
European Space Agency Contract Report
The work described in this report was done under ESA
contract. Responsibility for the contents resides in the Author
or organisation that prepared it.

EERRCC3322  PPrroodduuccttss

EEvvaalluuaattiioonn  PPrrooggrraammmmee

Final Report

Status : Final

Author : A. Paganone _______________

Authorised by : P. Coppola _______________

September 1997

Intecs Sistemi S.p.A.



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report ii

TABLE OF CONTENTS

1. INTRODUCTION........................................................................................................................4

2. REFERENCED DOCUMENTS.................................................................................................5

3. ITEMS UNDER EVALUATION ...............................................................................................6

4. EVALUATION  ACTIVITY  STRUCTURE............................................................................7

4.1. QUALITATIVE EVALUATION .....................................................................................7
4.1.1. Temporal properties analysis tools .......................................................................7
4.1.2. Code development and test tools ........................................................................10
4.1.3. Tools  inter-operability .......................................................................................13

4.2. QUANTITATIVE EVALUATION ................................................................................16
4.2.1. The Test Application...........................................................................................19
4.2.2. The User Configuration File ...............................................................................22
4.2.3. The Execution Skeleton File...............................................................................24

5. CONCLUSIONS ........................................................................................................................28

6. ACRONYMS..............................................................................................................................29

APPENDIX A - TEST APPLICATION SOURCE CODE ........................................................30



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report iii



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 4

1. INTRODUCTION

This document is the Final Report for the ERC32 products evaluation activity performed by Intecs
Sistemi.

The objective of the activity was to evaluate the tools aimed to support the software
implementation and validation, that is the Aonix AdaWorld Development Environment, the
Spacebel ERC32 Target Simulator tool, the Spacebel temporal analysis tools, namely the
Schedulability Analyser and the Scheduler Simulator.

The evaluation activity was aimed to verify the suitability of each single tool to the development
of (hard) real-time Ada application in the space domain and in particular to check the inter-
operability of the tools over the software life cycle.

The reader is expected to have a basic knowledge of the scheduling theories, Ada and HOOD.



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 5

2. REFERENCED DOCUMENTS

[ADW-ig] Thomson Software Products, "AdaWorld Development Environment for SPARC based Workstations
under Solaris 2 to ERC32 Targets, Installation Guide", MCD-ALS-P2-DOC-002.

[HRT-ig] Spacebel Informatique, "Hard Real Time Tools V2.2 Delivery".

[HRT-um] Spacebel Informatique, "32-Bit Microprocessor and Computer System Development - Schedulability
Analyser and Scheduler Simulator User's Manual", 32B-SBI-SUM-0189-001/2.

[TS-ig] Spacebel Informatique, "Target Simulator V2.2 Delivery".

[TS-um] Spacebel Informatique, "32-Bit Microprocessor and Computer System Development - Target Simulator
User's Manual", 32B-SBI-SUM-0189-003.

[ABRW91] N. C. Audsley, A. Burns, M. F. Richardson and A. J. Wellings, "Hard Real-Time Scheduling : the
Deadline-Monotonic Approach", IEEE Workshop on Real-Time Operating Systems, 1991.

[HRM92] HOOD Technical Group: "HOOD Reference Manual" - Release 3.1.1, Feb. 1992

[BWY93] A. Burns, A. Wellings, University of York, "HRT-HOOD: A Structured Design Method for Hard Real-
Time Ada Systems", version 2.0 Reference Manual, September 1993.

[ATB93] N. Audsley, K. Tindell, A. Burns,  University of York, "The End of The Line for Static Cyclic
Scheduling ?", Proceedings of the 5th Euromicro Workshop on Real-time Systems, June 1993.

[HRN95a] INTECS Sistemi S.p.A., "HRT-HoodNICE specification", July 1995.

[HRN95b] INTECS Sistemi S.p.A., "HRT-HoodNICE code extractor", June 1995.

[HRN95c] INTECS Sistemi S.p.A., "HRT-HoodNICE to HRT Tools Interface Specification", November 1995.



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 6

3. ITEMS UNDER EVALUATION

The following tools have been used along the evaluation activity:

Schedulability Analyser allowing the static verification, before execution time, of the timing
constraints applying to real-time applications.

Scheduler Simulator providing the means to visualise the execution of a thread set in terms of
scheduling events that occur during the modeled application's execution lifetime.

Target Simulator providing a simulator of a computer that is build around the ERC32 bit core. It
allows the simulation of IU, FPU, MEC, ATAC, UART activity, watchdog, timers, interrupts and
DMA transfers.

AdaWorld  including the cross Ada compiler and binder. Its main innovative feature is to provide
the execution time profile of the application in its worst case of execution.

AdaProbe providing symbolic debugging capabilities. By means of an appropriate configuration
of the Monitor it allows to run the executable of the application on the Target Simulator.

Microtec linker  available through a telnet/ftp connection to ESTEC.

All tools but the linker were installed at Intecs premises on a SPARC workstation running Solaris
2 [ADW-ig][HRT-ig][TS-ig]. The temporary evaluation licenses have been extended to the end of
July 1997. All tools use FLEXLM as license manager; this allows to concentrate in a single
license file all data and have the access controlled by a single instance of the manager.

Tools installation has been complex in some cases but never critical; the tools providers on-line
help was quite fast and effective. Actually the most annoying problem was due to the physical
support used to deliver the tools. DAT cartridges do not seem to be very reliable when they are
used to move data on a different drive even if it is nominally compatible with the one used to
write.



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 7

4. EVALUATION  ACTIVITY  STRUCTURE

The activity is composed by two steps. The first is aimed to evaluate from a very general point of
view the features and the user interface of the ERC32 products. A complete check of all
functionalities as declared in the associated documentation is clearly out of the scope of this
evaluation; the result of the first phase can only be just the initial feeling of a new user of the
toolset concerning the level of friendliness of the interface and the suitability of the major features
to the development of real-time application in the space domain.

In the second phase we mainly addressed the quantitative check of a very specific point which we
think to be of vital importance to make effective the benefits of the innovative features. It is the
reliability of the execution time calculation performed by the compilation system, that should be
quite accurate in order to ensure that the schedulability analysis gives significant results.

4.1. QUALITATIVE EVALUATION

Two subsets of the ERC32 products are analysed in the following sections; the first groups the
tools (Schedulability Analyser and Scheduler Simulator) aimed to validate the dynamic behavior
of the application with reference to the timing requirements.

The second group is composed by the software development and test environment, that is the Ada
factory (compiler, binder, linker and debugger) plus the Target Simulator.

4.1.1. Temporal properties analysis tools

The verification of the application software against its real-time requirements is performed by
means of the Schedulability Analyser and the Scheduler Simulator. Both of them work on a
model of the application and of the target provided by the users in a number of files.

The schedulability analysis is executed assuming that the application dynamic behavior is
conforming to a computational model defined by the Deadline Monotonic Scheduling Theory
[ABRW91] (optionally with arbitrary deadlines) and the Immediate Priority Ceiling Inheritance
blocking protocol (or optionally interrupt inhibition).

Inputs to the analysis are [HRT-um]:

the User Configuration File (UCF) containing a description of the main HRT attributes of the
threads (CYCLIC or SPORADIC) implementing the concurrent activities of the application. It is
written and maintained by the User all along the s/w life cycle.



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 8

the Execution Skeleton File (ESF) containing the execution profile of the threads. It defines the
threads behavior in terms of calls to PROTECTED entities, sequential blocks and bounded loops
in the WORST CASE OF EXECUTION. It is either written by the User or automatically
generated by the compiler/binder.

the Run Time Support Characteristics File (RTS) containing the figures of the platform (that is
target PLUS Ada kernel) relevant to scheduling such as context switch time, delay queue
management time and others that globally define the execution overhead due to the priority
preemptive scheduling. It is provided by the OS or Ada kernel producer.

It is worth to note that the UCF and the ESF both contain pieces of information related to the same
set of threads. Conceptually the UCF contains information that are related to the application
architecture, that is the type of threads (cyclic or sporadic), their deadline and period or minimum
inter-arrival time. The ESF contains mainly information related to the detail design and
implementation, but note that the interactions with the PROTECTED entities are an architectural
matter.

The main HRT attributes and the dynamic behavior description are kept separate, apparently in
order to support the integration with the compiler/binder which is able to produce the ESF file by
analysing the source code.

On the other hand when the temporal analysis tools are used without the compiler support1 this
cause a consistency problem, in that the user is expected to keep consistent two subsets of data
which are logically grouped and might be specified in a single file.

In the figure the items which the User is expected to keep consistent2 are evidenced:

                                                

1 typically during the detailed design when no source is available, but also during the first coding phases.

2 here it is assumed that no support tool is used for the Architecture Design and then no automatic source code
extraction from the Architecture is performed.



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 9

UCF

ESF

RTS

Schedulability 
Analyser

Architecture

User

priorities, schedulability

HRT TOOLS

Source 
files

application 
model

Scheduler 
Simulator

In the following our impressions and, in some cases, suggestions:

❐ the temporal analysis tools have an impressive user interface. Its use is quite intuitive
and comfortable.

❐ the diagnostics of the Schedulability Analyser when the UCF/ESF contains syntax or
semantic errors could be improved. In particular it could be possible to activate the text
editor on them and to embed in the files the error/warning messages as comments after
the concerned row.

❐ the Schedulability Analyser calculates all significant figures related to scheduling. In
particular the sensitivity margin is useful for the analysis of the impacts of changes to
the design. It also supports arbitrary deadlines (that is, longer than the period). The
main output table would be of easier comprehension referring the threads by name
instead of by numbers.

❐ the biggest problem with the Schedulability Analyser is that its analysis algorithm
does not take into account the offset defined for the threads. The critical instant is
assumed to happen when ALL threads are released at the same time, that is the
OFFSET attribute is ignored during the analysis (but it is taken into account during the
simulation). The problem is that very often the applications are designed in such a way
that the critical instant never happens: the activation of a thread is caused by a
consequence of the actions of another thread3 OR a separation in the time has been
explicitly designed and coded in order to solve concurrent accesses to unprotected
resources. In such cases the analysis performed by the Scheduler Simulator is correct

                                                

3 as an example consider a thread which starts an action like a DMA transfer and terminates: after a while (a bounded
time shorter than the thread period) an interrupt is raised to signal the end of the transfer. The (sporadic) thread in
charge to manage the interrupt is never actually released at the same time as the thread which starts the transition.



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 10

but pessimistic. Then it is likely to happen that many applications that are able to work
properly are declared un-schedulable because of a too pessimistic analysis. It would be
important to support a schedulability check taking into account the offsets [ATB93].

❐ the Scheduler Simulator has been particularly appreciated for the number of simulation
parameters and for the different types of reports available. The Gantt diagrams in
particular are a clear representation of the simulation run easy to understand, also
because of a very actractive graphics.

❐ the computational model is fully compatible with the HRT-HOOD method [BWY93].
From an HRT-HOOD architecture it is possible to define a model of the application
simply by deriving one or two entities for each object4. The HRT properties of the
threads match one by one the corresponding properties defined by the method for the
objects.

❐ the tools make possible for the HRT system designer to hypothesize changes to the
system and to evaluate their impacts, quickly recognising violations of the timing
requirements, saving development and testing efforts (and costs).

4.1.2. Code development and test tools

AdaWorld  is a quite well known Ada'83 development environment. The version included in the
ERC32 Products has interesting additional features directly related to the development and
validation of (hard) real-time applications.

First of all the semantics of Ada tasking has been made consistent with the scheduling model
mentioned above and checks are performed to ensure that the programmer does not violate it. The
computational model does not allow the real-time threads to interact directly with each other but
only with PROTECTED entities.

In other words any communication or synchronisation between threads must be mediated by a
Protected entity that behaves either as a synchronisation or a resource protection mechanism. A
consistent implementation of the PROTECTED concept is the Ada'95 Protected Record.

In the AdaWorld practice a pragma Passive is available to specify that an Ada task must behave
like a Protected. All tasks which do not have the pragma Protected are considered to implement a
thread. The pragma allows also an optimised implementation of the task.

