delay instruction is executed.

To prevent misapplication of the condition codes, a non-coprocessor instruction must
immediately precede a CBccc instruction.

A CBccc instruction generates a cp_disabled trap (and does not branch or annul) if the
PSR’s EC bit is reset or if no coprocessor is present.

21

SPARC

4168C–AERO–08/01

Traps: cp_disabled

cp_exception

Format:

Mnemonic cond. CCC<1:0> test

CBN 0000 Never

CB123 0001 1 or 2 or 3

CB12 0010 1 or 2

CB13 0011 1 or 3

CB1 0100 1

CB23 0101 2 or 3

CB2 0110 2

CB3 0111 3

CBA 1000 Always

CB0 1001 0

CB03 1010 0 or 3

CB02 1011 0 or 2

CB023 1100 0 or 2 or 3

CB01 1101 0 or 1

CB013 1110 0 or 1 or 3

CB012 1111 0 or 1 or 2

31 30 29 28 25 22 21 0

0 0 a 1 1 1 disp22

24

cond.

22

SPARC
4168C–AERO–08/01

CPop Coprocessor Operate

Operation: Dependent on Coprocessor implementation

Assembler
Syntax:

Unspecified

Description: CPop1 and CPop2 are the instruction formats for coprocessor operate instructions. The
op3 field for CPop1 is 110110; for CPop2 it’s 110111. The coprocessor operations
themselves are encoded in the opc field and are dependent on the coprocessor imple-
mentation. Note that this does not include load/store coprocessor instructions, which
fall into the integer unit’s load/store instruction category.

All CPop instructions take all operands from, and return all results to, the coprocessor’s
registers. The data types supported, how the operands are aligned, and whether a
CPop generates a cp_exception trap are Coprocessor dependent.

A CPop instruction causes a cp_disabled trap if the PSR’s EC bit is reset or if no copro-
cessor is present.

Traps: cp_disabled
cp_exception

Format:
31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 1 0 rs1 rs2opc

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 1 1 rs1 rs2opc

23

SPARC

4168C–AERO–08/01

FABSs Absolute Value Single
(FPU Instruction Only)

Operation: f[rd]s f[rs2]s AND 7FFFFFFF H

Assembler
Syntax:

fabss fregrs2, fregrd

Description: The FABSs instruction clears the sign bit of the word in f[rs2] and places the result in
f[rd]. It does not round.

Since rs2 can be either an even or odd register, FABSs can also operate on the high-
order words of double and extended operands, which accomplishes sign bit clear for
these data types.

Traps: fp_disabled
fp_exception*

Format:

Note: An attempt to execute any FP instruction will cause a pending FP exception to be recog-
nized by the integer unit

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 ignored rs20 0 0 0 0 1 0 0 1

24

SPARC
4168C–AERO–08/01

FADDd Add Double
(FPU Instruction Only)

Operation: f[rd]d f[rs1]d + f[rs2]d

Assembler
Syntax:

faddd fregrs1, fregrs2, fregrd

Description: The FADDd instruction adds the contents of f[rs1] CONCAT f[rs1+1] to the contents of
f[rs2] CONCAT f[rs2+1] as specified by the ANSI/IEEE 754-1985 standard and places
the results in f[rd] and f[rd+1].

Traps: fp_disabled
fp_exception (of, uf, nv, nx)

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 rs1 rs20 0 1 0 0 0 0 1 0

25

SPARC

4168C–AERO–08/01

FADDs Add Single
(FPU Instruction Only)

Operation: f[rd]s f[rs1]s + f[rs2]s

Assembler
Syntax:

fadds fregrs1, fregrs2, fregrd

Description: The FADDs instruction adds the contents of f[rs1] to the contents of f[rs2] as specified
by the ANSI/IEEE 754-1985 standard and places the results in f[rd].

Traps: fp_disabled
fp_exception (of, uf, nv, nx)

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 rs1 rs20 0 1 0 0 0 0 0 1

26

SPARC
4168C–AERO–08/01

FADDx Add Extended
(FPU Instruction Only)

Operation: f[rd]x f[rs1]x + f[rs2]x

Assembler
Syntax:

faddx fregrs1, fregrs2, fregrd

Description: The FADDx instruction adds the contents of f[rs1] CONCAT f[rs1+1] CONCAT f[rs1+2]
to the contents of f[rs2] CONCAT f[rs2+1] CONCAT f[rs2+2] as specified by the
ANSI/IEEE 754-1985 standard and places the results in f[rd], f[rd+1], and f[rd+2].

Traps: fp_disabled
fp_exception (of, uf, nv, nx)

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 rs1 rs20 0 1 0 0 0 0 1 1

27

SPARC

4168C–AERO–08/01

FBfcc Floating-Point Conditional Branch

Operation: PC nPC
If condition true then nPC PC + (sign extnd(disp22) x 4)
else nPC nPC + 4

Assembler
Syntax:

fba{,a}label

fbn{,a}label
fbu{,a}label
fbg{,a}label
fbug{,a}label
fbl{,a} label
fbul{,a}label
fblg{,a}label
fbne{,a}labelsynonym: fbnz
fbe{,a}labelsynonym: fbz
fbue{,a}label
fbge{,a}label
fbuge{,a}label
fble{,a}label
fbule{,a}label
fbo{,a}label

Note: The instruction’s annul bit field, a, is set by appending “,a” after the branch name. If it is
not appended, the a field is automatically reset. “,a” is shown in braces because it is
optional.

Description: The FBfcc instructions (except for FBA and FBN) evaluate specific floating-point condi-
tion code combinations (from the FCC<1:0> inputs) based on the branch type, as
specified by the value in the instruction’s cond field. If the specified combination of con-
dition codes evaluates as true, the branch is taken, causing a delayed, PC-relative
control transfer to the address (PC + 4) + (sign extnd(disp22) x 4). If the condition codes
evaluate as false, the branch is not taken.

If the branch is not taken, the annul bit field (a) is checked. If a is set, the instruction
immediately following the branch instruction (the delay instruction) is not executed (i.e.,
it is annulled). If the annul field is zero, the delay instruction is executed. If the branch is
taken, the annul field is ignored, and the delay instruction is executed.

Branch Never (FBN) executes like a NOP, except it obeys the annul field with respect to
its delay instruction.

Branch Always (FBA), because it always branches regardless of the condition codes,
would normally ignore the annul field. Instead, it follows the same annul field rules: if
a=1, the delay instruction is annulled; if a=0, the delay instruction is executed.

To prevent misapplication of the condition codes, a non-floating-point instruction must
immediately precede an FBfcc instruction.

An FBfcc instruction generates an fp_disabled trap (and does not branch or annul) if the
PSR’s EF bit is reset or if no Floating-Point Unit is present.

28

SPARC
4168C–AERO–08/01

Traps: fp_disabled
fp_exception*

Format:

Note: An attempt to execute any FP instruction will cause a pending FP exception to be recog-
nized by the integer unit

Mnemonic Cond. Operation fcc Test

FBN 0000 Branch Never no test

FBNE 0001 Branch on Not Equal U or L or G

FBLG 0010 Branch on Less or Greater L or G

FBUL 0011 Branch on Unordered or Less U or L

FBL 0100 Branch on Less L

FBUG 0101 Branch on Unordered or Greater U or G

FBG 0110 Branch on Greater G

FBU 0111 Branch on Unordered U

FBA 1000 Branch Always no test

FBE 1001 Branch on Equal E

FBUE 1010 Branch on Unordered or Equal U or E

FBGE 1011 Branch on Greater or Equal G or E

FBUGE 1100
Branch on Unordered or Greater or
Equal

U or G or E

FBLE 1101 Branch on Less or Equal L or E

FBULE 1110
Branch on Unordered or Less or
Equal

U or L or E

FBO 1111 Branch on Ordered L or G or E

31 30 29 28 25 22 21 0

0 0 a 1 1 0 disp22

24

cond.

29

SPARC

4168C–AERO–08/01

FCMPd Compare Double
(FPU Instruction Only)

Operation: fcc f[rs1]d COMPARE f[rs2]d

Assembler
Syntax:

fcmpd fregrs1, fregrs2

Description: FCMPd subtracts the contents of f[rs2] CONCAT f[rs2+1] from the contents of f[rs1]
CONCAT f[rs1+1] following the ANSI/IEEE 754-1985 standard. The result is evaluated,
the FSR’s fcc bits are set accordingly, and then the result is discarded. The codes are
set as follows:

In this table, fs1 stands for the contents of f[rs1], f[rs1+1] and fs2 represents the con-
tents of f[rs2], f[rs2+1].

Compare instructions are used to set up the floating-point condition codes for a subse-
quent FBfcc instruction. However, to prevent misapplication of the condition codes, at
least one non-floating-point instruction must be executed between an FCMP and a sub-
sequent FBfcc instruction.

FCMPd causes an invalid exception (nv) if either operand is a signaling NaN.

Traps: fp_disabled
fp_exception (nv)

Format:

fcc relation

0 fs1 = fs2

1 fs1 < fs2

2 fs1 > fs2

3 fs1 ? fs2 (unordered)

31 30 29 25 24 19 18 14 13 5 4 0

1 0 ignored 1 1 0 1 0 1 rs1 rs20 0 1 0 1 0 0 1 0

30

SPARC
4168C–AERO–08/01

FCMPEd Compare Double and Exception if Unordered
(FPU Instruction Only)

Operation: fcc f[rs1]d COMPARE f[rs2]d

Assembler
Syntax:

fcmped fregrs1, fregrs2

Description: FCMPEd subtracts the contents of f[rs2] CONCAT f[rs2+1] from the contents of f[rs1]
CONCAT f[rs1+1] following the ANSI/IEEE 754-1985 standard. The result is evaluated,
the FSR’s fcc bits are set accordingly, and then the result is discarded. The codes are
set as follows:

In this table, fs1 stands for the contents of f[rs1], f[rs1+1] and fs2 represents the con-
tents of f[rs2], f[rs2+1].

Compare instructions are used to set up the floating-point condition codes for a subse-
quent FBfcc instruction. However, to prevent misapplication of the condition codes, at
least one non-floating-point instruction must be executed between an FCMP and a sub-
sequent FBfcc instruction.

FCMPEd causes an invalid exception (nv) if either operand is a signaling or quiet NaN.

Traps: fp_disabled
fp_exception (nv)

Format:

fcc Relation

0 fs1 = fs2

1 fs1 < fs2

2 fs1 > fs2

3 fs1 ? fs2 (unordered)

31 30 29 25 24 19 18 14 13 5 4 0

1 0 ignored 1 1 0 1 0 1 rs1 rs20 0 1 0 1 0 1 1 0

31

SPARC

4168C–AERO–08/01

FCMPEs Compare Single and Exception if Unordered
(FPU Instruction Only)

Operation: fcc f[rs1]s COMPARE f[rs2]s

Assembler
Syntax:

fcmpes fregrs1, fregrs2

Description: FCMPEs subtracts the contents of f[rs2] from the contents of f[rs1] following the
ANSI/IEEE 754-1985 standard. The result is evaluated, the FSR’s fcc bits are set
accordingly, and then the result is discarded. The codes are set as follows:

In this table, fs1 stands for the contents of f[rs1] and fs2 represents the contents of
f[rs2].

Compare instructions are used to set up the floating-point condition codes for a subse-
quent FBfcc instruction. However, to prevent misapplication of the condition codes, at
least one non-floating-point instruction must be executed between an FCMP and a sub-
sequent FBfcc instruction.

FCMPEs causes an invalid exception (nv) if either operand is a signaling or quiet NaN.

Traps: fp_disabled
fp_exception (nv)

Format:

fcc Relation

0 fs1 = fs2

1 fs1 < fs2

2 fs1 > fs2

3 fs1 ? fs2 (unordered)

31 30 29 25 24 19 18 14 13 5 4 0

1 0 ignored 1 1 0 1 0 1 rs1 rs20 0 1 0 1 0 1 0 1

32

SPARC
4168C–AERO–08/01

FCMPEx Compare Extended and Exception if Unordered
(FPU Instruction Only)

Operation: fcc f[rs1]x COMPARE f[rs2]x

Assembler
Syntax:

fcmpex fregrs1, fregrs2

Description: FCMPEx subtracts the contents of f[rs2] CONCAT f[rs2+1] CONCAT f[rs2+2] from the
contents of f[rs1] CONCAT f[rs1+1] CONCAT f[rs1+2] following the ANSI/IEEE 754-
1985 standard. The result is evaluated, the FSR’s fcc bits are set accordingly, and then
the result is discarded. The codes are set as follows:

In this table, fs1 stands for the contents of f[rs1], f[rs1+1], f[rs1+2] and fs2 represents the
contents of f[rs2], f[rs2+1], f[rs2+2].

Compare instructions are used to set up the floating-point condition codes for a subse-
quent FBfcc instruction. However, to prevent misapplication of the condition codes, at
least one non-floating-point instruction must be executed between an FCMP and a sub-
sequent FBfcc instruction.

FCMPEx causes an invalid exception (nv) if either operand is a signaling or quiet NaN.

Traps: fp_disabled
fp_exception (nv)

Format:

fcc Relation

0 fs1 = fs2

1 fs1 < fs2

2 fs1 > fs2

3 fs1 ? fs2 (unordered)

31 30 29 25 24 19 18 14 13 5 4 0

1 0 ignored 1 1 0 1 0 1 rs1 rs20 0 1 0 1 0 1 1 1

33

SPARC

4168C–AERO–08/01

FCMPs Compare Single
(FPU Instruction Only)

Operation: fcc f[rs1]s COMPARE f[rs2]s

Assembler
Syntax:

fcmps fregrs1, fregrs2

Description: FCMPs subtracts the contents of f[rs2] from the contents of f[rs1] following the
ANSI/IEEE 754-1985 standard. The result is evaluated, the FSR’s fcc bits are set
accordingly, and then the result is discarded. The codes are set as follows:

In this table, fs1 stands for the contents of f[rs1] and fs2 represents the contents of
f[rs2].