The rule is that the threads can rendez-vous with protected only, while protected can only rendez-
vous with each other. Then the target of a rendez-vous can be only a protected; as a consequence
only the protected tasks can export entries. The only exception is a thread which is a server of an
interrupt, allowed to declare a single entry which is linked to the physical signal.

                                                

4 cyclic objects are represented by a cyclic thread, plus a protected resource if the object has a provided interface,
sporadic objects are represented by a sporadic thread plus a protected synchronisation  item.



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 11

The subset of all tasks that conform to the mentioned additional rule has the property to constitute
a predictable concurrent application, suitable to schedulability analysis. Given that they will have
a higher range of priorities than all other tasks this ensures that the schedulability analysis is a
validation of the fulfillment of timing requirements.

ESF

Target 
Simulator

Architecture

User

Source 
files

Compiler

Binder

Linker Debugger

application 
executable

The compiler detects any violation to this rule. The violation is a simple warning because the rule
is applicable only to the real-time components of the application, while the other (background,
lower priority) tasks are only limited by the standard Ada tasking rules. Nevertheless a violation
inhibits the generation at compile time of the real-time profile of the concerned piece of code.

The second innovative feature is the ability of the code generator to 1) make a calculation of the
execution time associated to the sequential pieces of code; 2) individuate the calls to protected
entities made by the threads; 3) take into account iterative (bounded) statements and finally 4) to
define the worst case execution path of the threads and of the protected entities. These data
constitute the real-time profile of the corresponding Ada code.

By collecting the information generated at compile time the binder is then in a position to
generate automatically the Execution Skeleton File described in the previous section. This feature
is of fundamental importance in the validation of a (hard) real-time system.

Actually the preparation of a model of the application to be provided to the schedulability analysis
has always been a critical point in the s/w life cycle, involving time measurements on the target,
analysis of disassembled code, evaluation of the worst case path in the code and other complicated
and error-prone activities.

The implementation of the mentioned features caused some limitations  to be imposed to the code
belonging to the predictable section of the application.

Most of them are in line with the chosen computational model and are mandatory if one wants to
produce predictable code. For instance, only the for .. loop iterative statement can be used in a
real-time thread and only when its parameters allow to bound the maximum number of iterations.
Actually it is foreseen a specific pragma allowing the user, on its responsibility, to declare the



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 12

maximum number of iterations. This pragma (unfortunately not yet implemented) allows the use
of any iterative statement.

A limitation that we do not feel to be actually needed is the lack of implementation of the rename
statement when the entity to be renamed is an entry of a protected task. Such a construct is not
allowed and it is detected as an error by the compiler. We realise that the additional rule
concerning the rendez-vous is not trivial to check because any kind of indirect call (through
procedures exported by other program elements for instance) must be detected, but the rename
statement does not seem to be involved in this logic.

On the other hand the lack if this statement gives serious problems when the application is
designed by using HOOD [HRM92] (or, more likely, HRT-HOOD). The rules to extract code from
the ODS of the objects widely use the rename, firstly to link the operations exported by a
terminal  object with the entries of the Ada task implementing the dynamic behavior of the object
and more in general to map the "implemented by" relationship between operations exported by a
non-terminal objects and its child object(s) operations that actually execute the services.

This means that either the code extraction rules should be modified with degradation of the
performance5 or the architecture should be limited to be a flat architecture where all objects are
terminal an no hierarchical decomposition is made.

Taking into account the wide use of (HRT-)HOOD in the space domain  it is our opinion that the
concerned limitation should be removed.

A further unclear point is the implementation of different operational modes when the ESF is
produced by the compilation system. A "traditional" way to implement this feature is to code Ada
tasks that at each activation6 set their period and priority depending on the current operational
mode. Furthermore they contain as the very first sequential statement a case on the operational
mode which activates a specific subprogram corresponding to the current operational mode. Note
that being different from mode to mode the HRT properties of the activities and their code, then a
separate version of both the UCF and the ESF is to be maintained for each operational mode. The
system must be analysed for schedulability in each mode.

On the other hand the compilation system is able to extract only one ESF from a set of source
files; in particular it would generate an ESF containing the worst case of execution of the task, that
is ONLY the operational mode whose associated code takes longer. In order to have one ESF for
each operational mode a different set of source files should be maintained for each mode. But in
this case each task can implement the behavior of the concerned activity in one operational mode
only : in order to have the whole application functionality all versions of the task should be linked

                                                

5 non-terminal objects are currently packages without a body that simply rename all the object's provided interface in
terms of the provided interface of the child objects. To face the problem the non-terminal operations should be true
subprograms that actually call child operation(s) and the package should have a body.

6 we refer for simplicity to tasks implementing periodic activities.



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 13

in the final executable and activated when appropriate. This is, of course, impossible because of
the duplication of task and entries names.

There is nothing in particular to say about the linker  except that it was not included in the
evaluation package but was available through a remote access to ESTEC computers. Such a
situation caused a bottleneck in the software development process, in particular during the tuning
of the code needed for the quantitative evaluation.

The need to transfer by "ftp" the output of the binder to ESTEC, run the linker through a "telnet"
connection and return the executable file to our premises was a really time consuming activity. As
a consequence we put a limitation on the number of versions of the application dedicated to the
quantitative evaluation.

AdaProbe is a powerful and comfortable environment for symbolic debugging of Ada
applications. We particularly appreciated the user interface allowing to manage quite easily a
debugging session of a concurrent application and the powerful commands available for low-level
target management and monitoring. In particular it is possible to set up a trace point in the code
and log the CPU cycle counter when the elaboration hits the trace point. This has been particularly
important during the quantitative evaluation.

The symbolic debugger was connected to the Target Simulator tool by means of a very general
interface based on the Solaris TCP/IP service implementation [TS-um]. The Target Simulator can
also run as a stand-alone tool with a greater visibility of the simulated target behavior and a deeper
control of the execution environment.

Some low level differences concerning the data/control flows to and from the Target Simulator in
the two configurations caused problems during the tools installation. They were anyway quickly
solved also thanks to the tools providers on-line support.

The Target Simulator appears to be a widely configurable tool, allowing the user to set-up an
appropriate simulation of the processor and the surrounding hardware for a large set of actual
target configurations. The full evaluation of all the features was anyway out of the scope of our
evaluation activity.

4.1.3. Tools  inter-operability

In this section we analyse the development environment when the whole set of ERC32 tools is
used with a particular attention to the problem of keeping consistent the various involved data
sets. This analysis is also put into relationship with the phases of the software life cycle.

❐ the UCF must be kept consistent with the Architecture all along the life cycle. We are
assuming that in the design of a (hard) real-time application a design method is used
that has the concept of HRT related entities like periodic/sporadic activities and
protected elements. Then a mapping can be defined between architectural items and
elements in the UCF. The user is expected to grant the consistency in order to be sure
that the application model is representative of the actual behavior of the system.



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 14

UCF

ESF

RTS

Schedulability 
Analyser

Target 
Simulator

Architecture

User

priorities, schedulability

HRT TOOLS

Source 
files

Compiler

Binder

Linker Debugger

application 
model

Scheduler 
Simulator

application 
executable

The ESF file management is different depending on the development phase:

❐ during the Architecture Design there is no source code available and the user is
expected to write "by hand" the ESF. Note that this activity is needed in order to be
able to perform very early in the life cycle a preliminary schedulability analysis. The
application model is quite rough at this point: the interactions between threads and
protected entities are fully defined in the architecture but the architecture itself is in
evolution, due also to the impact of the results of the schedulability analysis. As a
consequence a number of (consistent) modifications to both the Architecture and the
ESF must be foreseen. On the other hand no execution time for the sequential pieces of
code is available, then the times in the ESF are estimated time or figures derived from
previous experiences. In the practice at the end of this phase are available constraints
to be imposed to the following phases concerning the execution times. This is anyway
important because if these requirements are fulfilled by the implementation then the
schedulability is granted.

❐ during the Test phase the ESF is completely produced by the binder an then it is easy
to check very often the schedulability of the system after modifications due to the
debugging.

❐ the Detailed Design and Coding phases are the most critical from this point of view.
Firstly they cannot be kept separated: the optimisation of the development effort and
technical matters very often impose to code some parts of the system while others are
not yet fully defined. As a consequence at a given development time some sections of
the ESF can be automatically (and precisely) produced by the compilation system



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 15

while others are still under the user control. AdaWorld defines a number of additional
features (pragmas) that allow to obtain a "template" of an activity not yet fully defined
which has the same effect on the ESF file (with estimated times). Nevertheless it must
be taken into account that in this phase a large number of changes is needed to face the
first results of the application of the Test Plan and the new inputs from the
schedulability analysis.

Finally, note that one complete set of all mentioned data must be maintained for each operational
mode foreseen for the system (see previous section): this make the consistency almost
unmanageable by hand.

To summarise it is our feeling that the ERC32 products set constitutes a good improvement of a
"traditional" development environment but leaves uncovered the important problem of the
consistency of a large amount of data. What is desirable is then a further tool(set) that supports the
user in the design and development phases keeping a consistent representation of all the properties
of the concurrent activities. In our mind such a tool can only be the Design Support Tool. The
corresponding enhancement of the development environment is shown:

UCF

ESF

RTS

Schedulability 
Analyser

Target 
Simulator

Design 
Support 

Tool
User

priorities, schedulability

HRT TOOLS

Compiler

Binder

Linker Debugger

application 
model

Scheduler 
Simulator

application 
executable

code  
extraction

model  
extraction

ESF*

In this situation all data files (source code and model) are extracted form the Design Tool
database and all results of the other tools are post-processed in order to be incorporated in the
representation of the system. Source files and model related files are no more under the control of
the User (who should not update them by hand).

The user is only expected to provide source files and model files to the temporal analysis toolset
and to the code production toolset and then to activate the Design toolset features to update the



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 16

architecture on the basis of the results. Note also that a stronger integration between the
components of the development environment might be designed.

4.2. QUANTITATIVE EVALUATION

With reference to the previous figures it is clear that a critical point in the whole design-
implementation-validation process is the reliability of the calculated execution times inserted by
the compilation system in the ESF file(s).

There is no check point aimed to ensure that the application model is actually representative of
the application executable; the User can only rely on the correctness of the compiler-binder
generated execution skeleton. In lack of a good correlation between calculated and actual times
the risk is that the schedulability analysis validates a system which is different in the dynamic
behavior from the actual application.

It is our opinion that it is worth to start an activity mainly aimed to:

1) check that the calculated execution times are confirmed when the application code is
run on the Target Simulator. The Target Simulator tool provides the needed means to
measure absolute values and intervals of (simulated) time. This kind of activity has
been started in the second phase of our evaluation.

2) check that the calculated execution times are confirmed when the application code is
run on the actual ERC32 target. This is also a validation step of the Target Simulator
itself. This kind of activity has not been performed during our evaluation because no
appropriate hardware target monitor facility was available. We think that it would be
important to carry out such an evaluation in the future.

To evaluate the correlation between the calculated execution times and the corresponding
(simulated) times during a run of the application we designed a little but not trivial application
including the major components of a typical on-board system. It is described in §4.2.1.

The application has been designed by the HRT-HoodNICE toolset [HRN95a] based on the HRT-
HOOD 2.0 method. It includes a code extractor tool tailored on the AdaWorld compiler specific
features [HRN95b] and an interface to external tools able to generate a model of the application
which includes (in a different format) the same information as the UCF and (partially) the ESF
[HRN95c].

The toolset is able to manage a number of operational modes but because of the limitations
mentioned in §4.1.2 the application has one mode only.

The UCF has been directly derived from the HRT properties of the threads by editing the
automatic output of the toolset described above. It is reported in §4.2.2.

The sequential code of the threads and of the exported operation has been inserted in the toolset
database and the final source code extracted. The code sections responsible for the dynamic



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 17

behavior of the threads and their interactions are automatically generated. The application code is
shown in Appendix A.

The sequential code is only representative of an actual on-board application; it actually contains
the interactions between the threads as specified in the architecture and a minimal elaboration,
plus pieces of code aimed to consume CPU time.

The ESF has been produced by the AdaWorld binder. The result is a very accurate model of the
Ada code, taking into account all details of the implementation of the HRT-HOOD objects. The
time-consuming code has been then tuned in order to obtain a schedulable system with a limited
margin. The final ESF is shown in §4.2.3.

Finally the executable application was run on the Target Simulator. The overall behavior was
conforming to the expected one. Note that because of the minimal implementation the worst case
of execution was the same as the nominal one for many threads. A set of incoming Telecommands
was simulated in order to exercise all sections of the code.

After a familiarisation with the application we started the execution time measurement activity.
AdaProbe allows to access low level features of the Target Simulator, in particular we used the
timed trace service. It allows to log the counter of the simulated CPU cycles when the elaboration
hits the trace points. By difference of two counter values it is possible to have a measurement of
the CPU clock cycles spent in the execution of a piece of code.

Note that:

❐ the scheduling of the application cause no preemption between the high priority
threads. The IPCI protocol ensure that the blocking time due to shared protected
entities is experienced at the very beginning of the activation of each thread. The
highest priority threads have periods multiple of the same time value (100
milliseconds) and then never interrupt each other. We concentrated the (simulated)
time measurement activity on those threads;

❐ the Ada RTS does NOT use a cyclic real-time clock manager. It manages the delay
queue by setting a watch-dog timer with the closest expiration time. Then no kernel
thread interrupts the application threads. All delay queue management is performed
when the threads execute the delay_until statement and the overhead is taken into
account. The management of the watch-dog trigger is taken into account in the thread
release overhead;

then it is ensured that no interference happens and the measured number of cycles is actually spent
in the execution of the concerned code.

The AdaWorld binder provides in the ESF 3 values related to each piece of sequential code; the
first is expressed in CPU cycles and is the number of cycles needed to execute the statements. The
other values are the number of read and write accesses to memory. They allow to take into
account of the wait-states needed on the specific target to access the memory. Then the total
duration of the code execution in CPU cycles is the result of:



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 18

CPU_cycles + ( 1 + WS_Read ) * Nof_Read + ( 1 + WS_Write ) * Nof_Write

where WS_Read and WS_Write are the number of wait-states spent during accesses to memory.
Then a row in the ESF file related to sequential code such as

WCET 1000, 200, 100

when WS_Read is 1 and WS_Write is 2 means that the corresponding code is expected to be
executed in 1.700 CPU cycles. When the code is executed on the Target Simulator the same
number is expected to be the difference between the two values of the CPU cycle counter.

The information about the number of wait-states is to be provided (in a consistent way) both to the
Schedulability Analyser and the Target Simulator. The first finds the information in the UCF and
uses it to calculate the actual execution time from the figures found in the ESF. The second finds
the information in its configuration files (set up of simulated target) and uses it to increment the
CPU cycles counter of the appropriate value in front of any memory access.

The ESF in §4.2.2 has been annotated with the CPU cycles resulting from the run of the
application on the Target Simulator. They are reported in bold on the right side and refer to the
WCET statement on the same row.

In our case the UCF declares no wait-state, both in read and write accesses. This should also be
the default for the Target Simulator when the standard configuration provided into the evaluation
package is used. As a consequence the measured number of CPU cycles should be simply the sum
of the 3 values associated to the WCET keyword.

Actually it happens only when the number of memory accesses is very low, otherwise the
measured values is higher than expected. In particular it is possible to see that in most cases the
measured values would be consistent with the ESF figures if the number of wait-states were
greater than zero (about 3 - 4). The inconsistency might be due to a number of causes:

❐ our misunderstanding concerning the Target Simulator initialisation. The wait-states
declared in the simulation environment might be erroneously different from zero;

❐ our fault in the measurement of the simulated CPU cycles during the simulation: there
might be some overhead that we did not take into account;

❐ a fault in our comparison method: it is possible that the figures from simulation cannot
be directly compared with figures in the ESF but a scaling factor is to be applied for
reasons that we did not realise;

❐ a wrong processing of the initial configuration by the Target Simulator or a systematic
error in the use of the wait-state values;

❐ some systematic error in the calculation of the number of memory accesses by the
compiler.



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 19

We investigated in particular the Target Simulator initialisation and made a number of additional
measurements (that confirmed the trend). We also repeated the measurements using the Target
Simulator as a stand-alone tool to avoid differences due to the debugger, but we obtained the same
values. Finally we had to stop the activity due to licenses expiration.

Some our error has the highest probability but it would be important to detect it in order to warn
future users of the ERC32 toolset. On the other hand if some systematic error exist in the tools,
then it is very important to fix it before the industrialisation phase. An activity of time
measurement on the actual target would be the most appropriate.

4.2.1. The Test Application

This simple application includes threads representative of the AOCS data acquisition and
processing, Telecommands execution, Monitoring activity and exchanges with other subsystems
through a communication Bus.



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 20

 HRTSample

 Pr  Bus_Handler

 Get_AOCS_data
 Put_AOCS_result
 Get_data
 Put_report
 Put_table

 S  AOCS_processing

 Start

 C  AOCS_acquisition

 Mode_change

 S  TC_processing

 Start

 C  TC_acquisition

 Mode_change

 S  Application

 Start
 Stop

 C  Scheduler

 Mode_change
 Set_schedule

 C  Monitoring

 Load_Table
 Send_Table

The Monitoring activity is performed every second. It acquires data from the Bus depending on a
configurable table (max 5 values) and checks them against the expected range. A diagnostic
message is produced collecting all out-of-range reports, if any, within 30 m.sec.

20  application processes (FLAP) have to be scheduled within every period of 15 seconds. The
overall processing time of all applications is expected to take not longer than 2 seconds. The
scheduling is driven by a configurable table.

Incoming Telecommands are made available at a frequency  of 1/2 Hertz during the following 20
m.sec. Telecommands are supported to : 1) change the monitoring table; 2) read the current



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 21

monitoring table and send it on the bus; 3) perform a mode change; 4) change the FLAP
scheduling table.

AOCS processing is performed at 100 m.sec rate. The results must be sent on the Bus within 50
m.sec. In case of out-of range data from sensors a diagnostic message must be delivered on the
Bus within 20 m.sec. and the calculation performed using the value valid during previous cycle.

The HRT-HOOD diagram of the test application is shown. AdaWorld limitations imposed to
avoid any break-down and to design terminal objects only (see §4.1.2).



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 22

4.2.2. The User Configuration File

PREFERENCES
DMS
BLOCKING PROTOCOL IPCI

END

TARGET CHARACTERISTICS
NO ATAC
PRIORITY LOW  1
PRIORITY HIGH 63
CPU CLOCK FREQUENCY 10 MHz
WAIT STATES READ 0 WRITE 0

END

THREAD DEFINITION

THREAD AOCS_acquisition.THREAD
CRITICALITY Hard
PERIOD 1000000
DEADLINE 200000
OFFSET 0

END AOCS_acquisition.THREAD

THREAD Scheduler.THREAD
CRITICALITY Hard
PERIOD 7500000
DEADLINE 7500000
OFFSET 0

END Scheduler.THREAD

THREAD Monitoring.THREAD
CRITICALITY Hard
PERIOD 10000000
DEADLINE 300000
OFFSET 0

END Monitoring.THREAD

THREAD TC_acquisition.THREAD
CRITICALITY Hard
PERIOD 5000000
DEADLINE 200000
OFFSET 0

END TC_acquisition.THREAD

THREAD TC_processing.THREAD
CRITICALITY Hard
MINIMUM 5000000
DEADLINE 4000000

END TC_processing.THREAD



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 23

THREAD Application.THREAD
CRITICALITY soft
MINIMUM 7500000
DEADLINE 7500000

END Application.THREAD

THREAD AOCS_processing.THREAD
CRITICALITY Hard
MINIMUM 1000000
DEADLINE 500000

END AOCS_processing.THREAD

END

WCET DATA
-- Text for WCET
END

For completeness it is also reported the Run Time Characteristics File supplied by the Ada RTS
manufacturer. It contains a description of the run-time metrics parts of the computational model. It
is NOT under the User control an should not be edited.

CONTEXT   SWITCH    TIME                           3,0,0
SCHEDULER SELECT    TIME                          (1,0,0)
TIMER     INTERRUPT OVERHEAD                       12,0,0
READY     AFTER     DELAY                          5,0,0
ENTER     DELAY     UNTIL    OVERHEAD     AT HEAD (10,0,0)
ENTER     DELAY     UNTIL    OVERHEAD NOT AT HEAD (2,0,0)
EXIT      DELAY     UNTIL    OVERHEAD              1,0,0
ENTER     PASSIVE   TASK                           2,0,0
EXIT      PASSIVE   TASK                           1,0,0
ENTER     SOFTWARE  SPORADIC WAIT                 (2,0,0)
EXIT      SOFTWARE  SPORADIC WAIT                  1,0,0
ENTRY     QUEUE     SERVICING                     (3,0,0)
INTERRUPT HANDLING  OVERHEAD                       10,0,0
ENTER     INTERRUPT SPORADIC WAIT                 (2,0,0)
EXIT      INTERRUPT SPORADIC WAIT                  1,0,0

MAXIMUM NON PREEMPTION                             0,0,0



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 24

4.2.3. The Execution Skeleton File

PROGRAM HRTSAMPLE

  THREAD TC_PROCESSING.THREAD
     TYPE SPORADIC
     WCET 3, 0, 0
     CALL_PO TC_PROCESSING.OBCS WAIT_START
     WCET 95616, 15065, 10066 230.456
     CALL_PO BUS_HANDLER.OBCS PUT_REPORT
     WCET 5, 0, 0
     PO SCHEDULER.OBCS SET_SCHEDULE  MONITORING.OBCS LOAD_TABLE  MONITORING.OBCS
SEND_TABLE  AOCS_ACQUISITION.OBCS MODE_CHANGE
TC_ACQUISITION.OBCS MODE_CHANGE  SCHEDULER.OBCS MODE_CHANGE
  END

  THREAD TC_ACQUISITION.THREAD
     TYPE CYCLIC
     WCET 9579, 1506, 1005 23.561
     CALL_PO TC_PROCESSING.OBCS START
     WCET 102, 9, 4 157
     PO TC_ACQUISITION.OBCS MODE_CHANGE_PENDING  TC_ACQUISITION.OBCS
MODE_CHANGE_IN_PROGRESS  TC_ACQUISITION.OBCS END_ATC_EXECUTION
  END

  THREAD SCHEDULER.THREAD
     TYPE CYCLIC
     WCET 28694, 4519, 3020
     CALL_PO APPLICATION.OBCS START
     WCET 84, 7, 3 135
     PO SCHEDULER.OBCS MODE_CHANGE_PENDING  SCHEDULER.OBCS MODE_CHANGE_IN_PROGRESS
SCHEDULER.OBCS END_ATC_EXECUTION
SCHEDULER.OBCS SET_SCHEDULE_PENDING  SCHEDULER.OBCS SET_SCHEDULE_IN_PROGRESS
  END

  THREAD MONITORING.THREAD
     TYPE CYCLIC
     WCET 24, 1, 2 31
     LOOP 3
        WCET 7, 1, 1
        CALL_PO BUS_HANDLER.OBCS GET_DATA
        WCET 9551, 1505, 1005 23.542
     END
     WCET 2, 0, 0
     CALL_PO BUS_HANDLER.OBCS PUT_REPORT
     WCET 84, 7, 3 134
     PO MONITORING.OBCS LOAD_TABLE_PENDING  MONITORING.OBCS LOAD_TABLE_IN_PROGRESS
MONITORING.OBCS END_ATC_EXECUTION
MONITORING.OBCS SEND_TABLE_PENDING  MONITORING.OBCS SEND_TABLE_IN_PROGRESS
BUS_HANDLER.OBCS PUT_TABLE
  END

  THREAD APPLICATION.THREAD
     TYPE SPORADIC
     WCET 3, 0, 0



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 25

     CALL_PO APPLICATION.OBCS WAIT_START
     WCET 955628, 150601, 100604
  END

  THREAD AOCS_PROCESSING.THREAD
     TYPE SPORADIC
     WCET 3, 0, 0
     CALL_PO AOCS_PROCESSING.OBCS WAIT_START
     WCET 143921, 22663, 15128
     CALL_PO BUS_HANDLER.OBCS PUT_AOCS_RESULT
     WCET 4, 0, 0
  END