Compare instructions are used to set up the floating-point condition codes for a subse-
quent FBfcc instruction. However, to prevent misapplication of the condition codes, at
least one non-floating-point instruction must be executed between an FCMP and a sub-
sequent FBfcc instruction.

FCMPs causes an invalid exception (nv) if either operand is a signaling NaN.

Traps: fp_disabled
fp_exception (nv)

Format:

fcc Relation

0 fs1 = fs2

1 fs1 < fs2

2 fs1 > fs2

3 fs1 ? fs2 (unordered)

31 30 29 25 24 19 18 14 13 5 4 0

1 1 ignored 1 1 0 1 0 1 rs1 rs20 0 1 0 1 0 0 0 1

34

SPARC
4168C–AERO–08/01

FCMPx Compare Extended
(FPU Instruction Only)

Operation: fcc f[rs1]x COMPARE f[rs2]x

Assembler
Syntax:

fcmpx fregrs1, fregrs2

Description: FCMPx subtracts the contents of f[rs2] CONCAT f[rs2+1] CONCAT f[rs2+2] from the
contents of f[rs1] CONCAT f[rs1+1] CONCAT f[rs1+2] following the ANSI/IEEE 754-
1985 standard. The result is evaluated, the FSR’s fcc bits are set accordingly, and then
the result is discarded. The codes are set as follows:

In this table, fs1 stands for the contents of f[rs1], f[rs1+1], f[rs1+2] and fs2 represents the
contents of f[rs2], f[rs2+1], f[rs2+2].

Compare instructions are used to set up the floating-point condition codes for a subse-
quent FBfcc instruction. However, to prevent misapplication of the condition codes, at
least one non-floating-point instruction must be executed between an FCMP and a sub-
sequent FBfcc instruction.

FCMPx causes an invalid exception (nv) if either operand is a signaling NaN.

Traps: fp_disabled
fp_exception (nv)

Format:

fcc Relation

0 fs1 = fs2

1 fs1 < fs2

2 fs1 > fs2

3 fs1 ? fs2 (unordered)

31 30 29 25 24 19 18 14 13 5 4 0

1 0 ignored 1 1 0 1 0 1 rs1 rs20 0 1 0 1 0 0 1 1

35

SPARC

4168C–AERO–08/01

FDIVd Divide Double
(FPU Instruction Only)

Operation: f[rd]d f[rs1]d / f[rs2]d

Assembler
Syntax:

fdivd fregrs1, fregrs2, fregrd

Description: The FDIVd instruction divides the contents of f[rs1] CONCAT f[rs1+1] by the contents of
f[rs2] CONCAT f[rs2+1] as specified by the ANSI/IEEE 754-1985 standard and places
the results in f[rd] and f[rd+1].

Traps: fp_disabled
fp_exception (of, uf, dz, nv, nx)

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 rs1 rs20 0 1 0 0 1 1 1 0

36

SPARC
4168C–AERO–08/01

FDIVs Divide Single
(FPU Instruction Only)

Operation: f[rd]s f[rs1]s / f[rs2]s

Assembler
Syntax:

fdivs fregrs1, fregrs2, fregrd

Description: The FDIVs instruction divides the contents of f[rs1] by the contents of f[rs2] as specified
by the ANSI/IEEE 754-1985 standard and places the results in f[rd].

Traps: fp_disabled

fp_exception (of, uf, dz, nv, nx)

Format:

31 30 29 25 24 19 18 14 13 5 4 0
1 0 rd 1 1 0 1 0 0 rs1 rs20 0 1 0 0 1 1 0 1

37

SPARC

4168C–AERO–08/01

FDIVx Divide Extended
(FPU Instruction Only)

Operation: f[rd]x f[rs1]x / f[rs2]x

Assembler
Syntax:

fdivx fregrs1, fregrs2, fregrd

Description: The FDIVx instruction divides the contents of f[rs1] CONCAT f[rs1+1] CONCAT f[rs1+2]
by the contents of f[rs2] CONCAT f[rs2+1] CONCAT f[rs2+2] as specified by the
ANSI/IEEE 754-1985 standard and places the results in f[rd], f[rd+1], and f[rd+2].

Traps: fp_disabled
fp_exception (of, uf, dz, nv, nx)

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 rs1 rs20 0 1 0 0 1 1 1 1

38

SPARC
4168C–AERO–08/01

FdTOi Convert Double to Integer
(FPU Instruction Only)

Operation: f[rd]i f[rs2]d

Assembler
Syntax:

fdtoi fregrs2, fregrd

Description: FdTOi converts the floating-point double contents of f[rs2] CONCAT f[rs2+1] to a 32-bit,
signed integer by rounding toward zero as specified by the ANSI/IEEE 754-1985 stan-
dard. The result is placed in f[rd]. The rounding direction field (RD) of the FSR is
ignored.

Traps: fp_disabled
fp_exception (nv, nx)

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 ignored rs20 1 1 0 1 0 0 1 0

39

SPARC

4168C–AERO–08/01

FdTOs Convert Double to Single
(FPU Instruction Only)

Operation: f[rd]s f[rs2]d

Assembler
Syntax:

fdtos fregrs2, fregrd

Description: FdTOs converts the floating-point double contents of f[rs2] CONCAT f[rs2+1] to a single-
precision, floating-point format as specified by the ANSI/IEEE 754-1985 standard. The
result is placed in f[rd]. Rounding is performed according to the rounding direction field
(RD) of the FSR.

Traps: fp_disabled
fp_exception (of, uf, nv, nx)

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 ignored rs20 1 1 0 0 0 1 1 0

40

SPARC
4168C–AERO–08/01

FdTOx Convert Double to Extended
(FPU Instruction Only)

Operation: f[rd]x f[rs2]d

Assembler
Syntax:

fdtox fregrs2, fregrd

Description: FdTOx converts the floating-point double contents of f[rs2] CONCAT f[rs2+1] to an
extended-precision, floating-point format as specified by the ANSI/IEEE 754-1985 stan-
dard. The result is placed in f[rd], f[rd+1], and f[rd+2]. Rounding is performed according
to the rounding direction (RD) and rounding precision (RP) fields of the FSR.

Traps: fp_disabled
fp_exception (nv)

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 ignored rs20 1 1 0 0 1 1 1 0

41

SPARC

4168C–AERO–08/01

FiTOd Convert Integer to Double
(FPU Instruction Only)

Operation: f[rd]d f[rs2]i

Assembler
Syntax:

fitod fregrs2, fregrd

Description: FiTOd converts the 32-bit, signed integer contents of f[rs2] to a floating-point, double-
precision format as specified by the ANSI/IEEE 754-1985 standard. The result is placed
in f[rd] and f[rd+1].

Traps: fp_disabled
fp_exception*

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 ignored rs20 1 1 0 0 1 0 0 0

42

SPARC
4168C–AERO–08/01

FiTOs Convert Integer to Single
(FPU Instruction Only)

Operation: f[rd]s f[rs2]i

Assembler
Syntax:

fitos fregrs2, fregrd

Description: FiTOs converts the 32-bit, signed integer contents of f[rs2] to a floating-point, single-pre-
cision format as specified by the ANSI/IEEE 754-1985 standard. The result is placed in
f[rd]. Rounding is performed according to the rounding direction field, RD.

Traps: fp_disabled
fp_exception (nx)

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 ignored rs20 1 1 0 0 0 1 0 0

43

SPARC

4168C–AERO–08/01

FiTOx Convert Integer to Extended
(FPU Instruction Only)

Operation: f[rd]x f[rs2]i

Assembler
Syntax:

fitox fregrs2, fregrd

Description: FiTOx converts the 32-bit, signed integer contents of f[rs2] to an extended-precision,
floating-point format as specified by the ANSI/IEEE 754-1985 standard. The result is
placed in f[rd], f[rd+1], and f[rd+2].

Traps: fp_disabled
fp_exception*

Format:

Note: An attempt to execute any FP instruction will cause a pending FP exception to be recog-
nized by the integer unit.

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 ignored rs20 1 1 0 0 1 1 0 0

44

SPARC
4168C–AERO–08/01

FMOVs Move
(FPU Instruction Only)

Operation: f[rd]s f[rs2]s

Assembler
Syntax:

fmovs fregrs2, fregrd

Description: The FMOVs instruction moves the word content of register f[rs2] to the register f[rd].
Multiple FMOVs’s are required to transfer multiple-precision numbers between f
registers.

Traps: fp_disabled
fp_exception*

Format:

Note: An attempt to execute any FP instruction will cause a pending FP exception to be recog-
nized by the integer unit.

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 ignored rs20 0 0 0 0 0 0 0 1

45

SPARC

4168C–AERO–08/01

FMULd Multiply Double
(FPU Instruction Only)

Operation: f[rd]d f[rs1]d x f[rs2]d

Assembler
Syntax:

fmuld fregrs1, fregrs2, fregrd

Description: The FMULd instruction multiplies the contents of f[rs1] CONCAT f[rs1+1] by the con-
tents of f[rs2] CONCAT f[rs2+1] as specified by the ANSI/IEEE 754-1985 standard and
places the results in f[rd] and f[rd+1].

Traps: fp_disabled
fp_exception (of, uf, nv, nx)

Format:

31 30 29 25 24 19 18 14 13 5 4 0
1 0 rd 1 1 0 1 0 0 rs1 rs20 0 1 0 0 1 0 1 0

46

SPARC
4168C–AERO–08/01

FMULs Multiply Single
(FPU Instruction Only)

Operation: f[rd]s f[rs1]s x ([rs2]s

Assembler
Syntax:

fmuls fregrs1, fregrs2, fregrd

Description: The FMULs instruction multiplies the contents of f[rs1] by the contents of f[rs2] as speci-
fied by the ANSI/IEEE 754-1985 standard and places the results in f[rd].

Traps: fp_disabled
fp_exception (of, uf, nv, nx)

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 rs1 rs20 0 1 0 0 1 0 0 1

47

SPARC

4168C–AERO–08/01

FMULx Multiply Extended
(FPU Instruction Only)

Operation: f[rd]x f[rs1]x x f[rs2]x

Assembler
Syntax:

fmulx fregrs1, fregrs2, fregrd

Description: The FMULx instruction multiplies the contents of f[rs1] CONCAT f[rs1+1] CONCAT
f[rs1+2] by the contents of f[rs2] CONCAT f[rs2+1] CONCAT f[rs2+2] as specified by the
ANSI/IEEE 754-1985 standard and places the results in f[rd], f[rd+1], and f[rd+2].

Traps: fp_disabled
fp_exception (of, uf, nv, nx)

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 rs1 rs20 0 1 0 0 1 0 1 1

48

SPARC
4168C–AERO–08/01

FNEGs Negate
(FPU Instruction Only)

Operation: f[rd]s f[rs2]s XOR 80000000 H

Assembler
Syntax:

fnegs fregrs2, fregrd

Description: The FNEGs instruction complements the sign bit of the word in f[rs2] and places the
result in f[rd]. It does not round.

Since this FPop can address both even and odd f registers, FNEGs can also operate on
the high-order words of double and extended operands, which accomplishes sign bit
negation for these data types.

Traps: fp_disabled
fp_exception*

Format:

Note: An attempt to execute any FP instruction will cause a pending FP exception to be recog-
nized by the integer unit.

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 ignored rs20 0 0 0 0 0 1 0 1

49

SPARC

4168C–AERO–08/01

FSQRTd Square Root Double
(FPU Instruction Only)

Operation: f[rd]d SQRT f[rs2]d

Assembler
Syntax:

fsqrtd fregrs2, fregrd

Description: FSQRTd generates the square root of the floating-point double contents of f[rs2] CON-
CAT f[rs2+1] as specified by the ANSI/IEEE 754-1985 standard. The result is placed in
f[rd] and f[rd+1]. Rounding is performed according to the rounding direction field (RD) of
the FSR.

Traps: fp_disabled
fp_exception (nv, nx)

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 ignored rs20 0 0 1 0 1 0 1 0

50

SPARC
4168C–AERO–08/01

FSQRTs Square Root Single
(FPU Instruction Only)

Operation: f[rd]s SQRT f[rs2]s

Assembler
Syntax:

fsqrts fregrs2, fregrd

Description: FSQRTs generates the square root of the floating-point single contents of f[rs2] as spec-
ified by the ANSI/IEEE 754-1985 standard. The result is placed in f[rd]. Rounding is
performed according to the rounding direction field (RD) of the FSR.

Traps: fp_disabled
fp_exception (nv, nx)

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 ignored rs20 0 0 1 0 1 0 0 1

51

SPARC

4168C–AERO–08/01

FSQRTx Square Root Extended
(FPU Instruction Only)

Operation: f[rd]x SQRT f[rs2]x

Assembler
Syntax:

fsqrtx fregrs2, fregrd

Description: FSQRTx generates the square root of the floating-point extended contents of f[rs2]
CONCAT f[rs2+1] CONCAT f[rs2+2] as specified by the ANSI/IEEE 754-1985 standard.
The result is placed in f[rd], f[rd+1], and f[rd+2]. Rounding is performed according to the
rounding direction (RD) and rounding precision (RP) fields of the FSR.

Traps: fp_disabled
fp_exception (nv, nx)

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 ignored rs20 0 0 1 0 1 0 1 1

52

SPARC
4168C–AERO–08/01

FsTOd Convert Single to Double
(FPU Instruction Only)

Operation: f[rd]d f[rs2]s

Assembler
Syntax:

fstod fregrs2, fregrd

Description: FsTOd converts the floating-point single contents of f[rs2] to a double-precision, floating-
point format as specified by the ANSI/IEEE 754-1985 standard. The result is placed in
f[rd] and f[rd+1]. Rounding is performed according to the rounding direction field (RD) of
the FSR.