  THREAD AOCS_ACQUISITION.THREAD
     TYPE CYCLIC
     WCET 18, 1, 0 19
     CALL_PO BUS_HANDLER.OBCS GET_AOCS_DATA
     WCET 76463, 12049, 8051 188.336
     CALL_PO AOCS_PROCESSING.OBCS START
     WCET 84, 7, 3 134
     PO AOCS_ACQUISITION.OBCS MODE_CHANGE_PENDING  AOCS_ACQUISITION.OBCS
MODE_CHANGE_IN_PROGRESS  AOCS_ACQUISITION.OBCS
END_ATC_EXECUTION
  END

  PROTECTED TC_PROCESSING.OBCS
     TYPE SYNCHRO
     ENTRY START
        WCET 75, 10, 10 148
     BARRIER WCET 6, 1, 0
     ENTRY WAIT_START
        WCET 43, 6, 6
  END

  PROTECTED TC_ACQUISITION.OBCS
     TYPE RESOURCE
     ENTRY END_ATC_EXECUTION
        WCET 33, 2, 1
     ENTRY MODE_CHANGE_IN_PROGRESS
        WCET 20, 0, 1
     ENTRY MODE_CHANGE_PENDING
        WCET 24, 2, 1
     ENTRY MODE_CHANGE
        WCET 37, 2, 2
  END



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 26

  PROTECTED SCHEDULER.OBCS
     TYPE RESOURCE
     ENTRY END_ATC_EXECUTION
        WCET 33, 2, 1
     ENTRY SET_SCHEDULE_IN_PROGRESS
        WCET 20, 0, 1
     ENTRY SET_SCHEDULE_PENDING
        WCET 24, 2, 1
     ENTRY SET_SCHEDULE
        WCET 37, 2, 2
     ENTRY MODE_CHANGE_IN_PROGRESS
        WCET 20, 0, 1
     ENTRY MODE_CHANGE_PENDING
        WCET 24, 2, 1
     ENTRY MODE_CHANGE
        WCET 37, 2, 2
  END

  PROTECTED MONITORING.OBCS
     TYPE RESOURCE
     ENTRY END_ATC_EXECUTION
        WCET 33, 2, 1
     ENTRY SEND_TABLE_IN_PROGRESS
        WCET 20, 0, 1
     ENTRY SEND_TABLE_PENDING
        WCET 24, 2, 1
     ENTRY SEND_TABLE
        WCET 37, 2, 2
     ENTRY LOAD_TABLE_IN_PROGRESS
        WCET 20, 0, 1
     ENTRY LOAD_TABLE_PENDING
        WCET 24, 2, 1
     ENTRY LOAD_TABLE
        WCET 37, 2, 2
  END

  PROTECTED BUS_HANDLER.OBCS
     TYPE RESOURCE
     ENTRY PUT_TABLE
        WCET 9566, 1503, 1004
     ENTRY PUT_REPORT
        WCET 9566, 1503, 1004
     ENTRY GET_DATA
        WCET 9566, 1503, 1004
     ENTRY PUT_AOCS_RESULT
        WCET 28710, 4519, 3022
     ENTRY GET_AOCS_DATA
        WCET 28733, 4523, 3023
  END



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 27

  PROTECTED APPLICATION.OBCS
     TYPE SYNCHRO
     ENTRY START
        WCET 60, 7, 7
     BARRIER WCET 6, 1, 0
     ENTRY WAIT_START
        WCET 38, 5, 5
  END

  PROTECTED AOCS_PROCESSING.OBCS
     TYPE SYNCHRO
     ENTRY START
        WCET 73, 9, 10 142
     BARRIER WCET 6, 1, 0
     ENTRY WAIT_START
        WCET 43, 6, 6 75
  END

  PROTECTED AOCS_ACQUISITION.OBCS
     TYPE RESOURCE
     ENTRY END_ATC_EXECUTION
        WCET 33, 2, 1
     ENTRY MODE_CHANGE_IN_PROGRESS
        WCET 20, 0, 1
     ENTRY MODE_CHANGE_PENDING
        WCET 24, 2, 1
     ENTRY MODE_CHANGE
        WCET 37, 2, 2
  END
END



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 28

5. CONCLUSIONS

The ERC32 products constitute an actractive and innovative development environment. They
include features of vital importance for an efficient and effective support to the design,
development and validation of (hard) real-time systems all along the software life cycle.

Each tool is appreciable for what concern the overall conception and user interface. Many tools
provide features that are on the top of the current industrial trends.

Nevertheless it is our opinion that some specific aspects should be improved in order to
experiment the full benefit of an integrated development environment. They are listed in the
following, in importance order:

❐ Operational modes management : some automatic support is needed for the
management of the different operational modes that are generally designed for any
real-time system. Such a support should allow to use the automatic ESF generation and
save the User from the need to take into account "by hand" the different instances of
each thread.

❐ Data consistency : as shown a large amount of data must be kept consistent over the
design, development and test phases. The management of the operational modes adds a
further complexity level. The resulting check and alignment activity is complicated
and error-prone when left completely on the User responsibility. The automatic
support mentioned above should be extended to other aspects of the inter-operability
of the ERC32 products. It is our opinion that a Design Support Tool is the most
appropriate location for this kind of support.

❐ Computational models : enhanced computational models taking into account threads
offsets and the corresponding schedulability check algorithms should be used. They
allow to model properly a wider range of software applications.

❐ Language limitations : additional rules and limitations to the coding activity should
be applied only when strictly needed.

Finally we suggest some additional action to clarify the (apparent) inconsistencies related to the
sequential code execution times calculation. Such an activity should also be extended to the
concurrent sections of the code in order to ensure that the ESF is fully representative of the actual
application code behavior.



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 29

6. ACRONYMS

ACS Ada Compilation System
ADD Architectural Design Document
ASER ASynchronous Execution Request
DDD Detailed Design Document
DHS Data Handling System
DMST Deadline Monotonic Scheduling Theory
ESA European Space Agency
ESTEC European Space Technical Center
HOOD Hierarchical Object Oriented Design
HRT Hard Real Time
IPCI Immediate Priority Ceiling Inheritance
OBCS Object Control Structure
ODS Object Description Skeleton
RMST Rate Monotonic Scheduling Theory
RTS Run Time Support
SDE Software Development Environment



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 30

APPENDIX A - TEST APPLICATION SOURCE CODE

package AOCS_data is -- PASSIVE ENVIRONMENT HRT-HOOD object implementation
---------------- OBJECT DESCRIPTION ----------------
---------------- PROVIDED INTERFACE ----------------

-------------   TYPE(S)   ------------
type AOCS_raw_data  is array ( 1 .. 10 ) of Positive;
type Item  is record

Data_type : Positive range 1 .. 5;
The_data : AOCS_raw_data;

end record;
subtype Index  is Positive range 1 .. 5;
type List  is array (Index) of Item;
subtype AOCS_result  is Integer range 0 .. 1000;

-----------   CONSTANT(S)   ----------
The_list : constant  List := (

1 => ( 1, ( others => 20)),
2 => ( 2, ( others => 30)),
3 => ( 3, ( others => 40)),
4 => ( 4, ( others => 50)),
5 => ( 5, ( others => 60))

);
end AOCS_data;

package Telecommand is -- PASSIVE ENVIRONMENT HRT-HOOD object implementation
---------------- OBJECT DESCRIPTION ----------------
---------------- PROVIDED INTERFACE ----------------

-------------   TYPE(S)   ------------
type Item  is record

OP_code : Positive;
end record;

type Index  is range 1 .. 10;
type List  is array ( Index ) of Item;

-----------   CONSTANT(S)   ----------
The_list : constant  List := (

1 => ( Op_code => 1),
2 => ( Op_code => 2),
3 => ( Op_code => 3),
4 => ( Op_code => 4),
5 => ( Op_code => 5),
6 => ( Op_code => 6),
7 => ( Op_code => 7),
8 => ( Op_code => 8),
9 => ( Op_code => 9),
10 => ( Op_code => 10)

);
end Telecommand;



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 31

-- Alsys compiler version

with System; use System;
with Real_time; use Real_time;
with Interrupt_Manager; use Interrupt_Manager;
package RTA is

-------------   TYPE(S)   ------------
type SYSTEM_WIDE_MODE  is ( Mode_1 , Mode_2 , Mode_3 );
type T_IMPORTANCE      is ( HARD , SOFT , BACKGROUND );
type MODE_PRIORITY     is array ( SYSTEM_WIDE_MODE ) of PRIORITY;
type MODE_DURATION     is array ( SYSTEM_WIDE_MODE ) of Time_Span;
type MODE_IMPORTANCE   is array ( SYSTEM_WIDE_MODE ) of T_IMPORTANCE;

-----------   CONSTANT(S)   ----------
START_MODE : constant  SYSTEM_WIDE_MODE := SYSTEM_WIDE_MODE'first;
DEFAULT_PRIORITY : constant  PRIORITY         := PRIORITY'first;
--
INT0  : constant INTERRUPT_ID :=  0;
INT1  : constant INTERRUPT_ID :=  1;
INT2  : constant INTERRUPT_ID :=  2;
INT3  : constant INTERRUPT_ID :=  3;
INT4  : constant INTERRUPT_ID :=  4;
INT5  : constant INTERRUPT_ID :=  5;
INT6  : constant INTERRUPT_ID :=  6;
INT7  : constant INTERRUPT_ID :=  7;
INT8  : constant INTERRUPT_ID :=  8;
INT9  : constant INTERRUPT_ID :=  9;
INT10 : constant INTERRUPT_ID := 10;
INT11 : constant INTERRUPT_ID := 11;
INT12 : constant INTERRUPT_ID := 12;
INT13 : constant INTERRUPT_ID := 13;
INT14 : constant INTERRUPT_ID := 14;
INT15 : constant INTERRUPT_ID := 15;
--

----------   OPERATION(S)   ----------
function CURRENT_MODE return SYSTEM_WIDE_MODE;

procedure SET_CURRENT_MODE( To_Value : in SYSTEM_WIDE_MODE );

function SYSTEM_START_UP_TIME return TIME;

procedure SET_SYSTEM_START_UP_TIME( To_Value : in TIME );

procedure EXE_1_MSEC;
end RTA;
package body RTA is

MILLISECOND : constant Integer := 500;
Dummy : Integer := 0;
Flag : BOOLEAN := FALSE;

The_mode : SYSTEM_WIDE_MODE := START_MODE;
Start_time : TIME := Clock;

----------   OPERATION(S)   ----------

function CURRENT_MODE return SYSTEM_WIDE_MODE is
begin

return The_mode;
end CURRENT_MODE;

procedure SET_CURRENT_MODE( To_Value : in SYSTEM_WIDE_MODE ) is
begin

The_mode := To_Value;
end SET_CURRENT_MODE;



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 32

function SYSTEM_START_UP_TIME return TIME is
begin

return Start_time;
end SYSTEM_START_UP_TIME;

procedure SET_SYSTEM_START_UP_TIME( To_Value : in TIME ) is
begin

Start_time := To_Value;
end SET_SYSTEM_START_UP_TIME;

procedure EXE_1_MSEC is
begin

for Index in 1 .. MILLISECOND loop
Flag := not Flag;
if Flag then

Dummy := Dummy + 1;
else

Dummy := Dummy - 1;
end if;

end loop;
end EXE_1_MSEC;

end RTA;

-- It defines the Hard Real-Time attributes of the object.
-- All time values are in seconds.

with SYSTEM; use SYSTEM;
with RTA; use RTA;
with Real_Time; use Real_Time;  -- Alsys time management services
package AOCS_acquisition_RTATT is

CEILING : constant MODE_PRIORITY := (
others => 14);

TRANSFORMATION : constant INTEGER := 0;
THREAD_PERIOD : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(100.000 / 1000));
THREAD_OFFSET : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(0.000 / 1000));
THREAD_DEADLINE : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(20.000 / 1000));
THREAD_PRIORITY : constant MODE_PRIORITY := (

others => 12);
THREAD_IMPORTANCE : constant MODE_IMPORTANCE := (

others => hard);
INITIAL_PRIORITY : constant PRIORITY := 12;
INITIAL_CEILING : constant PRIORITY := 14;
Mode_change_WCET : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(1.000 / 1000));
thread_action_WCET : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(8.000 / 1000));
end AOCS_acquisition_RTATT;

-- HSATC operations are executed by the OBCS task inside the rendez-vous.
-- The OBCS exports one entry for each HSATC provided operation. They are
-- entered by calling user(s).
-- LSATC and ASATC operations are executed by the THREAD task.
-- The OBCS exports 3 entries for each LSATC or ASATC. One is similar to
-- the HSATC entries, the others are called only by the THREAD task.
-- They have the purpose to manage in mutual exclusion the parameters
-- buffers and the ATC related status variables.

with SYSTEM; use SYSTEM;
with RTA; use RTA;



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 33

with AOCS_acquisition_RTATT;
package AOCS_acquisition is -- CYCLIC HRT-HOOD object implementation

---------------- OBJECT DESCRIPTION ----------------
---------------- PROVIDED INTERFACE ----------------
---------------- OBJECT CONTROL STRUCTURE ----------------

-------- DESCRIPTION --------
----   CONSTRAINED OPERATION(S)   ----

-- Mode_change constrained by ASATC

task OBCS is
pragma PRIORITY(AOCS_acquisition_RTATT.INITIAL_CEILING);
pragma Passive;
entry Mode_change;
-- called by user object(s)
entry Mode_change_IN_PROGRESS;
-- called by THREAD task only
entry Mode_change_PENDING(IS_PENDING : out BOOLEAN);
-- called by THREAD task only
entry END_ATC_EXECUTION;
-- called by THREAD task only

end OBCS;
end AOCS_acquisition;

with Real_Time; use Real_Time;  -- Alsys time management services
---------------- REQUIRED OBJECT : Bus_Handler ----------------

----------   OPERATION(S)   ----------
-- Get_AOCS_data

with Bus_Handler;
---------------- REQUIRED OBJECT : AOCS_processing----------------

----------   OPERATION(S)   ----------
-- Start

with AOCS_processing;
---------------- REQUIRED OBJECT : AOCS_data ----------------

-------------   TYPE(S)   ------------
-- Index

with AOCS_data;

package body AOCS_acquisition is -- CYCLIC HRT-HOOD object implementation
----------------   INTERNAL DECLARATIONS   ----------------

----------   OPERATION(S)   ----------
procedure thread_action;
--------   FORWARD OPERATION DECLARATIONS   ----------
procedure OPCS_Mode_change;

---------------- OBJECT CONTROL STRUCTURE ----------------
--|:OBCS_CODE
--|:END_CODE
-- declarations to support LSATC and ASATC operations
-- operation Mode_change, unbuffered
Mode_change_CALLED : BOOLEAN := FALSE;

-- data for ATC management
ATC_IN_PROGRESS : NATURAL := 0;

task THREAD is
pragma PRIORITY( AOCS_acquisition_RTATT.INITIAL_PRIORITY);

end THREAD;

task body THREAD is
T : Real_Time.TIME := Real_Time.CLOCK;
ATC_PENDING : BOOLEAN;

begin
if T < RTA.SYSTEM_START_UP_TIME then

T := RTA.SYSTEM_START_UP_TIME;



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 34

end if;
T := T + AOCS_acquisition_RTATT.THREAD_OFFSET(RTA.START_MODE);
FOREVER:
loop

Real_Time.delay_until(T);
if ATC_IN_PROGRESS > 0 then

OBCS.Mode_change_PENDING(ATC_PENDING);
if ATC_PENDING then

OBCS.Mode_change_IN_PROGRESS;
OPCS_Mode_change;
OBCS.END_ATC_EXECUTION;

else
null; -- should never be executed

end if;
else

thread_action;
end if;
T := T + AOCS_acquisition_RTATT.THREAD_PERIOD(RTA.CURRENT_MODE);

end loop FOREVER;
end THREAD;

task body OBCS is
begin

loop
select

accept Mode_change do
-- if not already pending prepare execution,
-- otherwise over-write previous request.
if not Mode_change_CALLED then

Mode_change_CALLED := TRUE;
ATC_IN_PROGRESS := ATC_IN_PROGRESS + 1;

end if;
end Mode_change;

or
accept Mode_change_PENDING(IS_PENDING : out BOOLEAN) do

IS_PENDING := Mode_change_CALLED;
end Mode_change_PENDING;

or
accept Mode_change_IN_PROGRESS do

Mode_change_CALLED := FALSE;
end Mode_change_IN_PROGRESS;

or
accept END_ATC_EXECUTION do

if ATC_IN_PROGRESS > 0 then -- ignore first call (initialisation)
ATC_IN_PROGRESS := ATC_IN_PROGRESS - 1;

end if;
end END_ATC_EXECUTION;

or
terminate;

end select;
end loop;

end OBCS;

--------------   OPCS OF CONSTRAINED OPERATIONS   ----------------

procedure OPCS_Mode_change is
--|:OPCS_CODE <Mode_change>

begin
EXE_1_MSEC;

--|:END_CODE
end OPCS_Mode_change;

----------------  OPCS OF UNCONSTRAINED OPERATIONS ----------------



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 35

procedure thread_action is
--|:OPCS_CODE <thread_action>

Last_AOCS_data : AOCS_data.Index;
begin

Bus_Handler.OBCS.Get_AOCS_data(Last_AOCS_data);
for I in 1 .. 8 loop

EXE_1_MSEC;
end loop;
AOCS_processing.OBCS.Start(Last_AOCS_data);

--|:END_CODE
end thread_action;

end AOCS_acquisition;

-- It defines the Hard Real-Time attributes of the object.
-- All time values are in seconds.

with SYSTEM; use SYSTEM;
with RTA; use RTA;
with Real_Time; use Real_Time;  -- Alsys time management services
package AOCS_processing_RTATT is

CEILING : constant MODE_PRIORITY := (
others => 13);

THREAD_MAT : constant MODE_DURATION := (
others => Real_Time.To_Time_Span(100.000 / 1000));

THREAD_DEADLINE : constant MODE_DURATION := (
others => Real_Time.To_Time_Span(50.000 / 1000));

THREAD_PRIORITY : constant MODE_PRIORITY := (
others => 6);

THREAD_IMPORTANCE : constant MODE_IMPORTANCE := (
others => hard);

INITIAL_PRIORITY : constant PRIORITY := 6;
INITIAL_CEILING : constant PRIORITY := 13;
Start_WCET : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(18.000 / 1000));
end AOCS_processing_RTATT;

-- HSATC operations are executed by the OBCS task inside the rendez-vous.
-- The OBCS exports one entry for each HSATC provided operation. They are
-- entered by calling user(s).
-- LSATC and ASATC operations are executed by the THREAD task.
-- The OBCS exports 3 entries for each LSATC or ASATC. One is similar to
-- the HSATC entries, the others are called only by the THREAD task.
-- They have the purpose to manage in mutual exclusion the parameters
-- buffers and the ATC related status variables.

with SYSTEM; use SYSTEM;
with RTA; use RTA;
with Real_Time; use Real_Time;  -- Alsys time management services
with AOCS_processing_RTATT;

---------------- REQUIRED OBJECT : AOCS_data ----------------
-------------   TYPE(S)   ------------

-- AOCS_result
-- Item

-----------   CONSTANT(S)   ----------
-- The_list

-------------   TYPE(S)   ------------
-- List
-- Index
-- AOCS_raw_data

with AOCS_data;
package AOCS_processing is -- SPORADIC HRT-HOOD object implementation

---------------- OBJECT DESCRIPTION ----------------
---------------- PROVIDED INTERFACE ----------------



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 36

----   TYPES FOR CONSTRAINED OPS  ----
type Start_PARAMETER_SET is record

On_data: AOCS_data.Index;
OVERRUN: BOOLEAN := FALSE;
Not_used : Real_Time.Time_Span;

end record;
---------------- OBJECT CONTROL STRUCTURE ----------------

-------- DESCRIPTION --------
----   CONSTRAINED OPERATION(S)   ----

-- Start constrained by ASER

task OBCS is
pragma PRIORITY(AOCS_processing_RTATT.INITIAL_CEILING);
pragma Passive;
entry Start(On_data : AOCS_data.Index);
-- called by user object(s)
entry WAIT_Start(THE_PARAMS : out Start_PARAMETER_SET);
-- called by THREAD task only

end OBCS;
end AOCS_processing;

---------------- REQUIRED OBJECT : Bus_Handler ----------------
----------   OPERATION(S)   ----------

-- Put_AOCS_result
with Bus_Handler;

package body AOCS_processing is -- SPORADIC HRT-HOOD object implementation
--------   FORWARD OPERATION DECLARATIONS   ----------
procedure OPCS_Start(On_data : AOCS_data.Index ; OVERRUN : in BOOLEAN ; Not_used

: in Real_Time.Time_Span);

---------------- OBJECT CONTROL STRUCTURE ----------------
--|:OBCS_CODE
--|:END_CODE
-- operation Start, unbuffered
Start_PARAMETERS : Start_PARAMETER_SET;
Start_CALLED : BOOLEAN := FALSE;

task THREAD is
pragma PRIORITY( AOCS_processing_RTATT.INITIAL_PRIORITY);

end THREAD;

task body THREAD is
Start_BUFFER : Start_PARAMETER_SET;

begin
FOREVER:
loop

OBCS.WAIT_Start(Start_BUFFER);
OPCS_Start(Start_BUFFER.On_data,

Start_BUFFER.OVERRUN,
Start_BUFFER.Not_used);

end loop FOREVER;
end THREAD;

task body OBCS is
begin

loop
select

accept Start(On_data : AOCS_data.Index) do
-- store parameters
Start_PARAMETERS := (On_data, FALSE, Real_Time.Time_Span_Zero);
-- if not already pending prepare execution,
-- otherwise over-write previous request.
if not Start_CALLED then



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 37

Start_CALLED := TRUE;
else

Start_PARAMETERS.OVERRUN := TRUE;
end if;

end Start;
or
when Start_Called =>

accept WAIT_Start(THE_PARAMS : out Start_PARAMETER_SET) do
THE_PARAMS := Start_PARAMETERS;
Start_PARAMETERS.OVERRUN := FALSE;
Start_CALLED := FALSE;

end WAIT_Start;
or

terminate;
end select;

end loop;
end OBCS;

--------------   OPCS OF CONSTRAINED OPERATIONS   ----------------

procedure OPCS_Start(On_data : AOCS_data.Index ; OVERRUN : in BOOLEAN ; Not_used
: in Real_Time.Time_Span) is

--|:OPCS_CODE <Start in AOCS_data>
use AOCS_data;
The_result : Integer := 0;

begin
for I in 1 .. 15 loop

EXE_1_MSEC;
end loop;
for Index in AOCS_raw_data'range loop

The_result := The_result + The_list(On_data).The_data(Index);
end loop;
Bus_Handler.OBCS.Put_AOCS_result(The_result);

--|:END_CODE
end OPCS_Start;

end AOCS_processing;

-- It defines the Hard Real-Time attributes of the object.
-- All time values are in seconds.

with SYSTEM; use SYSTEM;
with RTA; use RTA;
with Real_Time; use Real_Time;  -- Alsys time management services
package Application_RTATT is

CEILING : constant MODE_PRIORITY := (
others => 3);

THREAD_MAT : constant MODE_DURATION := (
others => Real_Time.To_Time_Span(750.000 / 1000));

THREAD_DEADLINE : constant MODE_DURATION := (
others => Real_Time.To_Time_Span(750.000 / 1000));

THREAD_PRIORITY : constant MODE_PRIORITY := (
others => 1);

THREAD_IMPORTANCE : constant MODE_IMPORTANCE := (
others => soft);

INITIAL_PRIORITY : constant PRIORITY := 1;
INITIAL_CEILING : constant PRIORITY := 3;
Start_WCET : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(100.000 / 1000));
Stop_WCET : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(1.000 / 1000));
end Application_RTATT;

-- HSATC operations are executed by the OBCS task inside the rendez-vous.
-- The OBCS exports one entry for each HSATC provided operation. They are