Traps: fp_disabled
fp_exception (nv)

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 ignored rs20 1 1 0 0 1 0 0 1

53

SPARC

4168C–AERO–08/01

FsTOi Convert Single to Integer
(FPU Instruction Only)

Operation: f[rd]i f[rs2]s

Assembler
Syntax:

fstoi fregrs2, fregrd

Description: FsTOi converts the floating-point single contents of f[rs2] to a 32-bit, signed integer by
rounding toward zero as specified by the ANSI/IEEE 754-1985 standard. The result is
placed in f[rd]. The rounding field (RD) of the FSR is ignored.

Traps: fp_disabled
fp_exception (nv, nx)

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 ignored rs20 1 1 0 1 0 0 0 1

54

SPARC
4168C–AERO–08/01

FsTOx Convert Single to Extended
(FPU Instruction Only)

Operation: f[rd]x f[rs2]s

Assembler
Syntax:

fstox fregrs2, fregrd

Description: FsTOx converts the floating-point single contents of f[rs2] to an extended-precision,
floating-point format as specified by the ANSI/IEEE 754-1985 standard. The result is
placed in f[rd], f[rd+1], and f[rd+2]. Rounding is performed according to the rounding
direction (RD) and rounding precision (RP) fields of the FSR.

Traps: fp_disabled
fp_exception (nv)

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 ignored rs20 1 1 0 0 1 1 0 1

55

SPARC

4168C–AERO–08/01

FSUBd Subtract Double
(FPU Instruction Only)

Operation: f[rd]d f[rs1]d - f[rs2]d

Assembler
Syntax:

fsubd fregrs1, fregrs2, fregrd

Description: The FSUBd instruction subtracts the contents of f[rs2] CONCAT f[rs2+1] from the con-
tents of f[rs1] CONCAT f[rs1+1] as specified by the ANSI/IEEE 754-1985 standard and
places the results in f[rd] and f[rd+1].

Traps: fp_disabled
fp_exception (of, uf, nx, nv)

Format:

31 30 29 25 24 19 18 14 13 5 4 0
1 0 rd 1 1 0 1 0 0 rs1 rs20 0 1 0 0 0 1 1 0

56

SPARC
4168C–AERO–08/01

FSUBs Subtract Single
(FPU Instruction Only)

Operation: f[rd]s f[rs1]s - f[rs2]s

Assembler
Syntax:

fsubs fregrs1, fregrs2, fregrd

Description: The FSUBs instruction subtracts the contents of f[rs2] from the contents of f[rs1] as
specified by the ANSI/IEEE 754-1985 standard and places the results in f[rd].

Traps: fp_disabled
fp_exception (of, uf, nx, nv)

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 rs1 rs20 0 1 0 0 0 1 0 1

57

SPARC

4168C–AERO–08/01

FSUBx Subtract Extended
(FPU Instruction Only)

Operation: f[rd]x f[rs1]x - f[rs2]x

Assembler
Syntax:

fsubx fregrs1, fregrs2, fregrd

Description: The FSUBx instruction subtracts the contents of f[rs2] CONCAT f[rs2+1] CONCAT
f[rs2+2] from the contents of f[rs1] CONCAT f[rs1+1] CONCAT f[rs1+2] as specified by
the ANSI/IEEE 754-1985 standard and places the results in f[rd], f[rd+1], and f[rd+2].

Traps: fp_disabled
fp_exception (of, uf, nv, nx)

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 rs1 rs20 0 1 0 0 0 1 1 1

58

SPARC
4168C–AERO–08/01

FxTOd Convert Extended to Double
(FPU Instruction Only)

Operation: f[rd]d f[rs2]x

Assembler
Syntax:

fxtod fregrs2, fregrd

Description: FxTOd converts the floating-point extended contents of f[rs2] CONCAT f[rs2+1] CON-
CAT f[rs2+2] to a double-precision, floating-point format as specified by the ANSI/IEEE
754-1985 standard. The result is placed in f[rd] and f[rd+1]. Rounding is performed
according to the rounding direction (RD) field of the FSR.

Traps: fp_disabled
fp_exception (of, uf, nv, nx)

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 ignored rs20 1 1 0 0 1 0 1 1

59

SPARC

4168C–AERO–08/01

FxTOi Convert Extended to Integer
(FPU Instruction Only)

Operation: f[rd]i f[rs2]x

Assembler
Syntax:

fxtoi fregrs2, fregrd

Description: FxTOi converts the floating-point extended contents of f[rs2] CONCAT f[rs2+1] CON-
CAT f[rs2+2] to a 32-bit, signed integer by rounding toward zero as specified by the
ANSI/IEEE 754-1985 standard. The result is placed in f[rd]. The rounding field (RD) of
the FSR is ignored.

Traps: fp_disabled
fp_exception (nv, nx)

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 ignored rs20 1 1 0 1 0 0 1 1

60

SPARC
4168C–AERO–08/01

FxTOs Convert Extended to Single
(FPU Instruction Only)

Operation: f[rd]s f[rs2]x

Assembler
Syntax:

fxtos fregrs2, fregrd

Description: FxTOs converts the floating-point extended contents of f[rs2] CONCAT f[rs2+1] CON-
CAT f[rs2+2] to a single-precision, floating-point format as specified by the ANSI/IEEE
754-1985 standard. The result is placed in f[rd]. Rounding is performed according to
the rounding direction (RD) field of the FSR.

Traps: fp_disabled
fp_exception (of, uf, nv, nx)

Format:

31 30 29 25 24 19 18 14 13 5 4 0

1 0 rd 1 1 0 1 0 0 ignored rs20 1 1 0 0 0 1 1 1

61

SPARC

4168C–AERO–08/01

IFLUSH Instruction Cache Flush

Operation: FLUSH [r[rs1] + (r[rs2] or sign extnd(simm13))]

Assembler
Syntax:

iflush address

Description: The IFLUSH instruction causes a word to be flushed from an instruction cache which
may be internal to the processor. The word to be flushed is at the address specified by
the contents of r[rs1] plus either the contents of r[rs2] if the instruction’s i bit equals zero,
or the 13-bit, sign-extended immediate operand contained in the instruction if i equals
one.

Since there is no internal instruction cache in the current ERC 32 family, the result of
executing an IFLUSH instruction is dependent on the state of the input signal, Instruc-
tion Cache Flush Trap (IFT). If IFT = 1, IFLUSH executes as a NOP, with no side
effects. If IFT = 0, execution of IFLUSH causes an illegal_instruction trap.

Traps: illegal_instruction

Format:

Note: IFT = 0 in TSC 695

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 1 1 1 0 1 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rs1 simm13i=11 0 1 1 1 0 1 1

ignored

ignored

62

SPARC
4168C–AERO–08/01

JMPL Jump and Link

Operation: r[rd] PC
PC nPC
nPC r[rs1] + (r[rs2] or sign extnd(simm13))

Assembler
Syntax:

jmpl address, regrd

Description: JMPL first provides linkage by saving its return address into the register specified in the
rd field. It then causes a register-indirect, delayed control transfer to an address speci-
fied by the sum of the contents of r[rs1] and either the contents of r[rs2] if the
instruction’s i bit equals zero, or the 13-bit, sign-extended immediate operand contained
in the instruction if i equals one.

I f e i t he r o f the l ow-orde r two b i t s o f t he j ump address i s nonzero , a
memory_address_not_aligned trap is generated.

Programming note: A register-indirect CALL can be constructed using a JMPL instruc-
tion with rd set to 15. JMPL can also be used to return from a CALL. In this case, rd is
set to 0 and the return (jump) address would be equal to r[31] + 8.

Traps: memory_address_not_aligned

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 1 1 1 0 0 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 1 1 1 0 0 0

63

SPARC

4168C–AERO–08/01

LD Load Word

Operation: r[rd] [r[rs1] + (r[rs2] or sign extnd(simm13))]

Assembler
Syntax:

ld [address], regrd

Description: The LD instruction moves a word from memory into the destination register, r[rd]. The
effective memory address is derived by summing the contents of r[rs1] and either the
contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit, sign-extended imme-
diate operand contained in the instruction if i equals one.

If LD takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load’s r[rd] register as a source oper-
and, hardware interlocks add one or more delay cycles to the following instruction
depending upon the memory subsystem.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be accessed without setting up a register.

Traps: memory_address_not_aligned
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 0 0 0 0 0 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 0 0 0 0 0 0

64

SPARC
4168C–AERO–08/01

LDA Load Word from Alternate space
(Privileged Instruction)

Operation: address space asi
r[rd] [r[rs1] + r[rs2]]

Assembler
Syntax:

lda [regaddr] asi, regrd

Description: The LDA instruction moves a word from memory into the destination register, r[rd]. The
effective memory address is a combination of the address space value given in the asi
field and the address derived by summing the contents of r[rs1] and r[rs2].

If LDA takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load’s r[rd] register as a source oper-
and, hardware interlocks add one or more delay cycles to the following instruction
depending upon the memory subsystem.

Traps: illegal_instruction (if i=1)
privileged_instruction (if S=0)
memory_address_not_aligned
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 0 1 0 0 0 0 rs1 rs2asii=0

65

SPARC

4168C–AERO–08/01

LDC Load Coprocessor register

Operation: c[rd] [r[rs1] + (r[rs2] or sign extnd(simm13))]

Assembler
Syntax:

ld [address], cregrd

Description: The LDC instruction moves a word from memory into a coprocessor register, c[rd]. The
effective memory address is derived by summing the contents of r[rs1] and either the
contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit, sign-extended imme-
diate operand contained in the instruction if i equals one.

If the PSR’s EC bit is set to zero or if no coprocessor is present, a cp_disabled trap will
be generated. If LDC takes a trap, the state of the coprocessor depends on the particu-
lar implementation.

If the instruction following a coprocessor load uses the load’s c[rd] register as a source
operand, hardware interlocks add one or more delay cycles to the following instruction
depending upon the memory subsystem.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be accessed without setting up a register.

Traps: cp_disabled
cp_exception
memory_address_not_aligned
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 1 1 0 0 0 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 1 1 0 0 0 0

66

SPARC
4168C–AERO–08/01

LDCSR Load Coprocessor State Register

Operation: CSR [r[rs1] + (r[rs2] or sign extnd(simm13))]

Assembler
Syntax:

ld [address], %csr

Description: The LDCSR instruction moves a word from memory into the Coprocessor State Regis-
ter. The effective memory address is derived by summing the contents of r[rs1] and
either the contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit, sign-
extended immediate operand contained in the instruction if i equals one.

If the PSR’s EC bit is set to zero or if no coprocessor is present, a cp_disabled trap will
be generated. If LDCSR takes a trap, the state of the coprocessor depends on the par-
ticular implementation.

If the instruction following a LDCSR uses the CSR as a source operand, hardware inter-
locks add one or more delay cycles to the following instruction depending upon
implementation of the coprocessor.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be accessed without setting up a register.

Traps: cp_disabled
cp_exception
memory_address_not_aligned
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 1 1 0 0 0 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 1 1 0 0 0 1

67

SPARC

4168C–AERO–08/01

LDD Load Doubleword

Operation: r[rd] [r[rs1] + (r[rs2] or sign extnd(simm13))]
r[rd + 1] [(r[rs1] + (r[rs2] or sign extnd(simm13))) + 4]

Assembler
Syntax:

ldd [address], regrd

Description: The LDD instruction moves a doubleword from memory into a destination register pair,
r[rd] and r[rd+1]. The effective memory address is derived by summing the contents of
r[rs1] and either the contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit,
sign-extended immediate operand contained in the instruction if i equals one. The most
significant memory word is always moved into the even-numbered destination register
and the least significant memory word is always moved into the next odd-numbered
register.

If a data_access_exception trap takes place during the effective address memory
access, the destination registers remain unchanged.

If the instruction following an integer load uses the load’s r[rd] register as a source oper-
and, hardware interlocks add one or more delay cycles to the following instruction
depending upon the memory subsystem. For an LDD, this applies to both destination
registers.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be accessed without setting up a register.

Traps: memory_address_not_aligned
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 0 0 0 0 1 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 0 0 0 0 1 1

68

SPARC
4168C–AERO–08/01

LDDA Load Doubleword from Alternate space
(Privileged Instruction)

Operation: address space asi
r[rd] [r[rs1] + r[rs2]]
r[rd +1] [r[rs1] + r[rs2] + 4]

Assembler
Syntax:

ldda [regaddr] asi, regrd

Description: The LDDA instruction moves a doubleword from memory into the destination registers,
r[rd] and r[rd+1]. The effective memory address is a combination of the address space
value given in the asi field and the address derived by summing the contents of r[rs1]
and r[rs2]. The most significant memory word is always moved into the even-numbered
destination register and the least significant memory word is always moved into the next
odd-numbered register.

If a trap takes place during the effective address memory access, the destination regis-
ters remain unchanged.

If the instruction following an integer load uses the load’s r[rd] register as a source oper-
and, hardware interlocks add one or more delay cycles to the following instruction
depending upon the memory subsystem. For an LDDA, this applies to both destination
registers.

Traps: illegal_instruction (if i=1)
privileged_instruction (if S=0)
memory_address_not_aligned
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 0 1 0 0 1 1 rs1 rs2asii=0

69

SPARC

4168C–AERO–08/01

LDDC Load Doubleword Coprocessor

Operation: c[rd] [r[rs1] + (r[rs2] or sign extnd(simm13))]
c[rd + 1] [(r[rs1] + (r[rs2] or sign extnd(simm13))) + 4]

Assembler
Syntax:

ldd [address], cregrd

Description: The LDDC instruction moves a doubleword from memory into the coprocessor registers,
c[rd] and c[rd+1]. The effective memory address is derived by summing the contents of
r[rs1] and either the contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit,
sign-extended immediate operand contained in the instruction if i equals one. The most
significant memory word is always moved into the even-numbered destination register
and the least significant memory word is always moved into the next odd-numbered
register.

If the PSR’s EC bit is set to zero or if no coprocessor is present, a cp_disabled trap will
be generated. If LDDC takes a trap, the state of the coprocessor depends on the partic-
ular implementation.