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 38

-- entered by calling user(s).
-- LSATC and ASATC operations are executed by the THREAD task.
-- The OBCS exports 3 entries for each LSATC or ASATC. One is similar to
-- the HSATC entries, the others are called only by the THREAD task.
-- They have the purpose to manage in mutual exclusion the parameters
-- buffers and the ATC related status variables.

with SYSTEM; use SYSTEM;
with RTA; use RTA;
with Real_Time; use Real_Time;  -- Alsys time management services
with Application_RTATT;
package Application is -- SPORADIC HRT-HOOD object implementation

---------------- OBJECT DESCRIPTION ----------------
---------------- PROVIDED INTERFACE ----------------

----   TYPES FOR CONSTRAINED OPS  ----
type Start_PARAMETER_SET is record

OVERRUN: BOOLEAN := FALSE;
Not_used : Real_Time.Time_Span;

end record;
---------------- OBJECT CONTROL STRUCTURE ----------------

-------- DESCRIPTION --------
----   CONSTRAINED OPERATION(S)   ----

-- Start constrained by ASER

task OBCS is
pragma PRIORITY(Application_RTATT.INITIAL_CEILING);
pragma Passive;
entry Start;
-- called by user object(s)
entry WAIT_Start(THE_PARAMS : out Start_PARAMETER_SET);
-- called by THREAD task only

end OBCS;
----------   OPERATION(S)   ----------

procedure Stop;
end Application;

package body Application is -- SPORADIC HRT-HOOD object implementation
--------   FORWARD OPERATION DECLARATIONS   ----------
procedure OPCS_Start(OVERRUN : in BOOLEAN ; Not_used : in Real_Time.Time_Span);

---------------- OBJECT CONTROL STRUCTURE ----------------
--|:OBCS_CODE
--|:END_CODE
-- operation Start, unbuffered
Start_PARAMETERS : Start_PARAMETER_SET;
Start_CALLED : BOOLEAN := FALSE;

task THREAD is
pragma PRIORITY( Application_RTATT.INITIAL_PRIORITY);

end THREAD;

task body THREAD is
Start_BUFFER : Start_PARAMETER_SET;

begin
FOREVER:
loop

OBCS.WAIT_Start(Start_BUFFER);
OPCS_Start(Start_BUFFER.OVERRUN,

Start_BUFFER.Not_used);
end loop FOREVER;

end THREAD;



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 39

task body OBCS is
begin

loop
select

accept Start do
-- store parameters
Start_PARAMETERS := (FALSE, Real_Time.Time_Span_Zero);
-- if not already pending prepare execution,
-- otherwise over-write previous request.
if not Start_CALLED then

Start_CALLED := TRUE;
else

Start_PARAMETERS.OVERRUN := TRUE;
end if;

end Start;
or
when Start_Called =>

accept WAIT_Start(THE_PARAMS : out Start_PARAMETER_SET) do
THE_PARAMS := Start_PARAMETERS;
Start_PARAMETERS.OVERRUN := FALSE;
Start_CALLED := FALSE;

end WAIT_Start;
or

terminate;
end select;

end loop;
end OBCS;

--------------   OPCS OF CONSTRAINED OPERATIONS   ----------------

procedure OPCS_Start(OVERRUN : in BOOLEAN ; Not_used : in Real_Time.Time_Span) is
--|:OPCS_CODE <Start>

begin
for I in 1 .. 100 loop

EXE_1_MSEC;
end loop;

--|:END_CODE
end OPCS_Start;

----------------  OPCS OF UNCONSTRAINED OPERATIONS ----------------

procedure Stop is
--|:OPCS_CODE <Stop>

begin
EXE_1_MSEC;

--|:END_CODE
end Stop;

end Application;

-- It defines the Hard Real-Time attributes of the object.
-- All time values are in seconds.

with SYSTEM; use SYSTEM;
with RTA; use RTA;
with Real_Time; use Real_Time;  -- Alsys time management services
package Bus_Handler_RTATT is

CEILING : constant MODE_PRIORITY := (
others => 15);

INITIAL_CEILING : constant PRIORITY := 15;
Get_AOCS_data_WCET : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(3.000 / 1000));
Put_AOCS_result_WCET : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(3.000 / 1000));
Get_data_WCET : constant MODE_DURATION := (



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 40

others => Real_Time.To_Time_Span(1.000 / 1000));
Put_report_WCET : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(1.000 / 1000));
Put_table_WCET : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(1.000 / 1000));
end Bus_Handler_RTATT;

-- The OBCS task accepts and executes the calls to PAER and PSER operations.
-- It also implements the functional constraints using guards.
-- For each PSER operation with functional constraints the user is expected
-- to define in the ODS internals either a parameterless function named
-- OPCS_PSER_FAC returning a BOOLEAN value or a BOOLEAN variable with
-- the same name. It will be used as guard.

with SYSTEM; use SYSTEM;
with RTA; use RTA;
with Bus_Handler_RTATT;

---------------- REQUIRED OBJECT : AOCS_data ----------------
-------------   TYPE(S)   ------------

-- Index
with AOCS_data;
package Bus_Handler is -- PROTECTED HRT-HOOD object implementation

---------------- OBJECT DESCRIPTION ----------------
---------------- PROVIDED INTERFACE ----------------
---------------- OBJECT CONTROL STRUCTURE ----------------

-------- DESCRIPTION --------
----   CONSTRAINED OPERATION(S)   ----

-- Get_AOCS_data constrained by PSER
-- Put_AOCS_result constrained by PAER
-- Get_data constrained by PSER
-- Put_report constrained by PAER
-- Put_table constrained by PAER

task OBCS is
pragma PRIORITY(Bus_Handler_RTATT.INITIAL_CEILING);
pragma Passive;
entry Get_AOCS_data(The_index : out AOCS_data.Index);
-- called by user object(s)
entry Put_AOCS_result(The_result : AOCS_data.AOCS_result);
-- called by user object(s)
entry Get_data;
-- called by user object(s)
entry Put_report;
-- called by user object(s)
entry Put_table;
-- called by user object(s)

end OBCS;
end Bus_Handler;

package body Bus_Handler is -- PROTECTED HRT-HOOD object implementation
----------------   INTERNAL DECLARATIONS   ----------------

--------------   DATA   --------------
AOCS_index :  AOCS_data.Index := AOCS_data.Index'first;
--------   FORWARD OPERATION DECLARATIONS   ----------
procedure OPCS_Get_AOCS_data(The_index : out AOCS_data.Index);
-- standard operation to contain user code
procedure OPCS_Put_AOCS_result(The_result : AOCS_data.AOCS_result);
-- standard operation to contain user code
procedure OPCS_Get_data;
-- standard operation to contain user code
procedure OPCS_Put_report;
-- standard operation to contain user code
procedure OPCS_Put_table;



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 41

-- standard operation to contain user code

---------------- OBJECT CONTROL STRUCTURE ----------------
--|:OBCS_CODE
--|:END_CODE

task body OBCS is
begin

loop
select

accept Get_AOCS_data(The_index : out AOCS_data.Index) do
OPCS_Get_AOCS_data(The_index);

end Get_AOCS_data;
or

accept Put_AOCS_result(The_result : AOCS_data.AOCS_result) do
OPCS_Put_AOCS_result(The_result);

end Put_AOCS_result;
or

accept Get_data do
OPCS_Get_data;

end Get_data;
or

accept Put_report do
OPCS_Put_report;

end Put_report;
or

accept Put_table do
OPCS_Put_table;

end Put_table;
or

terminate;
end select;

end loop;
end OBCS;

--------------   OPCS OF CONSTRAINED OPERATIONS   ----------------

procedure OPCS_Get_AOCS_data(The_index : out AOCS_data.Index) is
--|:OPCS_CODE <Get_AOCS_data out AOCS_data>

use AOCS_data;
begin

for I in 1 .. 3 loop
EXE_1_MSEC;

end loop;
The_index := AOCS_index;
if AOCS_index < AOCS_data.Index'last then

AOCS_index := AOCS_index + 1;
else

AOCS_index := AOCS_data.Index'first;
end if;

--|:END_CODE
end OPCS_Get_AOCS_data;

procedure OPCS_Put_AOCS_result(The_result : AOCS_data.AOCS_result) is
--|:OPCS_CODE <Put_AOCS_result in AOCS_data>

begin
for I in 1 .. 3 loop

EXE_1_MSEC;
end loop;

--|:END_CODE
end OPCS_Put_AOCS_result;

procedure OPCS_Get_data is
--|:OPCS_CODE <Get_data>



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 42

begin
EXE_1_MSEC;

--|:END_CODE
end OPCS_Get_data;

procedure OPCS_Put_report is
--|:OPCS_CODE <Put_report>

begin
EXE_1_MSEC;

--|:END_CODE
end OPCS_Put_report;

procedure OPCS_Put_table is
--|:OPCS_CODE <Put_table>

begin
EXE_1_MSEC;

--|:END_CODE
end OPCS_Put_table;

end Bus_Handler;
with TC_acquisition;
procedure HRTSample is
begin

null;
end HRTSample;

-- It defines the Hard Real-Time attributes of the object.
-- All time values are in seconds.

with SYSTEM; use SYSTEM;
with RTA; use RTA;
with Real_Time; use Real_Time;  -- Alsys time management services
package Monitoring_RTATT is

CEILING : constant MODE_PRIORITY := (
others => 8);

TRANSFORMATION : constant INTEGER := 0;
THREAD_PERIOD : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(1000.000 / 1000));
THREAD_OFFSET : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(0.000 / 1000));
THREAD_DEADLINE : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(30.000 / 1000));
THREAD_PRIORITY : constant MODE_PRIORITY := (

others => 7);
THREAD_IMPORTANCE : constant MODE_IMPORTANCE := (

others => hard);
INITIAL_PRIORITY : constant PRIORITY := 7;
INITIAL_CEILING : constant PRIORITY := 8;
Load_Table_WCET : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(3.000 / 1000));
Send_Table_WCET : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(1.000 / 1000));
thread_action_WCET : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(5.100 / 1000));
end Monitoring_RTATT;

-- HSATC operations are executed by the OBCS task inside the rendez-vous.
-- The OBCS exports one entry for each HSATC provided operation. They are
-- entered by calling user(s).
-- LSATC and ASATC operations are executed by the THREAD task.
-- The OBCS exports 3 entries for each LSATC or ASATC. One is similar to
-- the HSATC entries, the others are called only by the THREAD task.
-- They have the purpose to manage in mutual exclusion the parameters
-- buffers and the ATC related status variables.