If the instruction following a coprocessor load uses the load’s c[rd] register as a source
operand, hardware interlocks add one or more delay cycles to the following instruction
depending upon the memory subsystem and coprocessor implementation. For an
LDDC, this applies to both destination registers.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be accessed without setting up a register.

Traps: cp_disabled
cp_exception
memory_address_not_aligned
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 1 1 0 0 1 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 1 1 0 0 1 1

70

SPARC
4168C–AERO–08/01

LDDF Load Doubleword Floating-Point

Operation: f[rd] [r[rs1] + (r[rs2] or sign extnd(simm13))]
f[rd + 1] [(r[rs1] + (r[rs2] or sign extnd(simm13))) + 4]

Assembler
Syntax:

ldd [address], fregrd

Description: The LDDF instruction moves a doubleword from memory into the floating-point regis-
ters, f[rd] and f[rd+1]. The effective memory address is derived by summing the
contents of r[rs1] and either the contents of r[rs2] if the instruction’s i bit equals zero, or
the 13-bit, sign-extended immediate operand contained in the instruction if i equals one.
The most significant memory word is always moved into the even-numbered destination
register and the least significant memory word is always moved into the next odd-num-
bered register.

If the PSR’s EF bit is set to zero or if no floating-point unit is present, an fp_disabled trap
will be generated. If a trap takes place during the effective address memory access, the
destination registers remain unchanged.

If the instruction following a floating-point load uses the load’s f[rd] register as a source
operand, hardware interlocks add one or more delay cycles to the following instruction
depending upon the memory subsystem. For an LDDF, this applies to both destination
registers.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be accessed without setting up a register.

Traps: fp_disabled
fp_exception*
memory_address_not_aligned
data_access_exception

Format:

Note: * An attempt to execute any FP instruction will cause a pending FP exception to be rec-
ognized by the integer unit

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 1 0 0 0 1 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 1 0 0 0 1 1

71

SPARC

4168C–AERO–08/01

LDF Load Floating-Point register

Operation: f[rd] [r[rs1] + (r[rs2] or sign extnd(simm13))]

Assembler
Syntax:

ld [address], fregrd

Description: The LDF instruction moves a word from memory into a floating-point register, f[rd]. The
effective memory address is derived by summing the contents of r[rs1] and either the
contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit, sign-extended imme-
diate operand contained in the instruction if i equals one.

If the PSR’s EF bit is set to zero or if no Floating-Point Unit is present, an fp_disabled
trap will be generated. If LDF takes a trap, the contents of the destination register
remain unchanged.

If the instruction following a floating-point load uses the load’s f[rd] register as a source
operand, hardware interlocks add one or more delay cycles to the following instruction
depending upon the memory subsystem.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be accessed without setting up a register.

Traps: fp_disabled
fp_exception*
memory_address_not_aligned
data_access_exception

Format:

Note: *An attempt to execute any FP instruction will cause a pending FP exception to be recog-
nized by the integer unit.

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 1 0 0 0 0 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 1 0 0 0 0 0

72

SPARC
4168C–AERO–08/01

LDFSR Load Floating-Point State Register

Operation: FSR [r[rs1] + (r[rs2] or sign extnd(simm13))]

Assembler
Syntax:

“ld [address], %fsr

Description: The LDFSR instruction moves a word from memory into the floating-point state register.
The effective memory address is derived by summing the contents of r[rs1] and either
the contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit, sign-extended
immediate operand contained in the instruction if i equals one. This instruction will wait
for all pending FPops to complete execution before it loads the memory word into the
FSR.

If the PSR’s EF bit is set to zero or if no floating-point unit is present, an fp_disabled trap
will be generated. If LDFSR takes a trap, the contents of the FSR remain unchanged.

If the instruction following a LDFSR uses the FSR as a source operand, hardware inter-
locks add one or more cycle delay to the following instruction depending upon the
memory subsystem.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be accessed without setting up a register.

Traps: fp_disabled
fp_exception*
memory_address_not_aligned
data_access_exception

Format:

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit.

31 30 29 25 24 19 18 14 13 12 5 4 0
1 1 rd 1 0 0 0 0 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 1 0 0 0 0 1

73

SPARC

4168C–AERO–08/01

LDSB Load Signed Byte

Operation: r[rd] sign extnd[r[rs1] + (r[rs2] or sign extnd(simm13))]

Assembler
Syntax:

ldsb [address], regrd

Description: The LDSB instruction moves a signed byte from memory into the destination register,
r[rd]. The effective memory address is derived by summing the contents of r[rs1] and
either the contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit, sign-
extended immediate operand contained in the instruction if i equals one. The fetched
byte is right-justified and sign-extended in r[rd].

If LDSB takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load’s r[rd] register as a source oper-
and, hardware interlocks add one or more delay cycles to the following instruction
depending upon the memory subsystem.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be accessed without setting up a register.

Traps: data_access_exception

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 0 0 1 0 0 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 0 0 1 0 0 1

74

SPARC
4168C–AERO–08/01

LDSBA Load Signed Byte from Alternate space
(Privileged Instruction)

Operation: address space asi
r[rd] sign extnd[r[rs1] + r[rs2]]

Assembler
Syntax:

ldsba [regaddr] asi, regrd

Description: The LDSBA instruction moves a signed byte from memory into the destination register,
r[rd]. The effective memory address is a combination of the address space value given
in the asi field and the address derived by summing the contents of r[rs1] and r[rs2].
The fetched byte is right-justified and sign-extended in r[rd].

If LDSBA takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load’s r[rd] register as a source oper-
and, hardware interlocks add one or more delay cycles depending upon the memory
subsystem.

Traps: illegal_instruction (if i=1)
privileged_instruction (if S=0)
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0
1 1 rd 0 1 1 0 0 1 rs1 rs2asii=0

75

SPARC

4168C–AERO–08/01

LDSH Load Signed Halfword

Operation: r[rd] sign extnd[r[rs1] + (r[rs2] or sign extnd(simm13))]

Assembler
Syntax:

ldsh [address], regrd

Description: The LDSH instruction moves a signed halfword from memory into the destination regis-
ter, r[rd]. The effective memory address is derived by summing the contents of r[rs1]
and either the contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit, sign-
extended immediate operand contained in the instruction if i equals one. The fetched
halfword is right-justified and sign-extended in r[rd].

If LDSH takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load’s r[rd] register as a source oper-
and, hardware interlocks add one or more delay cycles depending upon the memory
subsystem.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be accessed without setting up a register.

Traps: memory_address_not_aligned
data_access_exception

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 0 0 1 0 1 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 0 0 1 0 1 0

76

SPARC
4168C–AERO–08/01

LDSHA Load Signed Halfword from Alternate space
(Privileged Instruction)

Operation: address space asi
r[rd] sign extnd[r[rs1] + r[rs2]]

Assembler
Syntax:

ldsha [regaddr] asi, regrd

Description: The LDSHA instruction moves a signed halfword from memory into the destination reg-
ister, r[rd]. The effective memory address is a combination of the address space value
given in the asi field and the address derived by summing the contents of r[rs1] and
r[rs2]. The fetched halfword is right-justified and sign-extended in r[rd].

If LDSHA takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load’s r[rd] register as a source oper-
and, hardware interlocks add one or more delay cycles depending upon the memory
subsystem.

Traps: illegal_instruction (if i=1)
privileged_instruction (if S=0)
memory_address_not_aligned
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 0 1 1 0 1 0 rs1 rs2asii=0

77

SPARC

4168C–AERO–08/01

LDSTUB Atomic Load/Store Unsigned Byte

Operation: r[rd] zero extnd[r[rs1] + (r[rs2] or sign extnd(simm13))]
[r[rs1] + (r[rs2] or sign extnd(simm13))] FFFFFFFF H

Assembler
Syntax:

ldstub [address], regrd

Description: The LDSTUB instruction moves an unsigned byte from memory into the destination reg-
ister, r[rd], and rewrites the same byte in memory to all ones, while preventing
asynchronous trap interruptions. In a multiprocessor system, two or more processors
executing atomic load/store instructions which address the same byte simultaneously
are guaranteed to execute them serially, in some order.

The effective memory address is derived by summing the contents of r[rs1] and either
the contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit, sign-extended
immediate operand contained in the instruction if i equals one. The fetched byte is right-
justified and zero-extended in r[rd].

If the instruction following an integer load uses the load’s r[rd] register as a source oper-
and, hardware interlocks add one or more delay cycles depending upon the memory
subsystem.

If LDSTUB takes a trap, the contents of the memory address remain unchanged.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be accessed without setting up a register.

Traps: data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 0 0 1 1 0 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 0 0 1 1 0 1

78

SPARC
4168C–AERO–08/01

LDSTUBA Atomic Load/Store Unsigned Byte
in Alternate space
(Privileged Instruction)

Operation: address space asi
r[rd] zero extnd[r[rs1] + r[rs2]]
[r[rs1] + r[rs2]] FFFFFFFF H

Assembler
Syntax:

ldstuba [regaddr] asi, regrd

Description: The LDSTUBA instruction moves an unsigned byte from memory into the destination
register, r[rd], and rewrites the same byte in memory to all ones, while preventing asyn-
chronous trap interruptions. In a multiprocessor system, two or more processors
executing atomic load/store instructions which address the same byte simultaneously
are guaranteed to execute them in some serial order.

The effective memory address is a combination of the address space value given in the
asi field and the address derived by summing the contents of r[rs1] and r[rs2]. The
fetched byte is right-justified and zero-extended in r[rd].

If the instruction following an integer load uses the load’s r[rd] register as a source oper-
and, hardware interlocks add one or more delay cycles depending upon the memory
subsystem.

If LDSTUBA takes a trap, the contents of the memory address remain unchanged.

Traps: illegal_instruction (if i=1)
privileged_instruction (if S=0)
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd rs1 rs2asii=00 1 1 1 0 1

79

SPARC

4168C–AERO–08/01

LDUB Load Unsigned Byte

Operation: r[rd] zero extnd[r[rs1] + (r[rs2] or sign extnd(simm13))]

Assembler
Syntax:

ldub [address], regrd

Description: The LDUB instruction moves an unsigned byte from memory into the destination regis-
ter, r[rd]. The effective memory address is derived by summing the contents of r[rs1]
and either the contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit, sign-
extended immediate operand contained in the instruction if i equals one. The fetched
byte is right-justified and zero-extended in r[rd].

If LDUB takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load’s r[rd] register as a source oper-
and, hardware interlocks add one or more delay cycles depending upon the memory
subsystem.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be accessed without setting up a register.

Traps: data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 0 0 0 0 0 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 0 0 0 0 0 1

80

SPARC
4168C–AERO–08/01

LDUBA Load Unsigned Byte from Alternate space
(Privileged Instruction)

Operation: address space asi
r[rd] zero extnd[r[rs1] + r[rs2]]

Assembler
Syntax:

lduba [regaddr] asi, regrd

Description: The LDUBA instruction moves an unsigned byte from memory into the destination regis-
ter, r[rd]. The effective memory address is a combination of the address space value
given in the asi field and the address derived by summing the contents of r[rs1] and
r[rs2]. The fetched byte is right-justified and zero-extended in r[rd].

If LDUBA takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load’s r[rd] register as a source oper-
and, hardware interlocks add one or more delay cycles depending upon the memory
subsystem.

Traps: illegal_instruction (if i=1)
privileged_instruction (if S=0)
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 0 1 0 0 0 1 rs1 rs2asii=0

81

SPARC

4168C–AERO–08/01

LDUH Load Unsigned Halfword

Operation: r[rd] zero extnd[r[rs1] + (r[rs2] or sign extnd(simm13))]

Assembler
Syntax:

lduh [address], regrd

Description: The LDUH instruction moves an unsigned halfword from memory into the destination
register, r[rd]. The effective memory address is derived by summing the contents of
r[rs1] and either the contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit,
sign-extended immediate operand contained in the instruction if i equals one. The
fetched halfword is right-justified and zero-extended in r[rd].

If LDUH takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load’s r[rd] register as a source oper-
and, hardware interlocks add one or more delay cycles depending upon the memory
subsystem.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be accessed without setting up a register.

Traps: memory_address_not_aligned
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 0 0 0 0 1 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 0 0 0 0 1 0

82

SPARC
4168C–AERO–08/01

LDUHA Load Unsigned Halfword from Alternate space
(Privileged Instruction)

Operation: address space asi
r[rd] zero extnd[r[rs1] + r[rs2]]

Assembler
Syntax:

lduha [regaddr] asi, regrd

Description: The LDUHA instruction moves an unsigned halfword from memory into the destination
register, r[rd]. The effective memory address is a combination of the address space
value given in the asi field and the address derived by summing the contents of r[rs1]
and r[rs2]. The fetched halfword is right-justified and zero-extended in r[rd].

If LDUHA takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load’s r[rd] register as a source oper-
and, hardware interlocks add one or more delay cycles depending upon the memory
subsystem.

Traps: illegal_instruction (if i=1)
privileged_instruction (if S=0)
memory_address_not_aligned
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 0 1 0 0 1 0 rs1 rs2asii=0

83

SPARC

4168C–AERO–08/01

MULScc Multiply Step and modify icc

Operation: op1 = (n XOR v) CONCAT r[rs1]<31:1>
if (Y<0> = 0) op2 = 0, else op2 = r[rs2] or sign extnd(simm13)
r[rd] op1 + op2
Y r[rs1]<0> CONCAT Y<31:1>
n r[rd]<31>
z if [r[rd]]=0 then 1, else 0
v ((op1<31> AND op2<31> AND not r[rd]<31>)

OR (not op1<31> AND not op2<31> AND r[rd]<31>))
c ((op1<31> AND op2<31>)

OR (not r[rd] AND (op1<31> OR op2<31>))

Assembler
Syntax:

mulscc regrs1, reg_or_imm, regrd

Description: The multiply step instruction can be used to generate the 64-bit product of two signed or
unsigned words. MULScc works as follows:

1. The “incoming partial product” in r[rs1] is shifted right by one bit and the high-
order bit is replaced by the sign of the previous partial product (n XOR v). This is
operand1.

2. If the least significant bit of the multiplier in the Y register equals zero, then
operand2 is set to zero. If the LSB of the Y register equal one, then operand2
becomes the multiplicand, which is either the contents of r[rs2] if the instruction i
field is zero, or sign extnd(simm13) if the i field is one. Operand2 is then added
to operand1 and stored in r[rd] (the outgoing partial product).

3. The multiplier in the Y register is then shifted right by one bit and its high-order
bit is replaced by the least significant bit of the incoming partial product in r[rs1].

4. The PSR’s integer condition codes are updated according to the addition per-
formed in step 2.

Traps: none

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 1 0 0 1 0 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 1 0 0 1 0 0

84

SPARC
4168C–AERO–08/01

OR Inclusive-Or

Operation: r[rd] r[rs1] OR (r[rs2] or sign extnd(simm13))

Assembler
Syntax:

or regrs1, reg_or_imm, regrd

Description: This instruction does a bitwise logical OR of the contents of register r[rs1] with either the
contents of r[rs2] (if bit field i=0) or the 13-bit, sign-extended immediate value contained
in the instruction (if bit field i=1). The result is stored in register r[rd].

Traps: none

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 0 0 0 0 1 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 0 0 0 0 1 0

85

SPARC

4168C–AERO–08/01

ORcc Inclusive-Or and modify icc

Operation: r[rd] r[rs1] OR (r[rs2] or sign extnd(simm13))
n r[rd]<31>
z if [r[rd]]=0 then 1, else 0
v 0
c 0

Assembler
Syntax:

orcc regrs1, reg_or_imm, regrd

Description: This instruction does a bitwise logical OR of the contents of register r[rs1] with either the
contents of r[rs2] (if bit field i=0) or the 13-bit, sign-extended immediate value contained
in the instruction (if bit field i=1). The result is stored in register r[rd]. ORcc also modi-
fies all the integer condition codes in the manner described above.

Traps: none

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 0 1 0 0 1 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 0 1 0 0 1 0

86

SPARC
4168C–AERO–08/01

ORN Inclusive-Or Not

Operation: r[rd] r[rs1] OR not(operand2), where operand2 = (r[rs2] or sign extnd(simm13))

Assembler
Syntax:

orn regrs1, reg_or_imm, regrd

Description: This instruction does a bitwise logical OR of the contents of register r[rs1] with the one’s
complement of either the contents of r[rs2] (if bit field i=0) or the 13-bit, sign-extended
immediate value contained in the instruction (if bit field i=1). The result is stored in reg-
ister r[rd].

Traps: none

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 0 0 0 1 1 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 0 0 0 1 1 0

87

SPARC

4168C–AERO–08/01

ORNcc Inclusive-Or Not and modify icc

Operation: r[rd] r[rs1] OR not(operand2), where operand2 = (r[rs2] or sign extnd(simm13))
n r[rd]<31>
z if [r[rd]]=0 then 1, else 0
v 0
c 0

Assembler
Syntax:

orncc regrs1, reg_or_imm, regrd

Description:

This instruction does a bitwise logical OR of the contents of register r[rs1] with the one’s
complement of either the contents of r[rs2] (if bit field i=0) or the 13-bit, sign-extended
immediate value contained in the instruction (if bit field i=1). The result is stored in reg-
ister r[rd]. ORNcc also modifies all the integer condition codes in the manner described
above.

Traps: none

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 0 1 0 1 1 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 0 1 0 1 1 0

88

SPARC
4168C–AERO–08/01

RDPSR Read Processor State Register
(Privileged Instruction)

Operation: r[rd] PSR

Assembler
Syntax:

rd %psr, regrd

Description: RDPSR copies the contents of the PSR into the register specified by the rd field.

Traps: privileged-instruction (if S=0)

Format:

31 30 29 25 24 19 18 0

1 0 rd 1 0 1 0 0 1 ignored

89

SPARC

4168C–AERO–08/01

RDTBR Read Trap Base Register
(Privileged Instruction)

Operation: r[rd] TBR

Assembler
Syntax:

rd %tbr, regrd

Description: RDTBR copies the contents of the TBR into the register specified by the rd field.

Traps: privileged_instruction (if S=0)

Format:

31 30 29 25 24 19 18 0

1 0 rd 1 0 1 0 1 1 ignored

90

SPARC
4168C–AERO–08/01

RDWIM Read Window Invalid Mask register
(Privileged Instruction)

Operation: r[rd] WIM

Assembler
Syntax:

rd %wim, regrd

Description: RDWIM copies the contents of the WIM register into the register specified by the rd field.

Traps: privileged_instruction (if S=0)

Format:

31 30 29 25 24 19 18 0

1 0 rd 1 0 1 0 1 0 ignored

91

SPARC

4168C–AERO–08/01

RDY Read Y register

Operation: r[rd] Y

Assembler
Syntax:

rd %y, regrd

Description: RDY copies the contents of the Y register into the register specified by the rd field.

Traps: none

Format:

31 30 29 25 24 19 18 0

1 0 1 0 1 0 0 0 ignoredrd

92

SPARC
4168C–AERO–08/01

RESTORE Restore caller’s window

Operation: ncwp CWP + 1
result r[rs1] + (r[rs2] or sign extnd(simm13))
CWP ncwp
r[rd] result
RESTORE does not affect condition codes

Assembler
Syntax:

restore regrs1, reg_or_imm, regrd

Description: RESTORE adds one to the Current Window Pointer (modulo the number of imple-
mented windows) and compares this value against the Window Invalid Mask register. If
the new window number corresponds to an invalidated window (WIM AND 2ncwp = 1), a
window_underflow trap is generated. If the new window number is not invalid (i.e., its
corresponding WIM bit is reset), then the contents of r[rs1] is added to either the con-
tents of r[rs2] (field bit i = 1) or to the 13-bit, sign-extended immediate value contained in
the instruction (field bit i = 0). Because the CWP has not been updated yet, r[rs1] and
r[rs2] are read from the currently addressed window (the called window).

The new CWP value is written into the PSR, causing the previous window (the caller’s
window) to become the active window. The result of the addition is now written into the
r[rd] register of the restored window.

Note that arithmetic operations involving the CWP are always done modulo the number
of implemented windows (8 for the ERC 32).

Traps: window_underflow

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 1 1 1 1 0 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 1 1 1 1 0 1

93

SPARC

4168C–AERO–08/01

RETT Return from Trap
(Privileged Instruction)

Operation: ncwp CWP + 1
ET 1
PC nPC
nPC r[rs1] + (r[rs2] or sign extnd(simm13))
CWP ncwp
S pS

Assembler
Syntax:

rett address

Description: RETT adds one to the Current Window Pointer (modulo the number of implemented
windows) and compares this value against the Window Invalid Mask register. If the new
window number corresponds to an invalidated window (WIM AND 2ncwp = 1), a
window_underflow trap is generated. If the new window number is not invalid (i.e., its
corresponding WIM bit is reset), then RETT causes a delayed control transfer to the
address derived by adding the contents of r[rs1] to either the contents of r[rs2] (field bit i
= 1) or to the 13-bit, sign-extended immediate value contained in the instruction (field bit
i = 0).

Before the control transfer takes place, the new CWP value is written into the PSR,
causing the previous window (the one in which the trap was taken) to become the active
window. In addition, the PSR’s ET bit is set to one (traps enabled) and the previous
Supervisor bit (pS) is restored to the S field.

Although in theory RETT is a delayed control transfer instruction, in practice, RETT must
always be immediately preceded by a JMPL instruction, creating a delayed control
transfer couple. This has the effect of annulling the delay instruction.

If traps were already enabled before encountering the RETT instruction, an
illegal_instruction trap is generated. If traps are not enabled (ET=0) when the RETT is
encountered, but (1) the processor is not in supervisor mode (S=0), or (2) the window
underflow condition described above occurs, or (3) if either of the two low-order bits of
the target address are nonzero, then a reset trap occurs. If a reset trap does occur, the
tt field of the TBR encodes the trap condition: privileged_instruction, window_underflow,
or memory_address_not_aligned.

Programming note: To re-execute the trapping instruction when returning from a trap
handler, use the following sequence:

jmpl %17, %0 ! old PC

rett %18 ! old nPC

Note: The ERC 32 saves the PC in r[17] (local 1) and the nPC in r[18] (local2) of the trap win-
dow upon entering a trap.

To return to the instruction after the trapping instruction (e.g., when the trapping instruc-
tion is emulated), use the sequence:

jmpl %18, %0 ! old nPC

rett %18 + 4 ! old nPC + 4

94

SPARC
4168C–AERO–08/01

RETT Return from Trap
(Privileged Instruction)

Traps: illegal_instruction
reset (privileged_instruction)
reset (memory_address_not_aligned)
reset (window_underflow)

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 ignored 1 1 1 0 0 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

ignored rs1 simm13i=11 0 1 1 1 0 0 1

95

SPARC

4168C–AERO–08/01

SAVE Save caller’s window

Operation: ncwp CWP - 1
result r[rs1] + (r[rs2] or sign extnd(simm13))
CWP ncwp
r[rd] result
SAVE does not affect condition codes

Assembler
Syntax:

save regrs1, reg_or_imm, regrd

Description: SAVE subtracts one from the Current Window Pointer (modulo the number of imple-
mented windows) and compares this value against the Window Invalid Mask register. If
the new window number corresponds to an invalidated window (WIM AND 2ncwp = 1), a
window_overflow trap is generated. If the new window number is not invalid (i.e., its cor-
responding WIM bit is reset), then the contents of r[rs1] is added to either the contents of
r[rs2] (field bit i = 1) or to the 13-bit, sign-extended immediate value contained in the
instruction (field bit i = 0). Because the CWP has not been updated yet, r[rs1] and r[rs2]
are read from the currently addressed window (the calling window).

The new CWP value is written into the PSR, causing the active window to become the
previous window, and the called window to become the active window. The result of the
addition is now written into the r[rd] register of the new window.

Note that arithmetic operations involving the CWP are always done modulo the number
of implemented windows (8 for the ERC 32).

Traps: window_overflow

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 1 1 1 1 0 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 1 1 1 1 0 0

96

SPARC
4168C–AERO–08/01

SETHI Set High 22 bits of r register

Operation: r[rd]<31:10> imm22
r[rd]<9:0> 0

Assembler
Syntax:

sethi const22, regrd

sethi %hi value, regrd

Description: SETHI zeros the ten least significant bits of the contents of r[rd] and replaces its high-
order 22 bits with imm22. The condition codes are not affected.

Programming note: SETHI 0, %0 is the preferred instruction to use as a NOP, because
it will not increase execution time if it follows a load instruction.

Traps: none

Format:

31 30 29 25 24 21 0

0 0 rd 1 0 0 imm22

22

97

SPARC

4168C–AERO–08/01

SLL Shift Left Logical

Operation: r[rd] r[rs1] SLL by (r[rs2] or shcnt)

Assembler
Syntax:

sll regrs1, reg_or_imm, regrd

Description: SLL shifts the contents of r[rs1] left by the number of bits specified by the shift count, fill-
ing the vacated positions with zeros. The shifted results are written into r[rd]. No shift
occurs if the shift count is zero.

If the i bit field equals zero, the shift count for SLL is the least significant five bits of the
contents of r[rs2]. If the i bit field equals one, the shift count for SLL is the 13-bit, sign
extended immediate value, simm13. In the instruction format and the operation descrip-
tion above, the least significant five bits of simm13 is called shcnt.

This instruction does not modify the condition codes.

Traps: none

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 1 0 0 1 0 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 shcnti=11 0 1 0 0 1 0 1 ignored

5 4

98

SPARC
4168C–AERO–08/01

SRA Shift Right Arithmetic

Operation: r[rd] r[rs1] SRA by (r[rs2] or shcnt)

Assembler
Syntax:

sra regrs1, reg_or_imm, regrd

Description: SRA shifts the contents of r[rs1] right by the number of bits specified by the shift count,
filling the vacated positions with the MSB of r[rs1]. The shifted results are written into
r[rd]. No shift occurs if the shift count is zero.

If the i bit field equals zero, the shift count for SRA is the least significant five bits of the
contents of r[rs2]. If the i bit field equals one, the shift count for SRA is the 13-bit, sign
extended immediate value, simm13. In the instruction format and the operation descrip-
tion above, the least significant five bits of simm13 is called shcnt.

This instruction does not modify the condition codes.

Programming note: A “Shift Left Arithmetic by 1 (and calculate overflow)” can be imple-
mented with an ADDcc instruction.

Traps: none

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 1 0 0 1 1 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 shcnti=11 0 1 0 0 1 1 1 ignored

5 4

99

SPARC

4168C–AERO–08/01

SRL Shift Right Logical

Operation: r[rd] r[rs1] SRL by (r[rs2] or shcnt)

Assembler
Syntax:

srl regrs1, reg_or_imm, regrd

Description: SRL shifts the contents of r[rs1] right by the number of bits specified by the shift count,
filling the vacated positions with zeros. The shifted results are written into r[rd]. No shift
occurs if the shift count is zero.

If the i bit field equals zero, the shift count for SRL is the least significant five bits of the
contents of r[rs2]. If the i bit field equals one, the shift count for SRL is the 13-bit, sign
extended immediate value, simm13. In the instruction format and the operation descrip-
tion above, the least significant five bits of simm13 is called shcnt.

This instruction does not modify the condition codes.

Traps: none

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 1 0 0 1 1 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 shcnti=11 0 1 0 0 1 1 0

5 4

ignored

100

SPARC
4168C–AERO–08/01

ST Store Word

Operation: [r[rs1] + (r[rs2] or sign extnd(simm13))] r[rd]

Assembler
Syntax:

st regrd, [address]

Description: The ST instruction moves a word from the destination register, r[rd], into memory. The
effective memory address is derived by summing the contents of r[rs1] and either the
contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit, sign-extended imme-
diate operand contained in the instruction if i equals one.

If ST takes a trap, the contents of the memory address remain unchanged.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be written to without setting up a register.