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 43

with SYSTEM; use SYSTEM;
with RTA; use RTA;
with Monitoring_RTATT;
package Monitoring is -- CYCLIC HRT-HOOD object implementation

---------------- OBJECT DESCRIPTION ----------------
---------------- PROVIDED INTERFACE ----------------
---------------- OBJECT CONTROL STRUCTURE ----------------

-------- DESCRIPTION --------
----   CONSTRAINED OPERATION(S)   ----

-- Load_Table constrained by LSATC
-- Send_Table constrained by ASATC

task OBCS is
pragma PRIORITY(Monitoring_RTATT.INITIAL_CEILING);
pragma Passive;
entry Load_Table;
-- called by user object(s)
entry Load_Table_IN_PROGRESS;
-- called by THREAD task only
entry Load_Table_PENDING(IS_PENDING : out BOOLEAN);
-- called by THREAD task only
entry Send_Table;
-- called by user object(s)
entry Send_Table_IN_PROGRESS;
-- called by THREAD task only
entry Send_Table_PENDING(IS_PENDING : out BOOLEAN);
-- called by THREAD task only
entry END_ATC_EXECUTION;
-- called by THREAD task only

end OBCS;
end Monitoring;

with Real_Time; use Real_Time;  -- Alsys time management services
---------------- REQUIRED OBJECT : Bus_Handler ----------------

----------   OPERATION(S)   ----------
-- Put_report

with Bus_Handler;

package body Monitoring is -- CYCLIC HRT-HOOD object implementation
----------------   INTERNAL DECLARATIONS   ----------------

----------   OPERATION(S)   ----------
procedure thread_action;
--------   FORWARD OPERATION DECLARATIONS   ----------
procedure OPCS_Load_Table;
procedure OPCS_Send_Table;

---------------- OBJECT CONTROL STRUCTURE ----------------
--|:OBCS_CODE
--|:END_CODE
-- declarations to support LSATC and ASATC operations
-- operation Load_Table, unbuffered
Load_Table_CALLED : BOOLEAN := FALSE;
-- operation Send_Table, unbuffered
Send_Table_CALLED : BOOLEAN := FALSE;

-- data for ATC management
ATC_IN_PROGRESS : NATURAL := 0;

task THREAD is
pragma PRIORITY( Monitoring_RTATT.INITIAL_PRIORITY);

end THREAD;

task body THREAD is
T : Real_Time.TIME := Real_Time.CLOCK;



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 44

ATC_PENDING : BOOLEAN;
begin

if T < RTA.SYSTEM_START_UP_TIME then
T := RTA.SYSTEM_START_UP_TIME;

end if;
T := T + Monitoring_RTATT.THREAD_OFFSET(RTA.START_MODE);
FOREVER:
loop

Real_Time.delay_until(T);
if ATC_IN_PROGRESS > 0 then

OBCS.Load_Table_PENDING(ATC_PENDING);
if ATC_PENDING then

OBCS.Load_Table_IN_PROGRESS;
OPCS_Load_Table;
OBCS.END_ATC_EXECUTION;

else
OBCS.Send_Table_PENDING(ATC_PENDING);
if ATC_PENDING then

OBCS.Send_Table_IN_PROGRESS;
OPCS_Send_Table;
OBCS.END_ATC_EXECUTION;

else
null; -- should never be executed

end if;
end if;

else
thread_action;

end if;
T := T + Monitoring_RTATT.THREAD_PERIOD(RTA.CURRENT_MODE);

end loop FOREVER;
end THREAD;

task body OBCS is
begin

loop
select

accept Load_Table do
-- if not already pending prepare execution,
-- otherwise over-write previous request.
if not Load_Table_CALLED then

Load_Table_CALLED := TRUE;
ATC_IN_PROGRESS := ATC_IN_PROGRESS + 1;

end if;
end Load_Table;

or
accept Load_Table_PENDING(IS_PENDING : out BOOLEAN) do

IS_PENDING := Load_Table_CALLED;
end Load_Table_PENDING;

or
accept Load_Table_IN_PROGRESS do

Load_Table_CALLED := FALSE;
end Load_Table_IN_PROGRESS;

or
accept Send_Table do

-- if not already pending prepare execution,
-- otherwise over-write previous request.
if not Send_Table_CALLED then

Send_Table_CALLED := TRUE;
ATC_IN_PROGRESS := ATC_IN_PROGRESS + 1;

end if;
end Send_Table;

or
accept Send_Table_PENDING(IS_PENDING : out BOOLEAN) do

IS_PENDING := Send_Table_CALLED;



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 45

end Send_Table_PENDING;
or

accept Send_Table_IN_PROGRESS do
Send_Table_CALLED := FALSE;

end Send_Table_IN_PROGRESS;
or

accept END_ATC_EXECUTION do
if ATC_IN_PROGRESS > 0 then -- ignore first call (initialisation)

ATC_IN_PROGRESS := ATC_IN_PROGRESS - 1;
end if;

end END_ATC_EXECUTION;
or

terminate;
end select;

end loop;
end OBCS;

--------------   OPCS OF CONSTRAINED OPERATIONS   ----------------

procedure OPCS_Load_Table is
--|:OPCS_CODE <Load_Table>

begin
for I in 1 .. 3 loop

Bus_Handler.OBCS.Get_data;
end loop;

--|:END_CODE
end OPCS_Load_Table;

procedure OPCS_Send_Table is
--|:OPCS_CODE <Send_Table>

begin
EXE_1_MSEC;
Bus_Handler.OBCS.Put_Table;

--|:END_CODE
end OPCS_Send_Table;

----------------  OPCS OF UNCONSTRAINED OPERATIONS ----------------

procedure thread_action is
--|:OPCS_CODE <thread_action>

begin
for I in 1 .. 3 loop

Bus_Handler.OBCS.Get_data;
EXE_1_MSEC;

end loop;
Bus_Handler.OBCS.Put_report;

--|:END_CODE
end thread_action;

end Monitoring;

-- It defines the Hard Real-Time attributes of the object.
-- All time values are in seconds.

with SYSTEM; use SYSTEM;
with RTA; use RTA;
with Real_Time; use Real_Time;  -- Alsys time management services
package Scheduler_RTATT is

CEILING : constant MODE_PRIORITY := (
others => 5);

TRANSFORMATION : constant INTEGER := 0;
THREAD_PERIOD : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(750.000 / 1000));
THREAD_OFFSET : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(0.000 / 1000));



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 46

THREAD_DEADLINE : constant MODE_DURATION := (
others => Real_Time.To_Time_Span(750.000 / 1000));

THREAD_PRIORITY : constant MODE_PRIORITY := (
others => 2);

THREAD_IMPORTANCE : constant MODE_IMPORTANCE := (
others => hard);

INITIAL_PRIORITY : constant PRIORITY := 2;
INITIAL_CEILING : constant PRIORITY := 5;
Mode_change_WCET : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(1.000 / 1000));
Set_schedule_WCET : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(1.000 / 1000));
thread_action_WCET : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(3.600 / 1000));
end Scheduler_RTATT;

-- HSATC operations are executed by the OBCS task inside the rendez-vous.
-- The OBCS exports one entry for each HSATC provided operation. They are
-- entered by calling user(s).
-- LSATC and ASATC operations are executed by the THREAD task.
-- The OBCS exports 3 entries for each LSATC or ASATC. One is similar to
-- the HSATC entries, the others are called only by the THREAD task.
-- They have the purpose to manage in mutual exclusion the parameters
-- buffers and the ATC related status variables.

with SYSTEM; use SYSTEM;
with RTA; use RTA;
with Scheduler_RTATT;
package Scheduler is -- CYCLIC HRT-HOOD object implementation

---------------- OBJECT DESCRIPTION ----------------
---------------- PROVIDED INTERFACE ----------------
---------------- OBJECT CONTROL STRUCTURE ----------------

-------- DESCRIPTION --------
----   CONSTRAINED OPERATION(S)   ----

-- Mode_change constrained by ASATC
-- Set_schedule constrained by LSATC

task OBCS is
pragma PRIORITY(Scheduler_RTATT.INITIAL_CEILING);
pragma Passive;
entry Mode_change;
-- called by user object(s)
entry Mode_change_IN_PROGRESS;
-- called by THREAD task only
entry Mode_change_PENDING(IS_PENDING : out BOOLEAN);
-- called by THREAD task only
entry Set_schedule;
-- called by user object(s)
entry Set_schedule_IN_PROGRESS;
-- called by THREAD task only
entry Set_schedule_PENDING(IS_PENDING : out BOOLEAN);
-- called by THREAD task only
entry END_ATC_EXECUTION;
-- called by THREAD task only

end OBCS;
end Scheduler;

with Real_Time; use Real_Time;  -- Alsys time management services
---------------- REQUIRED OBJECT : Application ----------------

----------   OPERATION(S)   ----------
-- Stop
-- Start

with Application;



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 47

package body Scheduler is -- CYCLIC HRT-HOOD object implementation
----------------   INTERNAL DECLARATIONS   ----------------

----------   OPERATION(S)   ----------
procedure thread_action;
--------   FORWARD OPERATION DECLARATIONS   ----------
procedure OPCS_Mode_change;
procedure OPCS_Set_schedule;

---------------- OBJECT CONTROL STRUCTURE ----------------
--|:OBCS_CODE
--|:END_CODE
-- declarations to support LSATC and ASATC operations
-- operation Mode_change, unbuffered
Mode_change_CALLED : BOOLEAN := FALSE;
-- operation Set_schedule, unbuffered
Set_schedule_CALLED : BOOLEAN := FALSE;

-- data for ATC management
ATC_IN_PROGRESS : NATURAL := 0;

task THREAD is
pragma PRIORITY( Scheduler_RTATT.INITIAL_PRIORITY);

end THREAD;

task body THREAD is
T : Real_Time.TIME := Real_Time.CLOCK;
ATC_PENDING : BOOLEAN;

begin
if T < RTA.SYSTEM_START_UP_TIME then

T := RTA.SYSTEM_START_UP_TIME;
end if;
T := T + Scheduler_RTATT.THREAD_OFFSET(RTA.START_MODE);
FOREVER:
loop

Real_Time.delay_until(T);
if ATC_IN_PROGRESS > 0 then

OBCS.Mode_change_PENDING(ATC_PENDING);
if ATC_PENDING then

OBCS.Mode_change_IN_PROGRESS;
OPCS_Mode_change;
OBCS.END_ATC_EXECUTION;

else
OBCS.Set_schedule_PENDING(ATC_PENDING);
if ATC_PENDING then

OBCS.Set_schedule_IN_PROGRESS;
OPCS_Set_schedule;
OBCS.END_ATC_EXECUTION;

else
null; -- should never be executed

end if;
end if;

else
thread_action;

end if;
T := T + Scheduler_RTATT.THREAD_PERIOD(RTA.CURRENT_MODE);

end loop FOREVER;
end THREAD;

task body OBCS is
begin

loop
select

accept Mode_change do
-- if not already pending prepare execution,



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 48

-- otherwise over-write previous request.
if not Mode_change_CALLED then

Mode_change_CALLED := TRUE;
ATC_IN_PROGRESS := ATC_IN_PROGRESS + 1;

end if;
end Mode_change;

or
accept Mode_change_PENDING(IS_PENDING : out BOOLEAN) do

IS_PENDING := Mode_change_CALLED;
end Mode_change_PENDING;

or
accept Mode_change_IN_PROGRESS do

Mode_change_CALLED := FALSE;
end Mode_change_IN_PROGRESS;

or
accept Set_schedule do

-- if not already pending prepare execution,
-- otherwise over-write previous request.
if not Set_schedule_CALLED then

Set_schedule_CALLED := TRUE;
ATC_IN_PROGRESS := ATC_IN_PROGRESS + 1;

end if;
end Set_schedule;

or
accept Set_schedule_PENDING(IS_PENDING : out BOOLEAN) do

IS_PENDING := Set_schedule_CALLED;
end Set_schedule_PENDING;

or
accept Set_schedule_IN_PROGRESS do

Set_schedule_CALLED := FALSE;
end Set_schedule_IN_PROGRESS;

or
accept END_ATC_EXECUTION do

if ATC_IN_PROGRESS > 0 then -- ignore first call (initialisation)
ATC_IN_PROGRESS := ATC_IN_PROGRESS - 1;

end if;
end END_ATC_EXECUTION;

or
terminate;

end select;
end loop;

end OBCS;

--------------   OPCS OF CONSTRAINED OPERATIONS   ----------------

procedure OPCS_Mode_change is
--|:OPCS_CODE <Mode_change>

begin
EXE_1_MSEC;
Application.Stop;

--|:END_CODE
end OPCS_Mode_change;

procedure OPCS_Set_schedule is
--|:OPCS_CODE <Set_schedule>

begin
for I in 1 .. 2 loop

EXE_1_MSEC;
end loop;

--|:END_CODE
end OPCS_Set_schedule;

----------------  OPCS OF UNCONSTRAINED OPERATIONS ----------------



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 49

procedure thread_action is
--|:OPCS_CODE <thread_action>

begin
for I in 1 .. 3 loop

EXE_1_MSEC;
end loop;
Application.OBCS.Start;

--|:END_CODE
end thread_action;

end Scheduler;

-- It defines the Hard Real-Time attributes of the object.
-- All time values are in seconds.

with SYSTEM; use SYSTEM;
with RTA; use RTA;
with Real_Time; use Real_Time;  -- Alsys time management services
package TC_acquisition_RTATT is

CEILING : constant MODE_PRIORITY := (
others => 10);

TRANSFORMATION : constant INTEGER := 0;
THREAD_PERIOD : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(500.000 / 1000));
THREAD_OFFSET : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(0.000 / 1000));
THREAD_DEADLINE : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(10.000 / 1000));
THREAD_PRIORITY : constant MODE_PRIORITY := (

others => 9);
THREAD_IMPORTANCE : constant MODE_IMPORTANCE := (

others => hard);
INITIAL_PRIORITY : constant PRIORITY := 9;
INITIAL_CEILING : constant PRIORITY := 10;
Mode_change_WCET : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(1.000 / 1000));
thread_action_WCET : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(1.000 / 1000));
end TC_acquisition_RTATT;

-- HSATC operations are executed by the OBCS task inside the rendez-vous.
-- The OBCS exports one entry for each HSATC provided operation. They are
-- entered by calling user(s).
-- LSATC and ASATC operations are executed by the THREAD task.
-- The OBCS exports 3 entries for each LSATC or ASATC. One is similar to
-- the HSATC entries, the others are called only by the THREAD task.
-- They have the purpose to manage in mutual exclusion the parameters
-- buffers and the ATC related status variables.

with SYSTEM; use SYSTEM;
with RTA; use RTA;
with TC_acquisition_RTATT;
package TC_acquisition is -- CYCLIC HRT-HOOD object implementation

---------------- OBJECT DESCRIPTION ----------------
---------------- PROVIDED INTERFACE ----------------
---------------- OBJECT CONTROL STRUCTURE ----------------

-------- DESCRIPTION --------
----   CONSTRAINED OPERATION(S)   ----

-- Mode_change constrained by ASATC

task OBCS is
pragma PRIORITY(TC_acquisition_RTATT.INITIAL_CEILING);
pragma Passive;
entry Mode_change;
-- called by user object(s)



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 50

entry Mode_change_IN_PROGRESS;
-- called by THREAD task only
entry Mode_change_PENDING(IS_PENDING : out BOOLEAN);
-- called by THREAD task only
entry END_ATC_EXECUTION;
-- called by THREAD task only

end OBCS;
end TC_acquisition;

with Real_Time; use Real_Time;  -- Alsys time management services
---------------- REQUIRED OBJECT : TC_processing ----------------

----------   OPERATION(S)   ----------
-- Start

with TC_processing;
---------------- REQUIRED OBJECT : Telecommand ----------------

-----------   CONSTANT(S)   ----------
-- The_list

-------------   TYPE(S)   ------------
-- List
-- Index
-- Item

with Telecommand;

package body TC_acquisition is -- CYCLIC HRT-HOOD object implementation
----------------   INTERNAL DECLARATIONS   ----------------

----------   OPERATION(S)   ----------
procedure thread_action;

--------------   DATA   --------------
Current_Index :  Telecommand.Index := Telecommand.Index'first;
Current_Item :  Telecommand.Item;
--------   FORWARD OPERATION DECLARATIONS   ----------
procedure OPCS_Mode_change;

---------------- OBJECT CONTROL STRUCTURE ----------------
--|:OBCS_CODE
--|:END_CODE
-- declarations to support LSATC and ASATC operations
-- operation Mode_change, unbuffered
Mode_change_CALLED : BOOLEAN := FALSE;

-- data for ATC management
ATC_IN_PROGRESS : NATURAL := 0;

task THREAD is
pragma PRIORITY( TC_acquisition_RTATT.INITIAL_PRIORITY);

end THREAD;

task body THREAD is
T : Real_Time.TIME := Real_Time.CLOCK;
ATC_PENDING : BOOLEAN;

begin
if T < RTA.SYSTEM_START_UP_TIME then

T := RTA.SYSTEM_START_UP_TIME;
end if;
T := T + TC_acquisition_RTATT.THREAD_OFFSET(RTA.START_MODE);
FOREVER:
loop

Real_Time.delay_until(T);
if ATC_IN_PROGRESS > 0 then

OBCS.Mode_change_PENDING(ATC_PENDING);
if ATC_PENDING then

OBCS.Mode_change_IN_PROGRESS;
OPCS_Mode_change;
OBCS.END_ATC_EXECUTION;



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 51

else
null; -- should never be executed

end if;
else

thread_action;
end if;
T := T + TC_acquisition_RTATT.THREAD_PERIOD(RTA.CURRENT_MODE);

end loop FOREVER;
end THREAD;

task body OBCS is
begin

loop
select

accept Mode_change do
-- if not already pending prepare execution,
-- otherwise over-write previous request.
if not Mode_change_CALLED then

Mode_change_CALLED := TRUE;
ATC_IN_PROGRESS := ATC_IN_PROGRESS + 1;

end if;
end Mode_change;

or
accept Mode_change_PENDING(IS_PENDING : out BOOLEAN) do

IS_PENDING := Mode_change_CALLED;
end Mode_change_PENDING;

or
accept Mode_change_IN_PROGRESS do

Mode_change_CALLED := FALSE;
end Mode_change_IN_PROGRESS;

or
accept END_ATC_EXECUTION do

if ATC_IN_PROGRESS > 0 then -- ignore first call (initialisation)
ATC_IN_PROGRESS := ATC_IN_PROGRESS - 1;

end if;
end END_ATC_EXECUTION;

or
terminate;

end select;
end loop;

end OBCS;

--------------   OPCS OF CONSTRAINED OPERATIONS   ----------------

procedure OPCS_Mode_change is
--|:OPCS_CODE <Mode_change>

begin
EXE_1_MSEC;

--|:END_CODE
end OPCS_Mode_change;

----------------  OPCS OF UNCONSTRAINED OPERATIONS ----------------

procedure thread_action is
--|:OPCS_CODE <thread_action>

use Telecommand;
begin

EXE_1_MSEC;
Current_Item := Telecommand.The_List(Current_Index);
TC_processing.OBCS.Start(Current_Item);
if Current_Index < Telecommand.Index'last then

Current_Index := Current_Index + 1;
else

Current_Index := Telecommand.Index'first;



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 52

end if;
--|:END_CODE

end thread_action;
end TC_acquisition;

-- It defines the Hard Real-Time attributes of the object.
-- All time values are in seconds.

with SYSTEM; use SYSTEM;
with RTA; use RTA;
with Real_Time; use Real_Time;  -- Alsys time management services
package TC_processing_RTATT is

CEILING : constant MODE_PRIORITY := (
others => 11);

THREAD_MAT : constant MODE_DURATION := (
others => Real_Time.To_Time_Span(500.000 / 1000));

THREAD_DEADLINE : constant MODE_DURATION := (
others => Real_Time.To_Time_Span(400.000 / 1000));

THREAD_PRIORITY : constant MODE_PRIORITY := (
others => 4);

THREAD_IMPORTANCE : constant MODE_IMPORTANCE := (
others => hard);

INITIAL_PRIORITY : constant PRIORITY := 4;
INITIAL_CEILING : constant PRIORITY := 11;
Start_WCET : constant MODE_DURATION := (

others => Real_Time.To_Time_Span(10.000 / 1000));
end TC_processing_RTATT;

-- HSATC operations are executed by the OBCS task inside the rendez-vous.
-- The OBCS exports one entry for each HSATC provided operation. They are
-- entered by calling user(s).
-- LSATC and ASATC operations are executed by the THREAD task.
-- The OBCS exports 3 entries for each LSATC or ASATC. One is similar to
-- the HSATC entries, the others are called only by the THREAD task.
-- They have the purpose to manage in mutual exclusion the parameters
-- buffers and the ATC related status variables.

with SYSTEM; use SYSTEM;
with RTA; use RTA;
with Real_Time; use Real_Time;  -- Alsys time management services
with TC_processing_RTATT;

---------------- REQUIRED OBJECT : Telecommand ----------------
-------------   TYPE(S)   ------------

-- Item
with Telecommand;
package TC_processing is -- SPORADIC HRT-HOOD object implementation

---------------- OBJECT DESCRIPTION ----------------
---------------- PROVIDED INTERFACE ----------------

----   TYPES FOR CONSTRAINED OPS  ----
type Start_PARAMETER_SET is record

TC : Telecommand.Item;
OVERRUN: BOOLEAN := FALSE;
Not_used : Real_Time.Time_Span;

end record;
---------------- OBJECT CONTROL STRUCTURE ----------------

-------- DESCRIPTION --------
----   CONSTRAINED OPERATION(S)   ----

-- Start constrained by ASER

task OBCS is
pragma PRIORITY(TC_processing_RTATT.INITIAL_CEILING);
pragma Passive;
entry Start(TC : Telecommand.Item);



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 53

-- called by user object(s)
entry WAIT_Start(THE_PARAMS : out Start_PARAMETER_SET);
-- called by THREAD task only

end OBCS;
end TC_processing;

---------------- REQUIRED OBJECT : AOCS_acquisition ----------------
----------   OPERATION(S)   ----------

-- Mode_change
with AOCS_acquisition;

---------------- REQUIRED OBJECT : Scheduler ----------------
----------   OPERATION(S)   ----------

-- Mode_change
-- Set_schedule

with Scheduler;
---------------- REQUIRED OBJECT : Monitoring ----------------

----------   OPERATION(S)   ----------
-- Send_Table
-- Load_Table

with Monitoring;
---------------- REQUIRED OBJECT : Bus_Handler ----------------

----------   OPERATION(S)   ----------
-- Put_report

with Bus_Handler;
---------------- REQUIRED OBJECT : TC_acquisition ----------------

----------   OPERATION(S)   ----------
-- Mode_change

with TC_acquisition;

package body TC_processing is -- SPORADIC HRT-HOOD object implementation
--------   FORWARD OPERATION DECLARATIONS   ----------
procedure OPCS_Start(TC : Telecommand.Item ; OVERRUN : in BOOLEAN ; Not_used : in

Real_Time.Time_Span);

---------------- OBJECT CONTROL STRUCTURE ----------------
--|:OBCS_CODE
--|:END_CODE
-- operation Start, unbuffered
Start_PARAMETERS : Start_PARAMETER_SET;
Start_CALLED : BOOLEAN := FALSE;

task THREAD is
pragma PRIORITY( TC_processing_RTATT.INITIAL_PRIORITY);

end THREAD;

task body THREAD is
Start_BUFFER : Start_PARAMETER_SET;

begin
FOREVER:
loop

OBCS.WAIT_Start(Start_BUFFER);
OPCS_Start(Start_BUFFER.TC,

Start_BUFFER.OVERRUN,
Start_BUFFER.Not_used);

end loop FOREVER;
end THREAD;

task body OBCS is
begin

loop
select

accept Start(TC : Telecommand.Item) do
-- store parameters
Start_PARAMETERS := (TC, FALSE, Real_Time.Time_Span_Zero);



in tec s  sistemi s.p.a.

ERC32 Products Evaluation Programme

Final Report 54

-- if not already pending prepare execution,
-- otherwise over-write previous request.
if not Start_CALLED then

Start_CALLED := TRUE;
else

Start_PARAMETERS.OVERRUN := TRUE;
end if;

end Start;
or
when Start_Called =>

accept WAIT_Start(THE_PARAMS : out Start_PARAMETER_SET) do
THE_PARAMS := Start_PARAMETERS;
Start_PARAMETERS.OVERRUN := FALSE;
Start_CALLED := FALSE;

end WAIT_Start;
or

terminate;
end select;

end loop;
end OBCS;

--------------   OPCS OF CONSTRAINED OPERATIONS   ----------------

procedure OPCS_Start(TC : Telecommand.Item ; OVERRUN : in BOOLEAN ; Not_used : in
Real_Time.Time_Span) is

--|:OPCS_CODE <Start in Telecommand>
use Telecommand;

begin
for I in 1 .. 10 loop

EXE_1_MSEC;
end loop;
case TC.OP_code is

when 1 => Scheduler.OBCS.Set_schedule;
when 2 => Monitoring.OBCS.Load_Table;
when 3 => Monitoring.OBCS.Send_Table;
when 4 => Bus_Handler.OBCS.Put_Report;
when 5 => AOCS_acquisition.OBCS.Mode_change;
when 6 => TC_acquisition.OBCS.Mode_change;
when 7 => Scheduler.OBCS.Mode_change;
when 8 => null;
when 9 => null;
when 10 => null;
when others => null;

end case;
--|:END_CODE

end OPCS_Start;
end TC_processing;