Traps:

memory_address_not_aligned
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 0 0 0 1 0 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 0 0 0 1 0 0

101

SPARC

4168C–AERO–08/01

STA Store Word into Alternate space
(Privileged Instruction)

Operation: address space asi
[r[rs1] + r[rs2]] r[rd]

Assembler
Syntax:

sta regrd, [regaddr] asi

Description: The STA instruction moves a word from the destination register, r[rd], into memory. The
effective memory address is a combination of the address space value given in the asi
field and the address derived by summing the contents of r[rs1] and r[rs2].

If STA takes a trap, the contents of the memory address remain unchanged.

Traps: illegal_instruction (if i=1)
privileged_instruction (if S=0)
memory_address_not_aligned
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 0 1 0 1 0 0 rs1 rs2asii=0

102

SPARC
4168C–AERO–08/01

STB Store Byte

Operation: [r[rs1] + (r[rs2] or sign extnd(simm13))] r[rd]

Assembler
Syntax:

stb regrd, [address]

synonyms: stub, stsb

Description: The STB instruction moves the least significant byte from the destination register, r[rd],
into memory. The effective memory address is derived by summing the contents of
r[rs1] and either the contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit,
sign-extended immediate operand contained in the instruction if i equals one.

If STB takes a trap, the contents of the memory address remain unchanged.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be written to without setting up a register.

Traps: data_access_exception

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 0 0 0 1 0 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 0 0 0 1 0 1

103

SPARC

4168C–AERO–08/01

STBA Store Byte into Alternate space
(Privileged Instruction)

Operation: address space asi
[r[rs1] + r[rs2]] r[rd]

Assembler
Syntax:

stba regrd, [regaddr] asi

synonyms: stuba, stsba

Description: The STBA instruction moves the least significant byte from the destination register, r[rd],
into memory. The effective memory address is a combination of the address space
value given in the asi field and the address derived by summing the contents of r[rs1]
and r[rs2].

If STBA takes a trap, the contents of the memory address remain unchanged.

Traps: illegal_instruction (if i=1)
privileged_instruction (if S=0)
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 0 1 0 1 0 1 rs1 rs2asii=0

104

SPARC
4168C–AERO–08/01

STC Store Coprocessor register

Operation: [r[rs1] + (r[rs2] or sign extnd(simm13))] c[rd]

Assembler
Syntax:

st cregrd, [address]

Description: The STC instruction moves a word from a coprocessor register, c[rd], into memory. The
effective memory address is derived by summing the contents of r[rs1] and either the
contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit, sign-extended imme-
diate operand contained in the instruction if i equals one.

If the PSR’s EC bit is set to zero or if no coprocessor is present, a cp_disabled trap will
be generated. If STC takes a trap, memory remains unchanged.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be written to without setting up a register.

Traps: cp_disabled
cp_exception
memory_address_not_aligned
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 1 1 0 1 0 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 1 1 0 1 0 0

105

SPARC

4168C–AERO–08/01

STCSR Store Coprocessor State Register

Operation: [r[rs1] + (r[rs2] or sign extnd(simm13))] CSR

Assembler
Syntax:

st %csr, [address]

Description: The STCSR instruction moves the contents of the Coprocessor State Register into
memory. The effective memory address is derived by summing the contents of r[rs1]
and either the contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit, sign-
extended immediate operand contained in the instruction if i equals one.

If the PSR’s EC bit is set to zero or if no coprocessor is present, a cp_disabled trap will
be generated. If STCSR takes a trap, the contents of the memory address remain
unchanged.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be written to without setting up a register.

Traps: cp_disabled
cp_exception
memory_address_not_aligned
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 1 1 0 1 0 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 1 1 0 1 0 1

106

SPARC
4168C–AERO–08/01

STD Store Doubleword

Operation: [r[rs1] + (r[rs2] or sign extnd(simm13))] r[rd]
[r[rs1] + (r[rs2] or sign extnd(simm13)) + 4] r[rd + 1]

Assembler
Syntax:

std regrd, [address]

Description: The STD instruction moves a doubleword from the destination register pair, r[rd] and
r[rd+1], into memory. The effective memory address is derived by summing the con-
tents of r[rs1] and either the contents of r[rs2] if the instruction’s i bit equals zero, or the
13-bit, sign-extended immediate operand contained in the instruction if i equals one.
The most significant word in the even-numbered destination register is written into mem-
ory at the effective address and the least significant memory word in the next odd-
numbered register is written into memory at the effective address + 4.

If a data_access_exception trap takes place during the effective address memory
access, memory remains unchanged.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be written to without setting up a register.

Traps: memory_address_not_aligned
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 0 0 0 1 1 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 0 0 0 1 1 1

107

SPARC

4168C–AERO–08/01

STDA Store Doubleword into Alternate space
(Privileged Instruction)

Operation: address space asi
[r[rs1] + (r[rs2] or sign extnd(simm13))] r[rd]
[r[rs1] + (r[rs2] or sign extnd(simm13)) + 4] r[rd + 1]

Assembler
Syntax:

stda regrd, [regaddr] asi

Description: The STDA instruction moves a doubleword from the destination register pair, r[rd] and
r[rd+1], into memory. The effective memory address is a combination of the address
space value given in the asi field and the address derived by summing the contents of
r[rs1] and r[rs2]. The most significant word in the even-numbered destination register is
written into memory at the effective address and the least significant memory word in
the next odd-numbered register is written into memory at the effective address + 4.

If a data_access_exception trap takes place during the effective address memory
access, memory remains unchanged.

Traps: illegal_instruction (if i=1)
privileged_instruction (if S=0)
memory_address_not_aligned
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 0 1 0 1 1 1 rs1 rs2asii=0

108

SPARC
4168C–AERO–08/01

STDC Store Doubleword Coprocessor

Operation: [r[rs1] + (r[rs2] or sign extnd(simm13))] c[rd]
[r[rs1] + (r[rs2] or sign extnd(simm13)) + 4] c[rd + 1]

Assembler
Syntax:

std cregrd, [address]

Description: The STDC instruction moves a doubleword from the coprocessor register pair, c[rd] and
c[rd+1], into memory. The effective memory address is derived by summing the con-
tents of r[rs1] and either the contents of r[rs2] if the instruction’s i bit equals zero, or the
13-bit, sign-extended immediate operand contained in the instruction if i equals one.
The most significant word in the even-numbered destination register is written into mem-
ory at the effective address and the least significant memory word in the next odd-
numbered register is written into memory at the effective address + 4.

If the PSR’s EC bit is set to zero or if no coprocessor is present, a cp_disabled trap will
be generated. If a data_access_exception trap takes place during the effective address
memory access, memory remains unchanged.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be written to without setting up a register.

Traps: cp_disabled
cp_exception
memory_address_not_aligned
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 1 1 0 1 1 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 1 1 0 1 1 1

109

SPARC

4168C–AERO–08/01

STDCQ Store Doubleword Coprocessor Queue
(Privileged Instruction)

Operation: [r[rs1] + (r[rs2] or sign extnd(simm13))] CQ.ADDR
[r[rs1] + (r[rs2] or sign extnd(simm13)) + 4] CQ.INSTR

Assembler
Syntax:

std %cq, [address]

Description: The STDCQ instruction moves the front entry of the Coprocessor Queue into memory.
The effective memory address is derived by summing the contents of r[rs1] and either
the contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit, sign-extended
immediate operand contained in the instruction if i equals one. The address portion of
the queue entry is written into memory at the effective address and the instruction por-
tion of the entry is written into memory at the effective address + 4.

If the PSR’s EC bit is set to zero or if no coprocessor is present, a cp_disabled trap will
be generated. If a data_access_exception trap takes place during the effective address
memory access, memory remains unchanged.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be written to without setting up a register.

Traps: cp_disabled
cp_exception
privileged_instruction (if S=0)
memory_address_not_aligned
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 1 1 0 1 1 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 1 1 0 1 1 0

110

SPARC
4168C–AERO–08/01

STDF Store Doubleword Floating-Point

Operation: [r[rs1] + (r[rs2] or sign extnd(simm13))] f[rd]
[r[rs1] + (r[rs2] or sign extnd(simm13)) + 4] f[rd + 1]

Assembler
Syntax:

std fregrd, [address]

Description: The STDF instruction moves a doubleword from the floating-point register pair, f[rd] and
f[rd+1], into memory. The effective memory address is derived by summing the con-
tents of r[rs1] and either the contents of r[rs2] if the instruction’s i bit equals zero, or the
13-bit, sign-extended immediate operand contained in the instruction if i equals one.
The most significant word in the even-numbered destination register is written into mem-
ory at the effective address and the least significant memory word in the next odd-
numbered register is written into memory at the effective address + 4.

If the PSR’s EF bit is set to zero or if no floating-point unit is present, an fp_disabled trap
will be generated. If a trap takes place, memory remains unchanged.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be written to without setting up a register.

Traps: fp_disabled
fp_exception*
memory_address_not_aligned
data_access_exception

Format:

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit.

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 1 0 0 1 1 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 1 0 0 1 1 1

111

SPARC

4168C–AERO–08/01

STDFQ Store Doubleword Floating-Point Queue
(Privileged Instruction)

Operation: [r[rs1] + (r[rs2] or sign extnd(simm13))] FQ.ADDR
[r[rs1] + (r[rs2] or sign extnd(simm13)) + 4] FQ.INSTR

Assembler
Syntax:

std %fq, [address]

Description: The STDFQ instruction moves the front entry of the floating-point queue into memory.
The effective memory address is derived by summing the contents of r[rs1] and either
the contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit, sign-extended
immediate operand contained in the instruction if i equals one. The address portion of
the queue entry is written into memory at the effective address and the instruction por-
tion of the entry is written into memory at the effective address + 4. If the FPU is in
exception mode, the queue is then advanced to the next entry, or it becomes empty (as
indicated by the qne bit in the FSR).

If the PSR’s EF bit is set to zero or if no floating-point unit is present, an fp_disabled trap
will be generated. If a trap takes place, memory remains unchanged.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be written to without setting up a register.

Traps: fp_disabled
fp_exception*
privileged_instruction (if S=0)
memory_address_not_aligned
data_access_exception

Format:

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit.

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 1 0 0 1 1 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 1 0 0 1 1 0

112

SPARC
4168C–AERO–08/01

STF Store Floating-Point register

Operation: [r[rs1] + (r[rs2] or sign extnd(simm13))] f[rd]

Assembler
Syntax:

st fregrd, [address]

Description: The STF instruction moves a word from a floating-point register, f[rd], into memory.
The effective memory address is derived by summing the contents of r[rs1] and either
the contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit, sign-extended
immediate operand contained in the instruction if i equals one.

If the PSR’s EF bit is set to zero or if no floating-point unit is present, an fp_disabled trap
will be generated. If STF takes a trap, memory remains unchanged.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be written to without setting up a register.

Traps: fp_disabled
fp_exception*
memory_address_not_aligned
data_access_exception

Format:

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit.

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 1 0 0 1 0 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 1 0 0 1 0 0

113

SPARC

4168C–AERO–08/01

STFSR Store Floating-Point State Register

Operation: [r[rs1] + (r[rs2] or sign extnd(simm13))] FSR

Assembler
Syntax:

st %fsr, [address]

Description: The STFSR instruction moves the contents of the Floating-Point State Register into
memory. The effective memory address is derived by summing the contents of r[rs1]
and either the contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit, sign-
extended immediate operand contained in the instruction if i equals one. This instruc-
tion will wait for all pending FPops to complete execution before it writes the FSR into
memory.

If the PSR’s EF bit is set to zero or if no floating-point unit is present, an fp_disabled trap
will be generated. If STFSR takes a trap, the contents of the memory address remain
unchanged.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be written to without setting up a register.

Traps: fp_disabled
fp_exception*
memory_address_not_aligned
data_access_exception

Format:

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit.

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 1 0 0 1 0 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 1 0 0 1 0 1

114

SPARC
4168C–AERO–08/01

STH Store Halfword

Operation: [r[rs1] + (r[rs2] or sign extnd(simm13))] r[rd]

Assembler
Syntax:

sth regrd, [address] synonyms: stuh, stsh

Description: The STH instruction moves the least significant halfword from the destination register,
r[rd], into memory. The effective memory address is derived by summing the contents
of r[rs1] and either the contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit,
sign-extended immediate operand contained in the instruction if i equals one.

If STH takes a trap, the contents of the memory address remain unchanged.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be written to without setting up a register.

Traps: memory_address_not_aligned
data_access_exception

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 0 0 0 1 1 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 0 0 0 1 1 0

115

SPARC

4168C–AERO–08/01

STHA Store Halfword into Alternate space
(Privileged Instruction)

Operation: address space asi
[r[rs1] + (r[rs2] or sign extnd(simm13))] r[rd]

Assembler
Syntax:

stha regrd, [address]

synonyms: stuha, stsha

Description: The STHA instruction moves the least significant halfword from the destination register,
r[rd], into memory. The effective memory address is a combination of the address
space value given in the asi field and the address derived by summing the contents of
r[rs1] and r[rs2].

If STHA takes a trap, the contents of the memory address remain unchanged.

Traps: illegal_instruction (if i=1)
privileged_instruction (if S=0)
memory_address_not_aligned
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 0 1 0 1 1 0 rs1 rs2asii=0

116

SPARC
4168C–AERO–08/01

SUB Subtract

Operation: r[rd] r[rs1] - (r[rs2] or sign extnd(simm13))

Assembler
Syntax:

sub regrs1, reg_or_imm, regrd

Description: The SUB instruction subtracts either the contents of the register named in the rs2 field,
r[rs2], if the instruction’s i bit equals zero, or the 13-bit, sign-extended immediate oper-
and contained in the instruction if i equals one, from register r[rs1]. The result is placed
in the register specified in the rd field.

Traps: none

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 0 0 0 1 0 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 0 0 0 1 0 0

117

SPARC

4168C–AERO–08/01

SUBcc Subtract and modify icc

Operation: r[rd] r[rs1] - operand2, where operand2 = (r[rs2] or sign extnd(simm13))
n r[rd]<31>
z if r[rd] =0 then 1, else 0
v (r[rs1]<31> AND not operand2<31> AND not r[rd]<31>)

OR (not r[rs1]<31> AND operand2<31> AND r[rd]<31>)
c (not r[rs1]<31> AND operand2<31>)

OR (r[rd]<31> AND (not r[rs1]<31> OR operand2<31>))

Assembler
Syntax:

subcc regrs1, reg_or_imm, regrd

Description: The SUBcc instruction subtracts either the contents of register r[rs2] (if the instruction’s
i bit equals zero) or the 13-bit, sign-extended immediate operand contained in the
instruction (if i equals one) from register r[rs1]. The result is placed in register r[rd]. In
addition, SUBcc modifies all the integer condition codes in the manner described above.

Programming note: A SUBcc instruction with rd = 0 can be used for signed and
unsigned integer comparison.

Traps: none

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 0 1 0 1 0 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 0 1 0 1 0 0

118

SPARC
4168C–AERO–08/01

SUBX Subtract with Carry

Operation: r[rd] r[rs1] - (r[rs2] or sign extnd(simm13)) - c

Assembler
Syntax:

subx regrs1, reg_or_imm, regrd

Description: SUBX subtracts either the contents of register r[rs2] (if the instruction’s i bit equals zero)
or the 13-bit, sign-extended immediate operand contained in the instruction (if i equals
one) from register r[rs1]. It then subtracts the PSR’s carry bit (c) from that result. The
final result is placed in the register specified in the rd field.

Traps: none

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 0 0 1 1 0 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 0 0 1 1 0 0

119

SPARC

4168C–AERO–08/01

SUBXcc Subtract with Carry and modify icc

Operation: r[rd] r[rs1] - operand2 - c, where operand2 = (r[rs2] or sign extnd(simm13))
n r[rd]<31>
z if r[rd] =0 then 1, else 0
v (r[rs1]<31> AND not operand2<31> AND not r[rd]<31>)

OR (not r[rs1]<31> AND operand2<31> AND r[rd]<31>)
c (not r[rs1]<31> AND operand2<31>)

OR (r[rd]<31> AND (not r[rs1]<31> OR operand2<31>))

Assembler
Syntax:

subxcc regrs1, reg_or_imm, regrd

Description: SUBXcc subtracts either the contents of register r[rs2] (if the instruction’s i bit equals
zero) or the 13-bit, sign-extended immediate operand contained in the instruction (if i
equals one) from register r[rs1]. It then subtracts the PSR’s carry bit (c) from that result.
The final result is placed in the register specified in the rd field. In addition, SUBXcc
modifies all the integer condition codes in the manner described above.

Traps: none

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 0 1 1 1 0 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 0 1 1 1 0 0

120

SPARC
4168C–AERO–08/01

SWAP Swap r register with memory

Operation: word [r[rs1] + (r[rs2] or sign extnd(simm13))]
temp r[rd]
r[rd] word
r[rs1] + (r[rs2] or sign extnd(simm13)) temp

Assembler
Syntax:

swap [source], regrd

Description: SWAP atomically exchanges the contents of r[rd] with the contents of a memory loca-
tion, i.e., without allowing asynchronous trap interruptions. In a multiprocessor system,
two or more processors executing SWAP instructions simultaneously are guaranteed to
execute them serially, in some order.

The effective memory address is derived by summing the contents of r[rs1] and either
the contents of r[rs2] if the instruction’s i bit equals zero, or the 13-bit, sign-extended
immediate operand contained in the instruction if i equals one.

If SWAP takes a trap, the contents of the memory address and the destination register
remain unchanged.

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest
4 kbytes of an address space can be accessed without setting up a register.

Traps: memory_address_not_aligned
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 0 0 1 1 1 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 1 0 0 1 1 1 1

121

SPARC

4168C–AERO–08/01

SWAPA Swap r register with memory in Alternate space
(Privileged Instruction)

Operation: address space asi
word [r[rs1] + r[rs2]]
temp r[rd]
r[rd] word
[r[rs1] + r[rs2]] temp

Assembler
Syntax:

swapa [regsource] asi, regrd

Description: SWAPA atomically exchanges the contents of r[rd] with the contents of a memory loca-
tion, i.e., without allowing asynchronous trap interruptions. In a multiprocessor system,
two or more processors executing SWAPA instructions simultaneously are guaranteed
to execute them serially, in some order.

The effective memory address is a combination of the address space value given in the
asi field and the address derived by summing the contents of r[rs1] and r[rs2].

If SWAPA takes a trap, the contents of the memory address and the destination register
remain unchanged.

Traps: illegal_instruction (if i=1)
privileged_instruction (if S=0)
memory_address_not_aligned
data_access_exception

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 1 rd 0 1 1 1 1 1 rs1 rs2asii=0

122

SPARC
4168C–AERO–08/01

TADDcc Tagged Add and modify icc

Operation: r[rd] r[rs1] + operand2, where operand2 = (r[rs2] or sign extnd(simm13))
n r[rd]<31>
z if r[rd]=0 then 1, else 0
v (r[rs1]<31> AND operand2<31> AND not r[rd]<31>)

OR (not r[rs1]<31> AND not operand2<31> AND r[rd]<31>)
OR (r[rs1]<1:0> ¼ 0 OR operand2<1:0> ¼ 0)

c (r[rs1]<31> AND operand2<31>
OR (not r[rd]<31> AND (r[rs1]<31> OR operand2<31>))

Assembler
Syntax:

taddcc regrs1, reg_or_imm, regrd

Description: TADDcc adds the contents of r[rs1] to either the contents of r[rs2] if the instruction’s i bit
equals zero, or to a 13-bit, sign-extended immediate operand if i equals one. The result
is placed in the register specified in the rd field. In addition to the normal arithmetic
overflow, an overflow condition also exists if bit 1 or bit 0 of either operand is not zero.
TADDcc modifies all the integer condition codes in the manner described above.

Traps: none

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 1 0 0 0 0 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 1 0 0 0 0 0

123

SPARC

4168C–AERO–08/01

TADDccTV Tagged Add (modify icc) Trap on Overflow

Operation: result r[rs1] + operand2, where operand 2 = (r[rs2] or sign extnd(simm13))
tv (r[rs1]<31> AND operand2<31> AND not r[rd]<31>)

OR (not r[rs1]<31> AND not operand2<31> AND r[rd]<31>)
OR (r[rs1]<1:0> ¼ 0 OR operand2<1:0> ¼ 0)

if tv = 1, then tag overflow trap; else
n r[rd]<31>
z if r[rd]=0 then 1, else 0
v tv
c (r[rs1]<31> AND operand2<31>

OR (not r[rd]<31> AND (r[rs1]<31> OR operand2<31>))
r[rd] result

Assembler
Syntax:

taddcctv regrs1, reg_or_imm, regrd

Description: TADDccTV adds the contents of r[rs1] to either the contents of r[rs2] if the instruction’s i
bit equals zero, or to a 13-bit, sign-extended immediate operand if i equals one. In addi-
tion to the normal arithmetic overflow, an overflow condition also exists if bit 1 or bit 0 of
either operand is not zero.

If TADDccTV detects an overflow condition, a tag_overflow trap is generated and the
destination register and condition codes remain unchanged. If no overflow is detected,
TADDccTV places the result in the register specified in the rd field and modifies all the
integer condition codes in the manner described above (the overflow bit is, of course,
set to zero).

Traps: tag_overflow

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 1 0 0 0 1 0

1 0 0 0 1 0

124

SPARC
4168C–AERO–08/01

Ticc Trap on integer condition codes

Operation: If condition true, then trap_instruction;
tt 128 + [r[rs1] + (r[rs2] or sign extnd(simm13))]<6:0>
else PC nPC
nPC nPC + 4

Assembler
Syntax:

ta{,a} label

tn{,a} label
tne{,a}label synonym: tnz
te{,a} label synonym: tz
tg{,a} label
tle{,a} label
tge{,a} label
tl{,a} label
tgu{,a} label
tleu{,a} label
tcc{,a} label synonym: tgeu
tcs{,a} label synonym: tlu
tpos{,a} label
tneg{,a} label
tvc{,a} label
tvs{,a} label

Description: A Ticc instruction evaluates specific integer condition code combinations (from the
PSR’s icc field) based on the trap type as specified by the value in the instruction’s
cond field. If the specified combination of condition codes evaluates as true, and there
are no higher-priority traps pending, then a trap_instruction trap is generated. If the con-
dition codes evaluate as false, the trap is not generated.

If a trap_instruction trap is generated, the tt field of the Trap Base Register (TBR) is
written with 128 plus the least significant seven bits of r[rs1] plus either r[rs2] (bit field i
=0) or the 13-bit sign-extended immediate value contained in the instruction (bit field i
=1).

Traps: trap_instruction

125

SPARC

4168C–AERO–08/01

Ticc Trap on integer condition codes

Format:

Mnemonic Cond. Operation icc Test

TN 0000 Trap Never No test

TE 0001 Trap on Equal z

TLE 0010 Trap on Less or Equal z OR (n XOR v)

TL 0011 Trap on Less n XOR v

TLEU 0100 Trap on Less or Equal, Unsigned c OR z

TCS 0101 Trap on Carry Set (Less then, Unsigned) c

TNEG 0110 Trap on Negative n

TVS 0111 Trap on oVerflow Set v

TA 1000 Trap Always No test

TNE 1001 Trap on Not Equal not z

TG 1010 Trap on Greater not(z OR (n XOR v))

TGE 1011 Trap on Greater or Equal not(n XOR v)

TGU 1100 Trap on Greater, Unsigned not(c OR z)

TCC 1101 Trap on Carry Clear (Greater than or Equal, Unsigned) not c

TPOS 1110 Trap on Positive not n

TVC 1111 Trap on oVerflow Clear not v

31 30 29 28 2524 19 18 14 13 12 5 4 0

1 0 1 1 1 0 1 0 rs1 rs2ignoredi=0

31 30 24 19 18 14 13 12 0

rs1 simm13i=11 0 1 1 1 0 1 0

29 28 25

ign.

ign.

cond.

cond.

ign. = ignored
cond. = condition

126

SPARC
4168C–AERO–08/01

TSUBcc Tagged Subtract and modify icc

Operation: r[rd] r[rs1] - operand2, where operand2 = (r[rs2] or sign extnd(simm13))
n r[rd]<31>
z if r[rd]=0 then 1, else 0
v (r[rs1]<31> AND not operand2<31> AND not r[rd]<31>) OR (not r[rs1]<31>

AND operand2<31> AND r[rd]<31>) OR (r[rs1]<1:0> ¼ 0 OR operand2<1:0> ¼ 0)
c (not r[rs1]<31> AND operand2<31>

OR (r[rd]<31> AND (not r[rs1]<31> OR operand2<31>))

Assembler Syntax:tsubcc regrs1, reg_or_imm, regrd

Description: TSUBcc subtracts either the contents of register r[rs2] (if the instruction’s i bit equals
zero) or the 13-bit, sign-extended immediate operand contained in the instruction (if i
equals one) from register r[rs1]. The result is placed in the register specified in the rd
field. In addition to the normal arithmetic overflow, an overflow condition also exists if bit
1 or bit 0 of either operand is not zero. TSUBcc modifies all the integer condition codes
in the manner described above.

Traps: none

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 1 0 0 0 0 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 1 0 0 0 0 1

127

SPARC

4168C–AERO–08/01

TSUBccTV Tagged Subtract (modify icc)
Trap on Overflow

Operation: result r[rs1] - operand2, where operand2 = (r[rs2] or sign extnd(simm13))
tv (r[rs1]<31> AND not operand2<31> AND not r[rd]<31>) OR (not r[rs1]<31>

AND operand2<31> AND r[rd]<31>)
OR (r[rs1]<1:0> ¼ 0 OR operand2<1:0> ¼ 0)

if tv = 1, then tag overflow trap; else
n r[rd]<31>
z if r[rd]=0 then 1, else 0
v tv
c (not(r[rs1]<31>) AND operand2<31> OR
(r[rd]<31> AND (not(r[rs1]<31>) OR operand2<31>))
r[rd] result

Assembler
Syntax:

tsubcctv regrs1, reg_or_imm, regrd

Description: TSUBccTV subtracts either the contents of register r[rs2] (if the instruction’s i bit equals
zero) or the 13-bit, sign-extended immediate operand contained in the instruction (if i
equals one) from register r[rs1]. In addition to the normal arithmetic overflow, an over-
flow condition also exists if bit 1 or bit 0 of either operand is not zero.

If TSUBccTV detects an overflow condition, a tag_overflow trap is generated and the
destination register and condition codes remain unchanged. If no overflow is detected,
TSUBccTV places the result in the register specified in the rd field and modifies all the
integer condition codes in the manner described above (the overflow bit is, of course,
set to zero).

Traps: tag_overflow

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 1 0 0 0 1 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 1 0 0 0 1 1

128

SPARC
4168C–AERO–08/01

UNIMP Unimplemented instruction

Operation: illegal instruction trap

Assembler
Syntax:

unimp const22

Description: Executing the UNIMP instruction causes an immediate illegal_instruction trap. The
value in the const22 field is ignored.

Programming note: UNIMP can be used as part of the protocol for calling a function that
is expected to return an aggregate value, such as a C-language structure.

1. An UNIMP instruction is placed after (not in) the delay slot after the CALL
instruction in the calling function.

2. If the called function is expecting to return a structure, it will find the size of the
structure that the caller expects to be returned as the const22 operand of the
UNIMP instruction. The called function can check the opcode to make sure it is
indeed UNIMP.

3. If the function is not going to return a structure, upon returning, it attempts to
execute UNIMP rather than skipping over it as it should. This causes the pro-
gram to terminate. The behavior adds some run-time checking to an interface
that cannot be checked properly at compile time.

Traps: illegal_instruction

Format:

31 30 29 25 24 22 21 0

0 0 ignored 0 0 0 CONST 22

129

SPARC

4168C–AERO–08/01

WRPSR Write Processor State Register
(Privileged Instruction)

Operation: PSR r[rs1] XOR (r[rs2] or sign extnd(simm13))

Assembler
Syntax:

wr regrs1, reg_or_imm, %psr

Description: WRPSR does a bitwise logical XOR of the contents of register r[rs1] with either the con-
tents of r[rs2] (if bit field i=0) or the 13-bit sign-extended immediate value contained in
the instruction (if bit field i=1). The result is written into the writable subfields of the PSR.
However, if the result’s CWP field would point to an unimplemented window, an
illegal_instruction trap is generated and the PSR remains unchanged.

WRPSR is a delayed-write instruction:

1. If any of the three instructions following a WRPSR uses any PSR field that
WRPSR modified, the value of that field is unpredictable. Note that any instruc-
tion which references a non-global register makes use of the CWP, so following
WRPSR with three NOPs would be the safest course.

2. If a WRPSR instruction is updating the PSR’s Processor Interrupt Level (PIL) to
a new value and is simultaneously setting Enable Traps (ET) to one, this could
result in an interrupt trap at a level equal to the old PIL value.

3. If any of the three instructions after a WRPSR instruction reads the modified
PSR, the value read is unpredictable.

4. If any of the three instructions after a WRPSR is trapped, a subsequent RDPSR
in the trap handler will get the register’s new value.

Programming note: Two WRPSR instructions should be used when enabling traps and
changing the PIL value. The first WRPSR should specify ET=0 with the new PIL value,
and the second should specify ET=1 with the new PIL value.

Traps: illegal_instruction
privileged_instruction (if S=0)

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 ignored 1 1 0 0 0 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

ignored rs1 simm13i=11 0 1 1 0 0 0 1

130

SPARC
4168C–AERO–08/01

WRTBR Write Trap Base Register
(Privileged Instruction)

Operation: TBR r[rs1] XOR (r[rs2] or sign extnd(simm13))

Assembler
Syntax:

wr regrs1, reg_or_imm, %tbr

Description: WRTBR does a bitwise logical XOR of the contents of register r[rs1] with either the con-
tents of r[rs2] (if bit field i=0) or the 13-bit sign-extended immediate value contained in
the instruction (if bit field i=1). The result is written into the Trap Base Address field of
the TBR.

WRTBR is a delayed-write instruction:

1. If any of the three instructions following a WRTBR causes a trap, the TBA used
may be either the old or the new value.

2. If any of the three instructions after a WRTBR is trapped, a subsequent RDTBR
in the trap handler will get the register’s new TBA value.

Traps: privileged_instruction (if S=0)

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 ignored 1 1 0 0 1 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

ignored rs1 simm13i=11 0 1 1 0 0 1 1

131

SPARC

4168C–AERO–08/01

WRWIM Write Window Invalid Mask register
(Privileged Instruction)

Operation: WIM r[rs1] XOR (r[rs2] or sign extnd(simm13))

Assembler
Syntax:

wr regrs1, reg_or_imm, %wim

Description: WRWIM does a bitwise logical XOR of the contents of register r[rs1] with either the con-
tents of r[rs2] (if bit field i=0) or the 13-bit, sign-extended immediate value contained in
the instruction (if bit field i=1). The result is written into the writable bits of the WIM
register.

WRWIM is a delayed-write instruction:

1. If any of the three instructions following a WRWIM is a SAVE, RESTORE, or
RETT, the occurrence of window_overflow and window_underflow is
unpredictable.

2. If any of the three instructions after a WRWIM instruction reads the modified
WIM, the value read is unpredictable.

3. If any of the three instructions after a WRWIM is trapped, a subsequent RDWIM
in the trap handler will get the register’s new value.

Traps: privileged_instruction (if S=0)

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 ignored 1 1 0 0 1 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

ignored rs1 simm13i=11 0 1 1 0 0 1 0

132

SPARC
4168C–AERO–08/01

WRY Write Y register

Operation: Y r[rs1] XOR (r[rs2] or sign extnd(simm13))

Assembler
Syntax:wr regrs1, reg_or_imm, %y

Description: WRY does a bitwise logical XOR of the contents of register r[rs1] with either the con-
tents of r[rs2] (if bit field i=0) or the 13-bit, sign-extended immediate value contained in
the instruction (if bit field i=1). The result is written into the Y register.

WRY is a delayed-write instruction:

1. If any of the three instructions following a WRY is a MULScc or a RDY, the value
of Y used is unpredictable.

2. If any of the three instructions after a WRY instruction reads the modified Y reg-
ister, the value read is unpredictable.

3. If any of the three instructions after a WRY is trapped, a subsequent RDY in the
trap handler will get the register’s new value.

Traps: none

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 ignored 1 1 0 0 0 0 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

ignored rs1 simm13i=11 0 1 1 0 0 0 0

133

SPARC

4168C–AERO–08/01

XNOR Exclusive-Nor

Operation: r[rd] r[rs1] XOR not(r[rs2] or sign extnd(simm13))

Assembler
Syntax:

xnor regrs1, reg_or_imm, regrd

Description: This instruction does a bitwise logical XOR of the contents of register r[rs1] with the
one’s complement of either the contents of r[rs2] (if bit field i=0) or the 13-bit sign-
extended immediate value contained in the instruction (if bit field i=1). The result is
stored in register r[rd].

Traps: none

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 0 0 0 1 1 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 0 0 0 1 1 1

134

SPARC

4168C–AERO–08/01

XNORcc Exclusive-Nor and modify icc

Operation: r[rd] r[rs1] XOR not(r[rs2] or sign extnd(simm13))
n r[rd]<31>
z if r[rd] =0 then 1, else 0
v 0
c 0

Assembler
Syntax:

xnorcc regrs1, reg_or_imm, regrd

Description: This instruction does a bitwise logical XOR of the contents of register r[rs1] with the
one’s complement of either the contents of r[rs2] (if bit field i=0) or the 13-bit, sign-
extended immediate value contained in the instruction (if bit field i=1). The result is
stored in register r[rd]. XNORcc also modifies all the integer condition codes in the man-
ner described above.

Traps: none

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd 0 1 0 1 1 1 rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 0 1 0 1 1 1

135

SPARC

4168C–AERO–08/01

XOR Exclusive-Or

Operation: r[rd] r[rs1] XOR (r[rs2] or sign extnd(simm13))

Assembler
Syntax:

xor regrs1, reg_or_imm, regrd

Description: This instruction does a bitwise logical XOR of the contents of register r[rs1] with either
the contents of r[rs2] (if bit field i=0) or the 13-bit, sign-extended immediate value con-
tained in the instruction (if bit field i=1). The result is stored in register r[rd].

Traps: none

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 0 0 0 0 1 1

0 0 0 0 1 1

136

SPARC

4168C–AERO–08/01

XORcc Exclusive-Or and modify icc

Operation: r[rd] r[rs1] XOR (r[rs2] or sign extnd(simm13))
n r[rd]<31>
z if r[rd] =0 then 1, else 0
v 0
c 0

Assembler
Syntax:

xorcc regrs1, reg_or_imm, regrd

Description: This instruction does a bitwise logical XOR of the contents of register r[rs1] with either
the contents of r[rs2] (if bit field i=0) or the 13-bit, sign-extended immediate value con-
tained in the instruction (if bit field i=1). The result is stored in register r[rd]. XORcc also
modifies all the integer condition codes in the manner described above.

Traps: none

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

1 0 rd rs1 rs2ignoredi=0

31 30 29 25 24 19 18 14 13 12 0

rd rs1 simm13i=11 0 0 1 0 0 1 1

0 1 0 0 1 1

 Printed on recycled paper.

ATMEL® is a registered trademark of Atmel.

Other terms and product names may be the trademarks of others.

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Data-
com

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

4168C–AERO–08/01 /xM

	Assembly Language Syntax
	Register Names
	reg
	freg
	creg

	Special Symbol Names
	Values
	Label
	Instruction Mnemonics

	Definitions
	ADD Add
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	ADDcc Add and modify icc
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	ADDX Add with Carry
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	ADDXcc Add with Carry and modify icc
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	AND And
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	ANDcc And and modify icc
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	ANDN And Not
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	ANDNcc And Not and modify icc
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	Bicc Integer Conditional Branch
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	CALL Call
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	CBccc Coprocessor Conditional Branch
	Operation:

	Assembler Syntax:
	Description:
	Traps:
	Format:

	CPop Coprocessor Operate
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FABSs Absolute Value Single (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FADDd Add Double (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FADDs Add Single (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FADDx Add Extended (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FBfcc Floating-Point Conditional Branch
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FCMPd Compare Double (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FCMPEd Compare Double and Exception if Unordered (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FCMPEs Compare Single and Exception if Unordered (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FCMPEx Compare Extended and Exception if Unordered (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FCMPs Compare Single (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FCMPx Compare Extended (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FDIVd Divide Double (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FDIVs Divide Single (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FDIVx Divide Extended (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FdTOi Convert Double to Integer (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FdTOs Convert Double to Single (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FdTOx Convert Double to Extended (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FiTOd Convert Integer to Double (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FiTOs Convert Integer to Single (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FiTOx Convert Integer to Extended (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FMOVs Move (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FMULd Multiply Double (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FMULs Multiply Single (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FMULx Multiply Extended (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FNEGs Negate (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FSQRTd Square Root Double (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FSQRTs Square Root Single (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FSQRTx Square Root Extended (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FsTOd Convert Single to Double (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FsTOi Convert Single to Integer (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FsTOx Convert Single to Extended (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FSUBd Subtract Double (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FSUBs Subtract Single (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FSUBx Subtract Extended (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FxTOd Convert Extended to Double (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FxTOi Convert Extended to Integer (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	FxTOs Convert Extended to Single (FPU Instruction Only)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	IFLUSH Instruction Cache Flush
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	JMPL Jump and Link
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	LD Load Word
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	LDA Load Word from Alternate space (Privileged Instruction)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	LDC Load Coprocessor register
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	LDCSR Load Coprocessor State Register
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	LDD Load Doubleword
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	LDDA Load Doubleword from Alternate space (Privileged Instruction)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	LDDC Load Doubleword Coprocessor
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	LDDF Load Doubleword Floating-Point
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	LDF Load Floating-Point register
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	LDFSR Load Floating-Point State Register
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	LDSB Load Signed Byte
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	LDSBA Load Signed Byte from Alternate space (Privileged Instruction)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	LDSH Load Signed Halfword
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	LDSHA Load Signed Halfword from Alternate space (Privileged Instruction)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	LDSTUB Atomic Load/Store Unsigned Byte
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	LDSTUBA Atomic Load/Store Unsigned Byte in Alternate space (Privileged Instruction)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	LDUB Load Unsigned Byte
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	LDUBA Load Unsigned Byte from Alternate space (Privileged Instruction)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	LDUH Load Unsigned Halfword
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	LDUHA Load Unsigned Halfword from Alternate space (Privileged Instruction)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	MULScc Multiply Step and modify icc
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	OR Inclusive-Or
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	ORcc Inclusive-Or and modify icc
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	ORN Inclusive-Or Not
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	ORNcc Inclusive-Or Not and modify icc
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	RDPSR Read Processor State Register (Privileged Instruction)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	RDTBR Read Trap Base Register (Privileged Instruction)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	RDWIM Read Window Invalid Mask register (Privileged Instruction)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	RDY Read Y register
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	RESTORE Restore caller’s window
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	RETT Return from Trap (Privileged Instruction)
	Operation:
	Assembler Syntax:
	Description:

	RETT Return from Trap (Privileged Instruction)
	Traps:
	Format:

	SAVE Save caller’s window
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	SETHI Set High 22 bits of r register
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	SLL Shift Left Logical
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	SRA Shift Right Arithmetic
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	SRL Shift Right Logical
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	ST Store Word
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	STA Store Word into Alternate space (Privileged Instruction)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	STB Store Byte
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	STBA Store Byte into Alternate space (Privileged Instruction)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	STC Store Coprocessor register
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	STCSR Store Coprocessor State Register
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	STD Store Doubleword
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	STDA Store Doubleword into Alternate space (Privileged Instruction)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	STDC Store Doubleword Coprocessor
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	STDCQ Store Doubleword Coprocessor Queue (Privileged Instruction)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	STDF Store Doubleword Floating-Point
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	STDFQ Store Doubleword Floating-Point Queue (Privileged Instruction)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	STF Store Floating-Point register
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	STFSR Store Floating-Point State Register
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	STH Store Halfword
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	STHA Store Halfword into Alternate space (Privileged Instruction)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	SUB Subtract
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	SUBcc Subtract and modify icc
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	SUBX Subtract with Carry
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	SUBXcc Subtract with Carry and modify icc
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	SWAP Swap r register with memory
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	SWAPA Swap r register with memory in Alternate space (Privileged Instruction)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	TADDcc Tagged Add and modify icc
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	TADDccTV Tagged Add (modify icc) Trap on Overflow
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	Ticc Trap on integer condition codes
	Operation:
	Assembler Syntax:
	Description:
	Traps:

	Ticc Trap on integer condition codes
	Format:

	TSUBcc Tagged Subtract and modify icc
	Operation:
	Assembler
	Description:
	Traps:
	Format:

	TSUBccTV Tagged Subtract (modify icc) Trap on Overflow
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	UNIMP Unimplemented instruction
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	WRPSR Write Processor State Register (Privileged Instruction)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	WRTBR Write Trap Base Register (Privileged Instruction)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	WRWIM Write Window Invalid Mask register (Privileged Instruction)
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	WRY Write Y register
	Operation:
	Assembler
	Description:
	Traps:
	Format:

	XNOR Exclusive-Nor
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	XNORcc Exclusive-Nor and modify icc
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	XOR Exclusive-Or
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

	XORcc Exclusive-Or and modify icc
	Operation:
	Assembler Syntax:
	Description:
	Traps:
	Format:

