

© University of Dundee

SpaceNet – RMAP IP Core

User Manual

Revision: Issue 1.6

Date: 2nd March 2010

ESA Contract Number 220774-07-NL/LvH

Ref: RMAP IP WP2-400.3

Space Technology Centre

School of Computing

University of Dundee

Dundee, DD1 4HN

Scotland, UK

spacetech.computing.dundee.ac.uk

http://spacetech.computing.dundee.ac.uk/

SpaceNet – RMAP IP
VHDL User Manual

2 © University of Dundee

Document Authors

Chris McClements (CMC)

Martin Dunstan (MND)

Document Change Log

Date Revision No Comments

29
th
 September 2008 Issue 1.0 MND: First issue

24
th
 December 2008 Issue 1.1

CMC: Added initiator interfaces, initiator data

structures and synthesis sections

19
th
 January 2009 Issue 1.2 CMC: Initiator bit order correction

12
th
 February 2009 Issue 1.3 CMC: User comment updates

9
th
 March 2009 Issue 1.4 CMC: See numerous document changes in section 10

18
th
 May 2009 Issue 1.5 CMC: Add additional transaction debug/status signals

2
nd

 March 2010 Issue 1.6 CMC: Updated synthesis results

2
nd

 March 2010 Issue 1.7 CMC: Update RMAP document reference number

A comprehensive list of the changes which have been made to this document in each revision is provided in

section 10.

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 3

CONTENTS

CONTENTS... 3

I LIST OF FIGURES ... 6

II LIST OF TABLES .. 7

1 INTRODUCTION .. 8

1.1 AIMS AND OBJECTIVES ... 8

1.2 GUIDE TO DOCUMENT .. 8

1.3 ACRONYMS AND ABBREVIATIONS .. 9

1.4 TERMS AND DEFINITIONS .. 9

1.5 REFERENCE DOCUMENTS ... 12

1.6 APPLICABLE DOCUMENTS ... 12

2 LIMITATIONS AND INFORMATION ... 14

3 VHDL FILE HIERARCHY ... 15

4 ARCHITECTURE OVERVIEW .. 19

4.1 SPACEWIRE INTERFACE ... 19

4.2 SPACEWIRE LOOPBACK ... 20

4.3 TIME-CODE HANDLER ... 20

4.4 PROTOCOL DEMUX .. 20

4.5 PROTOCOL MUX .. 20

4.6 INITIATOR COMMAND ENCODER .. 20

4.7 INITIATOR TRANSACTION TABLE .. 20

4.8 INITIATOR TRANSACTION TABLE CONTROLLER ... 21

4.9 INITIATOR REPLY DECODER .. 21

4.10 INITIATOR DELETE CONTROLLER ... 21

4.11 TARGET COMMAND DECODER .. 21

4.12 TARGET REPLY ENCODER .. 21

4.13 TARGET CONTROLLER .. 22

4.14 TARGET VERIFY CONTROLLER .. 22

SpaceNet – RMAP IP
VHDL User Manual

4 © University of Dundee

4.15 DMA CONTROLLER .. 22

4.16 STATUS ... 22

4.17 CLOCK AND RESET ... 22

5 CONFIGURATION AND INTERFACES ... 23

5.1 CONFIGURATION GENERICS .. 23

5.2 CLOCK/RESET INTERFACE .. 30

5.3 LOW-LEVEL SPACEWIRE INTERFACE ... 30

5.4 HIGH-LEVEL SPACEWIRE INTERFACE .. 30

5.5 TIMECODE INTERFACE .. 31

5.6 NON-RMAP RECEIVE INTERFACE ... 31

5.7 NON-RMAP TRANSMIT INTERFACE ... 32

5.8 EXTERNAL BUS INTERFACE ... 33

5.9 READ MODIFY WRITE INTERFACE.. 34

5.10 TARGET AUTHORISATION INTERFACE .. 34

5.11 TARGET STATUS INTERFACE ... 35

5.12 INITIATOR CONFIGURATION/STATUS INTERFACE .. 36

5.13 INITIATOR COMMAND INTERFACE .. 36

5.14 INITIATOR REPLY INTERFACE .. 38

5.15 INITIATOR DELETE/CLEAR INTERFACE ... 39

5.16 INITIATOR TRANSACTION TABLE DEBUG PORT INTERFACE .. 40

6 EXTERNAL BUS INTERFACE .. 42

6.1 EXTERNAL BUS CONNECTIONS ... 42

6.2 EXTERNAL BUS OPERATION .. 43

7 INITIATOR .. 50

7.1 SENDING A NEW COMMAND ... 51

7.2 RECEIVING A REPLY ... 51

7.3 TRANSACTION DETAILS RECORD... 52

7.4 HEADER INFORMATION RECORD ... 53

7.5 NOTIFY SENT/REPLY RECORD .. 54

7.6 DEBUG READ PORT DETAILS .. 55

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 5

7.7 REPLY PACKET TIMEOUT DETECTION .. 55

8 VERIFICATION .. 57

9 SYNTHESIS .. 58

9.1 CLOCK PERFORMANCE ... 58

9.2 SYNTHESIS RESULTS .. 58

9.3 AREA OPTIMISATION... 60

9.4 MEMORY BLOCKS AND FIFOS ... 61

9.5 SEU PROTECTION ... 63

9.6 SYNTHESIS EXAMPLE FOLDER “DESIGN/SYNTH_EXAMPLE/” .. 63

10 DOCUMENT CHANGES .. 64

SpaceNet – RMAP IP
VHDL User Manual

6 © University of Dundee

I LIST OF FIGURES

Figure 4-1: RMAP IP Core Architecture Overview .. 19

Figure 5-1 MSB First .. 25

Figure 5-2 LSB First ... 25

Figure 6-1: RMAP IP Core connected directly to host bus .. 42

Figure 6-2: RMAP IP Core connected through a bridge .. 43

Figure 6-3: RMAP IP Core connected directly to peripheral/controller ... 43

Figure 6-4: External bus basic transfer operation ... 44

Figure 6-5: External bus operation with wait states ... 45

Figure 6-6: External bus operation with bus error ... 45

Figure 6-7: External bus multiple transfer operation ... 46

Figure 6-8: External bus operation with BUSY state ... 47

Figure 6-9: Complete example of a read burst .. 47

Figure 6-10: Complete example of a write burst ... 48

Figure 7-1: Initiator Data Structures .. 50

Figure 7-2 Transaction Details Record Memory Setup ... 52

Figure 7-3 Header Information Record Setup ... 53

Figure 7-4 Notify Sent Record ... 54

Figure 7-5 Notify Reply Record ... 54

Figure 7-6 Debug port transaction record details .. 55

Figure 7-7 Timeout check settings interaction ... 56

Figure 9-1 Synchronous and asynchronous dual port memory blocks ... 62

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 7

II LIST OF TABLES

Table 1-1: Reference Documents .. 12

Table 1-2: Applicable Documents .. 13

Table 5-1 Generics Overview .. 24

Table 7-1 Transaction Record Fields .. 53

Table 7-2 Header information record fields ... 54

Table 9-1 “rmap_codec_ip.vhd” Generic settings for area usage figures ... 59

Table 9-2 Area usage of RMAP core synthesised with Mentor Graphics Precision 59

Table 9-3 Area usage of RMAP core synthesised with Synplicity Synplify ... 60

Table 9-4 Generics modified for reduced area consumption results ... 60

Table 9-5 Area optimisation synthesis results (Mentor Graphics Precision) ... 60

Table 9-6 Core memory blocks ... 61

Table 9-7 VHDL memory block files. ... 63

Table 10-1 Document changes ... 65

SpaceNet – RMAP IP
VHDL User Manual

8 © University of Dundee

1 INTRODUCTION

1.1 AIMS AND OBJECTIVES

WP2 in the SpaceNet activity aims to provide a SpaceWire interface VHDL core that includes the RMAP

protocol extension to SpaceWire. This will enable users to readily implement the RMAP protocols in FPGAs

or ASICs.

The objective of this document is to provide an introduction to the VHDL source code of the RMAP IP core,

define the configuration parameters and describe the RMAP IP core interfaces.

1.2 GUIDE TO DOCUMENT

Section 3 provides an overview of the IP core source code tree and provides a list of the files, in compilation

order, needed for synthesis.

Section 4 describes the RMAP IP core architecture covering target and initiator interfaces.

Section 5 describes the configuration and interfaces of the RMAP codec.

Section 6 describes the external DMA bus interface in more detail.

Section 10 contains a comprehensive list of the changes which have been made to this document in each

revision.

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 9

1.3 ACRONYMS AND ABBREVIATIONS

AD Applicable Document

ASIC Application Specific Integrated Circuit

DMA Direct Memory Access

CODEC Coder Decoder

ECSS European Cooperation for Space Standardization

ESA European Space Agency

ESTEC ESA Space Technology and Research Centre

FIFO First-In-First-Out

FPGA Field Programmable Gate Array

I/F Interface

IP Intellectual Property

LVDS Low Voltage Differential Signalling

PC Personal Computer

PCB Printed Circuit Board

RD Reference Document

RMW Read/Modify/Write

SpW SpaceWire

SpW-10X The SpaceWire Router ASIC device under test

UoD University of Dundee

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

1.4 TERMS AND DEFINITIONS

1.4.1 Numbers

In this document hexadecimal numbers are written with the prefix 0x, for example 0x34 and 0xdf15. Binary

numbers are written with the prefix 0b, for example 0b01001100 and 0b01.

SpaceNet – RMAP IP
VHDL User Manual

10 © University of Dundee

1.4.2 SpaceWire Definitions

Cargo is a sequence of data characters containing the information transmitted in a SpaceWire packet.

Destination is the SpaceWire node that a SpaceWire packet is to be delivered to.

Destination address is a SpaceWire path or logical address of a destination.

EEP is the Error End of Packet marker of a SpaceWire packet which indicates that the SpaceWire packet

was terminated prematurely.

EOP is the End Of Packet marker of a SpaceWire packet.

Logical Address is an identifier of a destination which can be used to route a SpaceWire packet to the

destination or, if path addressing is being used, to simply confirm that the final destination is the correct one

i.e. that the logical address of the destination matches the logical address in the packet.

Packet is a SpaceWire packet which comprises a destination address, a cargo and an end of packet marker.

Path Address is a sequence of one or more SpaceWire data characters that defines the route to a target by

specifying, for each router encountered on the way to the destination, the output port that a SpaceWire

packet is to be forwarded through. A path address comprises one byte for each router on the path to the

destination. Once a path address byte has been used to specify an output port of a router it is deleted to

expose the next path address byte for the next router. All path address bytes have been deleted by the time

the packet reaches the destination.

Source is the SpaceWire node that sent a SpaceWire packet.

SpaceWire Fabric a SpaceWire point-to-point link or SpaceWire network of links and routers.

SpaceWire Interface is the ESA SpaceWire IP core designed by UoD.

1.4.3 RMAP Definitions

Address is a 32-bit field in an RMAP command that contains the bottom 32-bits of the address to which the

data in a write command is to be written or from where data is to be read for a read command. Input/output

registers and control/status registers are assumed to be memory mapped. When combined with the

Extended Write Address byte a 40-bit memory address is provided. The address can be separated into

different fields and interpreted in a variety of different ways provided that the initiator and target both agree

on the interpretation. For example, the 40-bit address may be used as a single address space, it may be

interpreted as a memory/register bank field followed by an address, it may reference a mailbox or it may use

one field to identify a specific application, another to reference a bank of memory or mail box related to that

application and a third field to reference the memory location within the memory bank. There are many

possible ways in which the address fields can be used. The important feature of the Extended Memory and

Address fields is that together they define where in the target data is to be written to or read from.

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 11

Command is an RMAP packet sent by an initiator to a target that reads, writes or read-modify-writes data to

the target.

Command Header is the header of an RMAP command.

Data is the data that is written in a write command or the data that is read in a read response.

Data CRC is an 8-bit Cyclic Redundancy Check (CRC) used to confirm that the data in the data field is

correct before being written in a verified write command or was correctly transferred in a non-verified write

command or read reply. The data CRC starts with the character after the header CRC and covers all the

data characters.

Data Length is a 24-bit field in an RMAP command that contains the length in bytes of the data that is

written or read. The most-significant byte of the length is sent first.

Key is an 8-bit field in an RMAP command that provides a key which is matched by the target user

application in order for the RMAP command to be accepted.

Extended Address is an 8-bit field in an RMAP command that contains the most-significant 8-bits of the

memory address extending the 32-bit memory address to 40-bits allowing a 1 Terabyte address space to be

accessed directly in each node. The Extended Address can be used to differentiate between various address

spaces in the target. For example when set to 0x00 it can reference a 4G location directly addressable

memory space and when set to 0x01 it can reference an array of mailboxes, which provide indirect

addressing.

Header is the first part of a command or reply packet that defines the command or reply. It contains all of the

command or reply except the data and data CRC fields.

Header CRC field is an 8-bit Cyclic Redundancy Check (CRC) used to confirm that the header is correct

before executing the command. Each character in the header starting with the target logical address and

ending with the character before the header CRC itself is used in the CRC.

Initiator is a SpaceWire node that supports the sending of RMAP commands and the receiving of RMAP

replies.

Initiator Logical Address is the logical address of the initiator.

Initiator RMAP Interface generates the RMAP command when requested to do so by user logic and sends

out it over the SpaceWire interface. It also receives any replies over the SpaceWire interface and passes

them back to the initiator user logic.

Initiator User Logic is the user logic that wants to send an RMAP command.

Protocol Identifier identifies the particular protocol being used for communication.

SpaceNet – RMAP IP
VHDL User Manual

12 © University of Dundee

Reply an RMAP packet sent by an RMAP target to an Initiator that contains data read from the target by a

read or read-modify-write command, or indicates that a write command was completed successfully, or that

contains an error code indicating why a command failed.

Reply Header is the header of an RMAP reply.

Reply SpaceWire Address is the path and/or regional logical address used to route the reply to a command

to a node on the SpaceWire network that expects the reply (normally the initiator).

Target is a SpaceWire node that supports the receiving of RMAP commands and the sending of RMAP

replies.

Target Logical Address is the logical address of the target.

Target RMAP Interface receives RMAP commands over the SpaceWire interface, executes these

commands and sends any replies back over the SpaceWire interface.

Target SpaceWire Address is the path and/or regional logical address to the target on the SpaceWire

network.

Target User Logic is the user logic that responds to RMAP commands.

Transaction Identifier is a 24-bit field in RMAP commands and replies used to associate replies with the

command that caused the reply. The initiator of the command gives the command a unique transaction

identity. This transaction identifier is returned in the reply to the command. This allows the command initiator

to send many commands without having to wait for a reply to each command before sending the next

command. When a reply comes in it can be quickly associated with the command that caused it by the

transaction identifier.

1.5 REFERENCE DOCUMENTS

The documents referenced in this document are listed in Table 1-1.

Table 1-1: Reference Documents

REF Document Number Document Title

RD1 UoD-SpaceNet v7, 23
rd

 April

2007

Proposal for SpaceWire Network and Future Onboard Data-

Handling, Technical, Management and Administrative Proposal

RD2 TEC-ED/WG/2005.15 SpaceWire Network “SpW-Net” SpaceWire and Future Onboard

Data Handling SpaceNet Statement of Work Annex1

1.6 APPLICABLE DOCUMENTS

The documents applicable to this document are listed in Table 1-2.

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 13

Table 1-2: Applicable Documents

REF Document Number Document Title

AD1 ECSS-Q-60-02 Space Product Assurance or ASIC/FPGA development. Final

Draft, Issue 5, February 2004

AD2 WDN/PS/70 ASIC Design and Manufacturing Requirements

ftp://ftp.estec.esa.nl/pub/vhdl/doc/DesignReq.pdf

AD3 ECSS-E-ST-50-12C SpaceWire: Links, nodes, routers and networks, 31 July 2008

AD4 ECSS-E-ST-50-52C SpaceWire - Remote memory access protocol, 5
th
 February 2010

AD5 RMAP IP WP2-100.1 SpaceNet RMAP IP Core Requirements 6
th
 Feb 2008

AD6 RMAP IP WP2-100.2 SpaceNet RMAP IP Core Functional Specification 4
th
 April 2008

AD7 RMAP IP WP2-100.2 SpaceNet RMAP IP Core Interface Specification 4
th
 April 2008

SpaceNet – RMAP IP
VHDL User Manual

14 © University of Dundee

2 LIMITATIONS AND INFORMATION

This list below contains the limitations of the RMAP core.

 The initiator currently supports an external bus size 4 words, 32 bits.

The list below provides information on common problems and pitfalls which the user should avoid when

implementing the core

 The initiator reads transaction and header information records from the external bus

dependent on the configuration generics CFG_INI_CODEC_MSBFIRST. Write and read data

transfers are dependent on the transaction header flags held in the transaction record.

 When CFG_ALLOW_LOOPBACK=1 and the initiator and target are enabled,

CFG_INITIATOR_EN=1 and CFG_TARGET_EN=1, there is a timing path in the design between

the initiator DMA controller and the target verified data buffer and target DMA controller

through the SpaceWire Loopback controller.

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 15

3 VHDL FILE HIERARCHY

The RMAP IP core is distributed with the following top-level directories:

Directory Contents/Purpose

doc Documentation such as this user manual

extern Sources for external components such as the SpaceWire link codec IP

src Sources for the RMAP codec IP

design/synth_example Synthesis directories for the RMAP IP core and individual units for Mentor
Graphics precision for gate count estimations and example synthesis scripts.

The top-level file for the codec is src/vhdl/top/rmap_codec_ip.vhd and all related RMAP codec

source files can be found in the src/vhdl tree. The top-level codec file refers to the design unit

spwrlinkwrap which represents the SpaceWire codec to be used with the RMAP core. The source code

for this unit is in src/vhdl/spw/spwrlinkwrap.vhd and is a wrapper around the UoD SpaceWire link

codec IP found in the extern directory. The SpaceWire link codec configuration settings are in

src/vhdl/spw/spwrlink_pkg.vhd. For more details about using the SpaceWire link codec IP please

refer to the separate documentation released with that IP: only the VHDL source code files are provided in

the extern directory.

A complete list of all the VHDL source files needed to synthesise the SpaceWire link codec IP for an FPGA

for use with the RMAP codec IP is given below in compilation order:

Root Directory Filename

src/vhdl/ spw/ spwrlink_pkg.vhd

extern/spw_v2_03/src/vhdl/ initfsm/ initfsm_counter.vhd

extern/spw_v2_03/src/vhdl/ initfsm/ initfsm_sync.vhd

extern/spw_v2_03/src/vhdl/ initfsm/ init_fsm.vhd

extern/spw_v2_03/src/vhdl/ other/ clk10gen.vhd

extern/spw_v2_03/src/vhdl/ other/ clkmux.vhd

extern/spw_v2_03/src/vhdl/ receive/ rxclock.vhd

extern/spw_v2_03/src/vhdl/ receive/ rxcredit.vhd

extern/spw_v2_03/src/vhdl/ receive/ rxdataformat.vhd

extern/spw_v2_03/src/vhdl/ receive/ rxdecode.vhd

extern/spw_v2_03/src/vhdl/ receive/ rxdiscerr.vhd

extern/spw_v2_03/src/vhdl/ receive/ rxnchar_resync_valid.vhd

extern/spw_v2_03/src/vhdl/ receive/ rxnchar_resync_ffstore_inferfpgaram.vhd

SpaceNet – RMAP IP
VHDL User Manual

16 © University of Dundee

extern/spw_v2_03/src/vhdl/ receive/ rxnchar_resync_ff.vhd

extern/spw_v2_03/src/vhdl/ receive/ rxtcode_resync.vhd

extern/spw_v2_03/src/vhdl/ transmit/ txddrreg.vhd

extern/spw_v2_03/src/vhdl/ transmit/ txddrreg_noenable.vhd

extern/spw_v2_03/src/vhdl/ transmit/ txencode.vhd

extern/spw_v2_03/src/vhdl/ transmit/ txtcode_send.vhd

extern/spw_v2_03/src/vhdl/ txclk/ txclk_divider.vhd

extern/spw_v2_03/src/vhdl/ txclk/ txclk_en_gen.vhd

extern/spw_v2_03/src/vhdl/ txclk/ txclkgen.vhd

extern/spw_v2_03/src/vhdl/ top/ spwrlink.vhd

A complete list of all the VHDL source files needed to synthesise the RMAP codec IP for an FPGA is given

below in compilation order:

Root Directory Filename

src/vhdl/ mem fifo_out_valid.vhd

src/vhdl/ sync_fifo sync_fifo_logic.vhd

src/vhdl/ sync_fifo sync_dpfifo.vhd

src/vhdl/ sync_fifo sync_memblock_fpga_memory.vhd

src/vhdl/ async_fifo async_dpfifo.vhd

src/vhdl/ async_fifo async_fifo_logic.vhd

src/vhdl/ async_fifo async_fifo_readptr.vhd

src/vhdl/ async_fifo async_fifo_writeptr.vhd

src/vhdl/ async_fifo async_memblock_fpga_memory.vhd

src/vhdl/ spw spwrlinkwrap.vhd

src/vhdl/ pkg support_pkg.vhd

src/vhdl/ rmap rmap_pkg.vhd

src/vhdl/ dma dma_pkg.vhd

src/vhdl/ pkg tech_pkg.vhd

src/vhdl/ rmap pack_rmap_word.vhd

src/vhdl/ rmap unpack_rmap_word.vhd

src/vhdl/ rmap target_verify_control.vhd

src/vhdl/ rmap target_command_decode.vhd

src/vhdl/ rmap target_reply_encode.vhd

src/vhdl/ rmap target_controller.vhd

src/vhdl/ rmap rmap_target.vhd

src/vhdl/ rmap ini_command_encode.vhd

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 17

src/vhdl/ rmap ini_reply_decode.vhd

src/vhdl/ rmap ini_trans_controller.vhd

src/vhdl/ rmap ini_delete.vhd

src/vhdl/ rmap rmap_initiator.vhd

src/vhdl/ dma dma_burst_fifo_out.vhd

src/vhdl/ dma dma_burst_fifo_in.vhd

src/vhdl/ dma dma_controller.vhd

src/vhdl/ dma bus_master.vhd

src/vhdl/ dma bus_arbiter.vhd

src/vhdl/ spw protocol_mux.vhd

src/vhdl/ spw protocol_demux.vhd

src/vhdl/ spw timecode_handler.vhd

src/vhdl/ top verify_buffer.vhd

src/vhdl/ mem ax_table_32x4.vhd

src/vhdl/ mem ax_table_32x5.vhd

src/vhdl/ mem ax_table_32x6.vhd

src/vhdl/ mem ax_table_32x7.vhd

src/vhdl/ mem ax_table_32x8.vhd

src/vhdl/ mem pa3_table_32x4.vhd

src/vhdl/ mem pa3_table_32x5.vhd

src/vhdl/ mem pa3_table_32x6.vhd

src/vhdl/ mem pa3_table_32x7.vhd

src/vhdl/ mem pa3_table_32x8.vhd

src/vhdl/ mem transaction_table.vhd

src/vhdl/ top rmap_kernel.vhd

src/vhdl/ top rmap_codec_ip.vhd

Alternatives for files with “fpga” in the name can be found in the extern and src directories with similar

names. For example, src/vhdl/async_fifo/async_memblock.vhd can be used to implement an

asynchronous FIFO from registers as an alternative to FPGA RAM which ought to be inferred when

synthesising async_memblock_fpga_memory.vhd.

Due to the limitations of some synthesisers for Actel Axcelerator and ProAsic parts the transaction table

cannot be inferred correctly from a typical generic synchronous RAM VHDL process. Smartgen Actel

memory cores are provided in the “src/vhdl/mem/” directory for use by the transaction table.

SpaceNet – RMAP IP
VHDL User Manual

18 © University of Dundee

The design/synth_example directory contains a TCL script and spwrlink_pkg.vhd configuration file to

synthesis the core using the Mentor Graphics precision synthesis tool. The script synthesises the core for the

Actel AX2000, Actel ProASIC3E and Xilinx Spartan3E technologies.

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 19

4 ARCHITECTURE OVERVIEW

The RMAP IP Core architecture overview is shown in illustrated in Figure 4-1.

Figure 4-1: RMAP IP Core Architecture Overview

The following paragraphs give an overview of each architectural block in the SpaceWire RMAP IP core

design.

4.1 SPACEWIRE INTERFACE

The SpaceWire Interface is responsible for passing received SpaceWire packets and time-codes and

passing to the RMAP Handler and Time-Code Handler respectively. It also transmits SpaceWire packets

when requested to do so by the RMAP handler. The packets it sends are RMAP reply or acknowledgement

packets. The SpaceWire Interface is configured by CONFIG inputs and SpaceWire link status information is

made available on the STATUS outputs.

4.1.1 Receive Buffer

The SpaceWire receive buffer holds RMAP packet data received from the SpaceWire link.

SpaceNet – RMAP IP
VHDL User Manual

20 © University of Dundee

4.1.2 Transmit FIFO

The SpaceWire interface transmit FIFO stores RMAP packet data to be send over the SpaceWire link.

4.2 SPACEWIRE LOOPBACK

The Loop-Back block provides a means of looping back SpaceWire data characters, EOPs and EEPs. When

Loop-Back is enabled no SpaceWire packets reach the RMAP handler. Time-codes are not affected by the

Loop-Back block.

4.3 TIME-CODE HANDLER

The Time-Code Handler is responsible for checking time-codes and maintaining the value of the time-code

counter. It will assert the TICK_OUT signal when a valid time code is received and put the value of each

valid time-code on the TIME-CODE output.

4.4 PROTOCOL DEMUX

The Protocol De-multiplexer is responsible for de-multiplexing the received SpaceWire data to the initiator

reply decoder, target command decoder or the non-RMAP interface. The Demux block decodes the first few

bytes of the RMAP packet to determine the destination of the packet.

4.5 PROTOCOL MUX

The Protocol Multiplexer is responsible for the multiplexing of initiator command encode data, target reply

encode data or data from the non-RMAP interface. The multiplexed data is written to the SpaceWire

interface through the loopback controller.

4.6 INITIATOR COMMAND ENCODER

The Initiator Command Encoder is responsible for generating and sending RMAP commands based on

information provided in user memory. User memory is accessed via the initiator command DMA controller.

The command encoder uses the contents of the transaction records array to determine the location of the

header and data information fin user memory.

4.7 INITIATOR TRANSACTION TABLE

The transaction table is responsible for holding details of the current transaction and the outstanding

transactions. The current transaction is used by the initiator command encoder to retrieve the command

details from user memory. The outstanding transactions are checked by the reply decoder to match

command replies to sent commands. Outstanding transactions waiting on reply packets can timeout

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 21

dependent on the user transactions array. If an outstanding transaction times out the time out is signalled to

the initiator reply decoder which writes the notification status to the notify user memory location.

4.8 INITIATOR TRANSACTION TABLE CONTROLLER

The transaction table controller controls accesses to the transaction table for the command encoder, reply

decoder, delete controller and the transaction table debug port. The controller has five main functions;

initialise the transaction table to its default empty state on reset and when instructed to by the delete

controller, create a new transaction and add it to the table, delete an existing transaction from the table,

search though the table for existing transactions by transaction ID and allow direct read access to the table

data fields.

4.9 INITIATOR REPLY DECODER

The Initiator Reply Decoder is responsible for reading and decoding RMAP reply packets from the Protocol

Demux component. Data from read reply packets is written to the user memory through the initiator reply

DMA controller block. The status of read and write replies is written to the notify location of user memory.

4.10 INITIATOR DELETE CONTROLLER

The initiator delete controller allows the user to clear the transaction table or delete an individual transaction

from the table which is likely to never receive a response. This is normally handled by a command time-out

function of the transaction table but can be manually performed by host software.

4.11 TARGET COMMAND DECODER

The Target Command Decoder is responsible for decoding RMAP command packets. RMAP command

headers are checked for validity and the authorisation parameters are passed to the Target Controller for

authorisation by the host. When the RMAP command is a valid write command data is read from the RMAP

packet and placed in the user memory by the target DMA controller.

4.12 TARGET REPLY ENCODER

The target reply encoder is responsible for sending RMAP reply packets with the status of write command or

the data and status from a read command. The status is dependent on the validity of the RMAP command

packet and the authorisation request on the host. Reply data is read from the host user memory by the DMA

controller and sent in the RMAP packet.

SpaceNet – RMAP IP
VHDL User Manual

22 © University of Dundee

4.13 TARGET CONTROLLER

The target controller controls the reception, authorisation and reply of an RMAP target transaction. The

target controller sets up the target DMA controller to perform reads and writes from user memory.

Authorisation for RMAP commands is requested from the host through the authorisation parameters.

4.14 TARGET VERIFY CONTROLLER

The target verify controller handles access to the verify buffer when verified data is available from the

command decoder.

4.15 DMA CONTROLLER

Each DMA controller provides the interface to user memory and registers. It is responsible for gaining access

to the user data bus and performing memory or register, read or write operations.

4.16 STATUS

The Configuration and Status registers, not shown in Figure 4-1, hold configuration and status information for

the SpaceWire interface and RMAP Handler. On power up certain configuration registers are loaded with

default values specified by the CONFIG interface. Thereafter the configuration values may be changed by

writing to the configuration registers either by a SpaceWire-RMAP command or by the User logic writing to

the appropriate registers. Status information from the SpaceWire interface and RMAP Handler is held in

status registers which can be read by SpaceWire-RMAP command or by the user logic. Certain status

information is also available on dedicated signals, STATUS, from the SpW/RMAP IP core.

4.17 CLOCK AND RESET

The Clock and Reset block is responsible for providing the user reset signal, RESET, to the relevant parts of

the SpW/RMAP IP core ensuring a clean condition after the reset signal has been asserted. It is also

responsible for generating any necessary clock signals from the single clock input signal, CLK.

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 23

5 CONFIGURATION AND INTERFACES

The internal and external interfaces are described in this section.

5.1 CONFIGURATION GENERICS

The configuration generics are defined in the following section. All configuration generics are integers unless

otherwise stated. When a generic represents a choice, a value of 0 shall be used to mean

false/disable/exclude and 1 to mean true/enable/include.

5.1.1 Overview

An overview of the generics is given in Table 5-1

Generic Description

CFG_TECH Technology for internal memory structures

CFG_INITIATOR_EN Enable the initiator

CFG_TARGET_EN Enable the target

CFG_TARGET_MSB_FIRST Target byte order

CFG_TARGET_BITSWAP Target bit swapping

CFG_WORD_SIZE Byte size of the RMAP data bus

CFG_TARGET_VERIFY_BUF_ABITS Size of the internal target verified data buffer

CFG_TRGT_FIFO_OUT_ABITS Size of the DMA output FIFO

CFG_TRGT_FIFO_IN_ABITS Size of the DMA output FIFO

CFG_TRGT_BURST_SIZE Number of DMA words per burst

CFG_TRGT_WATCHDOG_TIMEOUT Enable watchdog timeout on bus transfers

CFG_TRGT_EN_WATCHDOG Enable watchdog mode

CFG_REQ_TIMEOUT_NBITS Size of request timeout counter

CFG_SEND_REPLY_ON_EEP_AFTER_CRC Enable the target to send a reply if an EEP is received

after the header CRC

CFG_SEND_REPLY_ON_RESERVED_PKT Enable the target to send a reply if the packet type has

the reserved bit set (bit 7)

CFG_ALLOW_LOOPBACK Enable loopback logic for testing purposes

CFG_DEMUX_ROUTE_RESERVED_TO_TARGET When initiator is not enabled route RMAP reserved

packets to target command handler

CFG_DEMUX_ROUTE_REPLIES_TO_TARGET When initiator is not enabled route RMAP reply

packets to target command handler

CFG_INI_MAX_COMMANDS Maximum commands supported by transaction table

CFG_INI_TRTABLE_ABITS Number of address bits for transaction table and

therefore table size

CFG_INI_OUTSTANDING_BITS Number of bits for outstanding transactions counter

SpaceNet – RMAP IP
VHDL User Manual

24 © University of Dundee

CFG_INI_EXTRA_CHECKS Enable extra initiator reply packet checks

CFG_INI_CODEC_MSB_FIRST Order of bytes in initiator table data

CFG_INI_CODEC_BITSWAP Order of bits in initiator table data

CFG_INI_TIMEOUT_CHECK_WAIT Time to wait between checking the transaction table

for timeouts.

CFG_INI_TIMEOUT_CHECK_MAX Time to perform timeout checks

CFG_INI_BURST_SIZE Size of burst transfers for initiator

CFG_INI_WATCHDOG_TIMEOUT Timeout of watchdog for initiator bus transfers

CFG_INI_EN_WATCHDOG Enable initiator bus transfer watchdog

CFG_INI_FIFO_OUT_ABITS Size of Initiator DMA controller FIFO output buffer

CFG_INI_FIFO_IN_ABITS Size of initiator DMA controller FIFO input buffer

Table 5-1 Generics Overview

5.1.2 CFG_TECH (default TECH_GENERIC)

Set the type of memory block which will be instantiated for the transaction table. The package

src/vhdl/pkg/tech_pkg.vhd provides constants for all possible values of CFG_TECH as listed below.

 constant TECH_MEM_GENERIC : integer := 0;

 constant TECH_MEM_PROASIC : integer := 1;

 constant TECH_MEM_AXCELERATOR : integer := 2;

When a prosaic device is used then CFG_TECH should be set to TECH_MEM_PROASIC and if an

Axcelerator device is used then CFG_TECH should be set to TECH_MEM_AXCELERATOR.

5.1.3 CFG_INITIATOR_EN (default 0)

Include (1) or exclude (0) the initiator RMAP command packet generator and RMAP reply packet decoder.

The initiator reads command packet parameters from host memory and sends RMAP command packets.

Any command packet which is expecting a reply will have its transaction identifier placed in a table where the

reply packet can be checked against. Reply data is written back to external memory when a read command

is performed.

5.1.4 CFG_TARGET_EN (default 1)

Include (1) or exclude (0) the target RMAP command packet decoder and reply packet generator. The target

part of the RMAP core responds to RMAP commands and returns the appropriate reply. Commands which

have a valid header will be passed to user logic for authorisation. If the command is authorised and no other

errors are detected then it will be executed.

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 25

5.1.5 CFG_TARGET_MSB_FIRST (default 1)

RMAP packet bytes are transferred to/from the data bus in response to RMAP commands most significant

byte first (1) or least significant byte first (0). This setting controls how write command data are converted

from sequential packet bytes into external data bus words and controls how read command reply data are

converted from external data bus words into sequential packet bytes.

For example, if the target is set to MSB first, the word size is 4 (32 bit external bus) and the length of data

sent is 5 the packet data and data in memory interaction will be as shown in Figure 5-1 and Figure 5-2.

Figure 5-1 MSB First

Figure 5-2 LSB First

Note the target setting does not take account of the user bus endianness. If the bus is big endian and data

should be sent and received MSB first then CFG_TARGET_MSB_FIRST should be set to 0.

5.1.6 CFG_TARGET_BITSWAP (default 0)

The bits in each RMAP packet byte are reversed in order (1) or left unchanged (0) when packing and

unpacking external data bus words.

5.1.7 CFG_WORD_SIZE (default 4)

Defines the width of the user logic data bus measured in 8-bit bytes. The RMAP codec uses word addressing

for all DMA transfers over the user logic bus.

Note: When the RMAP initiator is enabled the bus size is restricted to 4 bytes (32 bits).

SpaceNet – RMAP IP
VHDL User Manual

26 © University of Dundee

5.1.8 CFG_TARGET_VERIFY_BUF_ABITS (default 8)

The number of address bits to use for the verified-write buffer. The verify buffer in the current implementation

can hold CFG_WORD_SIZE*2
CFG_TARGET_VERIFY_BUF_ABITS

 bytes. Note that the data CRC is stored in this buffer

so the number of data bytes is one less than the buffer size.

5.1.9 CFG_TRGT_FIFO_OUT_ABITS (default 8)

The number of address bits to use for the RMAP target write DMA burst FIFO. The burst FIFO will be able to

hold CFG_WORD_SIZE * 2
(CFG_TRGT_FIFO_OUT_ABITS)

 bytes and must be equal or greater than the burst size

defined by CFG_TRGT_BURST_SIZE.

5.1.10 CFG_TRGT_FIFO_IN_ABITS (default 8)

The number of address bits to use for the RMAP target read DMA burst FIFO. The burst FIFO will be able to

hold CFG_WORD_SIZE * 2
(CFG_TRGT_FIFO_IN_ABITS)

 bytes and must be equal or greater than the burst size

defined by CFG_TRGT_BURST_SIZE.

5.1.11 CFG_TRGT_BURST_SIZE (default 8)

The maximum number of words which may be transferred in a single burst. Large RMAP data transfers are

divided into one or more bursts. The DMA controller will request control over the bus before each burst and

release it afterwards. See also the restrictions placed on this parameter by generics

CFG_TRGT_FIFO_OUT_ABITS and CFG_TRGT_FIFO_IN_ABITS.

5.1.12 CFG_TRGT_EN_WATCHDOG (default 1)

Include (1) or exclude (0) the DMA watchdog timer. The DMA watchdog timer is used to prevent the bus from

being held indefinitely due to failure of bus source or sink.

5.1.13 CFG_TRGT_WATCHDOG_TIMEOUT (default 1024)

The maximum number of cycles that the DMA bus may be held for. If the watchdog timer is included in the

core (see CFG_DMA_EN_WATCHDOG) and the bus has been held for more than

CFG_DMA_WATCHDOG_TIMEOUT cycles then the RMAP command will be aborted and a bus error will be

reported. This timer is used to prevent a failed device asserting BUS_WAIT indefinitely and thereby prevent

the RMAP command from completing. The watchdog timeout ought to be set to a value that is much larger

than the expected duration of the longest DMA burst.

5.1.14 CFG_REQ_TIMEOUT_NBITS (default 8)

The number of bits used to hold DMA bus request timeouts. This generic defines the width of the

REQ_TIMEOUT input and places an upper limit on the length of request timeouts.

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 27

5.1.15 CFG_SEND_REPLY_ON_EEP_AFTER_CRC (default 0)

Send (1) or do not send (0) a reply if an EEP is received immediately after the header CRC of a command.

The RMAP standard states (§6.4.3.4.c, §6.5.3.4.c and §6.6.3.4.c) that a reply packet should not be sent if

an EEP is received immediately after the complete header including the header CRC.

5.1.16 CFG_SEND_REPLY_ON_RESERVED_PKT (default 1)

Send (1) or do not send (0) a reply if a command packet is received with the reserved bit (7) and reply bit (3)

set. The RMAP standard states (§6.4.3.4.f.1.c, §6.5.3.4.f.1.c and §6.6.3.4.f.1.c) that a reply packet shall not

be sent if the instruction field contains an unused packet type. It also states (§6.4.3.4.f.1.d, §6.5.3.4.f.1.d and

§6.6.3.4.f.1.d) that a reply packet may be sent.

5.1.17 CFG_ALLOW_LOOPBACK (default 0)

Include (1) or exclude (0) the internal/external loopback unit. The loopback unit allows the codec to be

placed in loopback mode when LINK_LOOPBACK is asserted high. In loopback mode packets received from

the SpaceWire interface are transmitted back through the SpaceWire interface while packets emitted from

the protocol mux are passed directly to the protocol demux.

Note: When CFG_ALLOW_LOOPBACK=1 and the initiator and target are enabled,

CFG_INITIATOR_EN=1 and CFG_TARGET_EN=1, there is a timing path in the design between

the initiator DMA controller and the target verified data buffer and target DMA controller

through the SpaceWire Loopback controller

5.1.18 CFG_DEMUX_ROUTE_REPLIES_TO_TARGET (default 0)

If the initiator is not included then send reply packets to the target handler (1) or to the non-RMAP port (0). If

the target handler receives a reply packet it will record the error and spill the packet. If reply packets are sent

to the non-RMAP port then user logic must process them promptly.

This generic can be set to 1 if the link is not expected to receive reply packets and the designer does not

want to add extra logic to the non-RMAP port to deal with them. This generic can be set to 0 if the designer

wants to implement an RMAP initiator in user logic (e.g. software) using the non-RMAP port to transmit

commands and accept replies.

5.1.19 CFG_DEMUX_ROUTE_RESERVED_TO_TARGET (default 0)

Send command packets with the reserved bit set in the packet type field to the target handler (1) or to the

non-RMAP port (0). If the target handler receives a packet with the reserved bit set it will record the error and

SpaceNet – RMAP IP
VHDL User Manual

28 © University of Dundee

spill the packet. If packets with the reserved bit set in the packet type field are sent to the non-RMAP port

then user logic must process them promptly.

5.1.20 CFG_INI_MAX_COMMANDS

Control the maximum amount of outstanding transactions which the core can be waiting on at any one time.

Typically this will be set to the maximum size which the transaction table can support, dependent on

CFG_INI_TRTABLE_ABITS as shown below.

CFG_INI_MAX_COMMANDS= 2(CFG_IN_TRTABLE_ABITS) / 7

For example if CFG_INI_TRTABLE_ABITS=8 then setting CFG_INI_MAX_COMMANDS to 36 will use the

maximum amount of transactions space in the transaction table.

The user may wish to reduce the number of outstanding transactions if a target node cannot handle multiple

requests.

5.1.21 CFG_INI_TRTABLE_ABITS

Sets the address size of the transaction table. The transaction table is expected to implemented as a

memory block.

5.1.22 CFG_INI_CODEC_MSB_FIRST (default 1)

Set the order of transaction and header record data transfers RMAP packet bytes are transferred to/from the

data bus in response to RMAP commands most significant byte first (1) or least significant byte first (0). This

setting controls the order of initiator records words transferred over the external bus where; MSB first

expects the most significant byte to be placed at the bits 31 to 24 and LSB first expects the most significant

byte to be placed at bits 7 do 0.

The transaction record flags determine the byte order of data transfers for write command data, read reply

data and read modify write data.

5.1.23 CFG_INI_CODEC_BITSWAP (default 0)

The bits in each external bus byte are reversed in order (1) or left unchanged (0) when reading the

transaction table. The initiator command data byte order and bit order when sent over the SpaceWire

interface is specified as a flag in the command transaction record.

5.1.24 CFG_INI_OUTSTANDING_BITS

Set the number of bits to use for the outstanding counter status port. The outstanding counter is a status port

to indicate the number of RMAP replies the core is expecting and the number of transactions in the

transaction table.

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 29

5.1.25 CFG_INI_TIMEOUT_CHECK_WAIT (default 50)

Sets the number of micro-seconds the RMAP core will wait between checking the transaction table for

transactions which have timed out.

5.1.26 CFG_INI_TIMEOUT_CHECK_MAX (default 5)

Sets the number of micro-seconds the RMAP core will spend checking the table for timeouts. During this

time the other RMAP core units cannot access the table so no new commands can be started and no replies

can be processed.

5.1.27 CFG_INI_BURST_SIZE (default 8)

The maximum number of words which may be transferred in a single burst. Large RMAP data transfers are

divided into one or more bursts. The DMA controller will request control over the bus before each burst and

release it afterwards. See also the restrictions placed on this parameter by generics

CFG_INI_FIFO_OUT_ABITS and CFG_INI_FIFO_IN_ABITS.

5.1.28 CFG_INI_EN_WATCHDOG (default 1)

Include (1) or exclude (0) the DMA watchdog timer. The DMA watchdog timer is used to prevent the bus from

being held indefinitely due to failure of bus source or sink.

5.1.29 CFG_INI_WATCHDOG_TIMEOUT (default 1024)

The maximum number of cycles that the DMA bus may be held for. If the watchdog timer is included in the

core (see CFG_DMA_EN_WATCHDOG) and the bus has been held for more than

CFG_DMA_WATCHDOG_TIMEOUT cycles then the RMAP command will be aborted and a bus error will be

reported. This timer is used to prevent a failed device asserting BUS_WAIT indefinitely and thereby prevent

the RMAP command from completing. The watchdog timeout ought to be set to a value that is much larger

than the expected duration of the longest DMA burst.

5.1.30 CFG_INI_FIFO_OUT_ABITS (default 8)

The number of address bits to use for the RMAP target write DMA burst FIFO. The burst FIFO will be able to

hold CFG_WORD_SIZE * 2
(CFG_INI_FIFO_OUT_ABITS)

 bytes and must be equal or greater than the burst size

defined by CFG_INI_BURST_SIZE.

5.1.31 CFG_INI_FIFO_IN_ABITS (default 8)

The number of address bits to use for the RMAP target read DMA burst FIFO. The burst FIFO will be able to

hold CFG_WORD_SIZE * 2
(CFG_INI_FIFO_IN_ABITS)

 bytes and must be equal or greater than the burst size defined

by CFG_INI_BURST_SIZE.

SpaceNet – RMAP IP
VHDL User Manual

30 © University of Dundee

5.2 CLOCK/RESET INTERFACE

This interface provides an asynchronous reset and the system clock which all the other interfaces are

synchronous with unless otherwise stated.

Signal Width I/O Description

RST_N 1 In Active low asynchronous reset

CLK 1 In System clock

5.3 LOW-LEVEL SPACEWIRE INTERFACE

The low-level SpaceWire interface provides control over the SpaceWire link used by the RMAP interface.

Refer to the separate documentation of the SpaceWire codec IP core for more details about the configuration

and control of this part of the interface.

Signal Width I/O Description

SLOWCLK 1 in Slow clock used for transmit during link initialisation

TXCLK 1 In Transmit clock used for transmit when link running

DIN 1 In SpaceWire data in

SIN 1 In SpaceWire strobe in

DOUT 1 Out SpaceWire data out (non-DDR)

SOUT 1 Out SpaceWire strobe out (non-DDR)

SLOW_EN 1 In Clock enable for the slow clock

SLOWRATE_SYSCLK 8 In Divider used to obtain the slow clock from CLK

SLOWRATE_TXCLK 8 In Divider used to obtain the slow clock from TXCLK

TXRATE 8 In Divider used to obtain transmit bit clock from TXCLK

TXBITCLK 1 Out Transmit bit clock for DDR

DOUT_R 1 Out SpaceWire data out DDR rising edge

DOUT_F 1 Out SpaceWire data out DDR falling edge

SOUT_R 1 Out SpaceWire strobe out DDR rising edge

SOUT_F 1 Out SpaceWire strobe out DDR falling edge

5.4 HIGH-LEVEL SPACEWIRE INTERFACE

The high-level SpaceWire interface allows user logic to start and stop the SpaceWire link and to detect errors

occurring on the link.

Signal Width I/O Description

LINK_START 1 In Start SpaceWire link if not disabled

LINK_DISABLE 1 In Disable SpaceWire link

LINK_AUTO 1 In Auto-start SpaceWire link if not disabled

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 31

LINK_LOOPBACK 1 In Set loopback mode

STAT_LINK_RUNNING 1 Out SpaceWire link is running (Run state)

STAT_LINK_DISCONNECT 1 Out The SpaceWire link has disconnected

STAT_LINK_PARITY_ERROR 1 Out A parity error has been detected

STAT_LINK_CREDIT_ERROR 1 Out A credit error has been detected

STAT_LINK_ESCAPE_ERROR 1 Out An escape error has been detected

The LINK_DISABLE signal takes priority over LINK_START and LINK_AUTO: if LINK_DISABLE is asserted

then the SpaceWire link will not start even if LINK_START is asserted. If LINK_AUTO is asserted then the

SpaceWire link will automatically start when the first NULL is received. Otherwise the link can be explicitly

started by asserting LINK_START. When the link reaches the Run state STAT_LINK_RUNNING will be

asserted. The link can be stopped at any time by asserting LINK_DISABLE. The

STAT_LINK_DISCONNECT, STAT_LINK_PARITY_ERROR, STAT_LINK_CREDIT_ERROR and

STAT_LINK_ESCAPE_ERROR signals will be asserted for one CLK cycle when an error of the

corresponding type is detected.

If CFG_ALLOW_LOOPBACK=1 then loopback mode will be entered when LINK_LOOPBACK is asserted.

See Section 5.1.2 for more details.

5.5 TIMECODE INTERFACE

Allows SpaceWire timecodes to be sent and received.

Signal Width I/O Description

TIME_MASTER_EN 1 In Tick-in codes accepted

TICK_IN 1 In Send a time-code

TIME_IN 8 In Time-code value to send

TICK_OUT 1 Out Time-code received

TIME_OUT 8 Out Time-code value received

The TICK_IN/TIME_IN interface will be used only if TIME_MASTER_EN is asserted. If it is then a timecode

with value TIME_IN will be transmitted after TICK_IN is asserted. Whenever a timecode is received

TICK_OUT will be asserted and TIME_OUT will hold the value of the timecode if and only if the timecode

received is one larger than the previous timecode received.

5.6 NON-RMAP RECEIVE INTERFACE

This interface allows user logic to receive packets non-RMAP packets.

SpaceNet – RMAP IP
VHDL User Manual

32 © University of Dundee

Signal Width I/O Description

NR_RX_EMPTY 1 Out No non-RMAP data characters to be read.

NR_RX_READ 1 In Read non-RMAP data character

NR_RX_DATA 9 Out Non-RMAP data character to be read

This port provides a simple FIFO interface to allow non-RMAP packets received by the codec to be passed

to user logic. When data is available to be read NR_RX_EMPTY will be deasserted. The 9-bit SpaceWire

character on NR_RX_DATA will be consumed on the rising edge of CLK if the read enable NR_RX_READ is

asserted.

If CFG_ALLOW_LOOPBACK=1 and LINK_LOOPBACK is asserted then any commands from the initiator

handler, any replies from the target handler and any packets from the non-RMAP transmit interface will be

passed to user logic via this interface.

If there is no initiator handler and CFG_DEMUX_ROUTE_REPLIES_TO_TARGET=0 then RMAP reply

packets will be sent to this port. If CFG_DEMUX_ROUTE_RESERVED_TO_TARGET=0 and an RMAP

packet with type field 0b11 is received then it will be sent to this port. Similarly if there is no initiator handler

and CFG_DEMUX_ROUTE_RESERVED_TO_TARGET=0 then any RMAP packets with type field 0b10 will

be sent to this port.

5.7 NON-RMAP TRANSMIT INTERFACE

This interface allows user logic to transmit packets of any form over the SpaceWire link.

Signal Width I/O Description

NR_TX_FULL 1 Out Unable to accept more non-RMAP data characters

NR_TX_WRITE 1 In Submit non-RMAP data character for transmission

NR_TX_DATA 9 In Non-RMAP data character to be transmitted

This port provides a modified FIFO interface to allow non-RMAP packets to be submitted by user logic to the

codec for transmission over the SpaceWire link. Each character of the packet must be put on NR_TX_DATA

before the rising edge of CLK and NR_TX_WRITE asserted. The character will be accepted on the rising

edge of CLK if NR_TX_FULL is not asserted. NR_TX_FULL is valid only while NR_TX_WRITE is asserted.

Thus user logic must attempt to send data before it can tell whether the data will be accepted.

If CFG_ALLOW_LOOPBACK=1 and LINK_LOOPBACK is asserted then any RMAP commands sent through

this interface will be routed to the target handler, any RMAP replies will be routed to the initiator handler and

all other packets will be sent to the non-RMAP receive interface.

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 33

5.8 EXTERNAL BUS INTERFACE

Provides a pipelined bus interface to user logic for DMA. It is used by the target handler when processing

read, write and RMW commands; it is used by the initiator handler to retrieve details of commands to be sent

from user logic and when generating read, write and RMW commands; it is used by the initiator handler to

pass status information back to user logic for commands in progress. The external bus interface is designed

to be compatible with the AMBA AHB interface specification revision 2.0. For information about bus operation

see Section 6.

Signal Width I/O Description

REQ_TIMEOUT Variable In Set the RMAP bus request timeout

BUS_REQ 1 Out Request access to the bus

BUS_GNT 1 In Granted access to the bus

BUS_TRANS 2 Out Type of transaction (IDLE, START, ENABLED, BUSY)

BUS_WRITE 1 Out Write operation enable („0‟=read, „1‟=write)

BUS_BANK 8 Out Memory bank (RMAP external address)

BUS_ADDR 32 Out Memory word (RMAP address)

BUS_DATA_IN Variable In Word read from user logic

BUS_DATA_OUT Variable Out Word to write to user logic

BUS_DATA_OUT_BYTE_EN Variable Out Marks which bytes of BUS_DATA_OUT are valid

BUS_WAIT 1 In Host is not ready to perform the operation

BUS_ERROR 1 In Host cannot perform the operation due to an error

The REQ_TIMEOUT input defines the maximum number of CLK cycles that the DMA interface will wait for

BUS_GNT to be asserted when asserting BUS_REQ. The size of this port is controlled by the

CFG_REQ_TIMEOUT_NBITS generic.

When the bus has been granted to the codec the BUS_TRANS signal will define the state of the transaction

in progress: IDLE (no operation), START (address phase of the first read/write), ENABLED (address phase

of additional read/writes) and BUSY (unable to present another address in this CLK cycle). The bus is

pipelined so that BUS_WRITE, BUS_BANK and BUS_ADDR are asserted in the address phase of an

operation with the corresponding data being captured from BUS_DATA_IN or presented on

BUS_DATA_OUT on the following cycle. The address phase of one operation is expected to overlap with the

data phase of the previous operation. If user logic is unable to supply or capture data for a given address in

the data phase of an operation then it must assert BUS_WAIT until it can do. If user logic cannot satisfy a

request then it must assert BUS_ERROR to abort the transaction. BUS_DATA_OUT_BYTE_EN is used by

the codec to tell user logic which bytes of BUS_DATA_OUT are valid. This is used, for example, when a

single byte write is made over a multi-byte bus.

SpaceNet – RMAP IP
VHDL User Manual

34 © University of Dundee

CFG_WORD_SIZE defines the width of BUS_DATA_IN and BUS_DATA_OUT. The order in which bytes and

bits on the bus are converted to/from RMAP serial byte order is controlled by generics

CFG_TARGET_MSB_FIRST and CFG_TARGET_BITSWAP.

5.9 READ MODIFY WRITE INTERFACE

This interface allows user logic to define the behaviour of the modify step of a RMW command.

Signal Width I/O Description

RMW_VALID 1 Out RMW outputs are valid; supply modified value

RMW_MEM_DATA 32 Out Data read from memory

RMW_DATA_OUT 32 Out Data from the RMAP packet

RMW_MASK 32 Out Mask from the RMAP packet

RMW_BYTE_EN 4 Out Which bytes of RMW_MEM_DATA etc to process

RMW_DATA_IN 32 In Modified data value to write back to memory

RMW_ACK 1 In Set when RMW_DATA_IN is valid

When the target performs a RMW command it reads the data and mask fields from the RMAP packet and

places them on RMW_DATA_OUT and RMW_MASK in bus data order. The data word is read from user

logic via the bus (see Section 5.8) and placed directly on RMW_MEM_DATA. RMW_BYTE_EN is updated to

indicate which bytes are valid based on the length of the RMW. The codec then asserts RMW_VALID; user

logic must compute the modified value to be written back to memory and place it on RMW_DATA_IN before

asserting RMW_ACK. The code will take the value from RMW_DATA_IN and write it directly to user logic via

the bus.

5.10 TARGET AUTHORISATION INTERFACE

This interface allows user logic to authorise all valid RMAP commands received by the target.

Signal Width I/O Description

AUTH_REQUEST 1 Out Request authorisation of the target parameters

AUTH_LOGICAL_ADDR 8 Out Destination logical address of the command

AUTH_COMMAND 8 Out Command byte of the command being authorised

AUTH_KEY 8 Out Key of the command being authorised

AUTH_INIT_LOGICAL_ADDR 8 Out Initiator logical address of the command

AUTH_TRANS_ID 16 Out Transaction ID of the command being authorised

AUTH_EXT_ADDRESS 8 Out Extended address of the command being authorised

AUTH_ADDRESS 32 Out Address of the command being authorised

AUTH_DATA_LENGTH 24 Out Length of the command being authorised

AUTH_RESPONSE 1 In Authorisation request processed

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 35

AUTH_GRANT 1 In Command accepted

AUTH_DEST_KEY_ERROR 1 In Command rejected because of the key

AUTH_LOGICAL_ADDR_ERROR 1 In Command rejected because of a logical address

After processing the header of a valid RMAP command received by the target handler, details of the

command are output to user logic for authorisation and AUTH_REQUEST asserted. User logic must assert

AUTH_GRANT if the command is authorised; if the command is not authorised because of the destination

key user logic must assert AUTH_DEST_KEY_ERROR; if the command is not authorised because the

destination (or initiator) logical address user logic must assert AUTH_LOGICAL ADDR_ERROR; if the

command is not authorised for any other reason then AUTH_GRANT, AUTH_DEST_KEY_ERROR and

AUTH_LOGICAL_ADDR_ERROR must be left unasserted. User logic must assert AUTH_RESPONSE when

these three inputs have been assigned to notify the codec of the authorisation result.

5.11 TARGET STATUS INTERFACE

This interface is used to report the status of commands received by the target interface.

Signal Width I/O Description

STAT_TARGET_INDICATE 1 Out Indicates completion of a target command

STAT_TARGET_STATUS 8 Out Value of the target status register

After the target has processed an RMAP command the codec will place the status result of the operation on

STAT_TARGET_STATUS and assert STAT_TARGET_INDICATE for one cycle.

Target Status Name Value Meaning

TARGET_SUCCESS 0 Command processed successfully

TARGET_GENERAL_ERROR 1 Unspecified/general error

TARGET_HEADER_EOP_ERROR 2 EOP while reading packet header

TARGET_HEADER_EEP_ERROR 3 EEP while reading packet header

TARGET_PID_ERROR 4 Invalid protocol ID

TARGET_REPLY_ERROR 5 Received reply packet

TARGET_HEADER_CRC_ERROR 6 Header CRC is invalid

TARGET_HEADER_EEP_AFTER_CRC 7 EEP immediately after header CRC

TARGET_PKT_TYPE_ERROR 8 Reserved bit set in type field

TARGET_CMD_TYPE_ERROR 9 Bad read/RMW command flags

TARGET_RMW_DATALEN_ERROR 10 Invalid data length for RMW command

TARGET_CARGO_TOO_LARGE 11 Extra bytes before end of packet marker

TARGET_KEY_ERROR 12 Authorisation rejected due to bad key

TARGET_LOGICAL_ADDR_ERROR 13 Authorisation rejected due to logical address

SpaceNet – RMAP IP
VHDL User Manual

36 © University of Dundee

TARGET_AUTHORISED_ERROR 14 Authorisation rejected for other reasons

TARGET_VERIFY_BUFFER_OVERRUN 15 Too much data for verified-write command

TARGET_DATA_CRC_ERROR 16 Invalid data CRC

TARGET_BUS_REQUEST_ERROR 17 Timeout waiting for BUS_GNT

TARGET_BUS_ERROR 18 BUS_ERROR asserted during bus transfer

TARGET_BUS_TRANSFER_TIMEOUT 19 Bus watchdog timer expired during transfer

TARGET_DATA_EOP_ERROR 20 EOP while reading write/RMW data/mask

TARGET_DATA_EEP_ERROR 21 EEP while reading write/RMW data/mask

TARGET_DATA_EEP_AFTER_CRC 22 EEP after data CRC

A table of all possible STAT_TARGET_STATUS values is given above. The symbolic names are those used

in the RMAP IP core VHDL and are defined in src/vhdl/rmap/rmap_pkg.vhd.

5.12 INITIATOR CONFIGURATION/STATUS INTERFACE

The initiator configuration and status interface ports are used to monitor the transaction table and set the

time period for the internal 1 µs timer.

Signal Width I/O Description

CFG_1US_CLOCKS 8 In Number of clock cycles in a 1 µs period.

INI_GOT_ROOM 1 Out Room for one more RMAP command to be sent

INI_GOT_NONE 1 Out Set HIGH when there are no outstanding RMAP commands

INI_OUTSTANDING Variable Out Number of RMAP replies which are expected by the RMAP
core

DOING_TIMEOUT_CHECK 1 Out Set HIGH when the RMAP core initiator is check the
transaction table for transactions which have timed out and
should be deleted.

The length of the INI_OUTSTANDING vector is set dependent on the generic

CFG_INI_OUTSTANDING_BITS. The most common method to set CFG_INI_OUTSTANDING_BITS is

)__(2 COMMANDSMAXCFGLog . If INI_OUTSTANDING is not large enough to represent the

maximum number of outstanding commands the lower bits are truncated.

5.13 INITIATOR COMMAND INTERFACE

The initiator commands interface is used by the host system to send RMAP commands to a target. A pointer

to the command parameters in memory is given when a command is requested. If the command parameters

indicate that a reply is expected the command cannot be started until there is room in the internal transaction

records table.

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 37

Signal Width I/O Description

INI_SEND_COMMAND 1 In Set by the host to initiate an RMAP command.

INI_COMMAND_PTR 32 In Pointer to the transaction record array in user memory

INI_GENERATE_TID 1 In Set by the host when the RMAP core should internally
generate the transaction identifier and ignore the transaction
identifier in the header information record in user memory

INI_COMMAND_DONE 1 Out Set by the RMAP core when the command has completed

INI_COMMAND_SENT 1 Out Set HIGH when the command is done and the command
was sent without error

INI_COMMAND_TID 16 Out Transaction identifier of the sent command. This value can
either be the generated ID or the value from the header
information record.

INI_COMMAND_STATUS 8 Out Status of the command. The command status types are
listed below.

INI_COMMAND_ACK 1 In Acknowledgement from the host system when command
done is set and the host has checked the command status
and transaction ID fields.

To initiate a command the host should setup the correct transaction and header information records in user

memory and allocate the read and write buffers dependent on the command. If command notification is

required, notify send and reply memory locations should also be allocated. When user memory is setup the

host should set INI_SEND_COMMAND and set the pointer to the transaction record on

INI_COMMAND_PTR. If the transaction identifier should be 1 more than the previous transaction ID the host

interface can set INI_GENERATE_TID. When the command has been sent or an error occurred during the

command the core will set INI_COMMAND_DONE and the correct status and transaction identifier

parameters. If no error was detected in the command header the output INI_COMMAND_SENT is set.

The initiator command status fields output on INI_COMMAND_STATUE are listed below.

Initiator Command Status Name Value Description

INITIATOR_ENCODE_SUCCESS 0 Command interpreted correctly

INITIATOR_ENCODE_GENERAL_ERROR 1 An unknown general error occurred during
command processing

INITIATOR_ENCODE_TARGET_ADDR_ERROR 2 Target logical address error in the header
information record. Outside the range 32-255.

INITIATOR_ENCODE_PROTOCOL_ERROR 3 Protocol identifier is not 0x01 in the header
information record.

INITIATOR_ENCODE_PACKET_TYPE_ERROR 4 Error in the packet type field of the RMAP
command code in the header information record.

INITIATOR_ENCODE_COMMAND_ERROR 5 Error in the command field of the RMAP
command code in the header information record.

INITIATOR_ENCODE_INITIATOR_ADDR_ERROR 6 Initiator logical address in the header information

SpaceNet – RMAP IP
VHDL User Manual

38 © University of Dundee

record is invalid. Outside the range 32-255.

INITIATOR_ENCODE_RMW_DATALEN_ERROR 7 Error in the read modify write data length in the
header information record in user memory.

INITIATOR_ENCODE_BUS_ERROR 8 The host bus controller sets BUS_ERROR when
the RMAP core is trying to perform a DMA
operation.

INITIATOR_ENCODE_BUS_REQUEST_ERROR 9 Timeout while waiting for BUS_GNT.

INITIATOR_ENCODE_BUS_TRANSFER_TIMEOUT 10 A transfer on the external bus timed out due to
the slave setting BUS_WAIT.

5.14 INITIATOR REPLY INTERFACE

The initiator reply interface is used to indicate to the host when reply packet have been received and

processed. The reply field, the initiator reply status and the transaction identifier of the command are output

after a command has been processed.

Signal Width I/O Description

INI_REPLY_EVENT 1 Out Reply received event

INI_REPLY_TID 16 Out Transaction identifier of the RMAP reply packet

INI_REPLY_FIELD 8 Out Reply field from the RMAP packet

INI_REPLY_STATUS 8 Out Status of the reply decoder and RMAP reply handler

INI_REPLY_ACK 1 In Host acknowledge

When a reply is received the initiator reply decoder decodes the reply packet, checking the reply status field

and the packet bytes for errors. If the packet is valid the transaction table is searched for the transaction

identifier and if a match is found the command can be processed. If a match is not found a status code of lost

transaction is recorded. If the RMAP packet is a read or read modify write reply then the packet data is

written to user memory over the external bus.

The initiator reply interface status codes are listed in the table below.

Initiator Reply Status Name Value Description

INITIATOR_SUCCESS 0 Reply processed successfully

INITIATOR_GENERAL_ERROR 1 Unknown/unspecified error

INITIATOR_HEADER_EOP_ERROR 2 End of packet received during header decoding

INITIATOR_HEADER_EEP_ERROR 3 Error end of packet received during header decoding

INITIATOR_PID_ERROR 4 Protocol identifier not equal to 0x01

INITIATOR_REPLY_TIMEOUT 5 Outstanding reply timed out

INITIATOR_HEADER_CRC_ERROR 6 Header CRC is invalid

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 39

INITIATOR_HEADER_EEP_AFTER_CRC 7 Error end of packet error

INITIATOR_PKT_TYPE_ERROR 8 Packet type not a reply

INITIATOR_CMD_TYPE_ERROR 9 Command type unrecognised error

INITIATOR_RMW_DATALEN_ERROR 10 Read Modify Write length error

INITIATOR_CARGO_TOO_LARGE 11 Extra packet bytes after the header CRC and data
CRC

INITIATOR_LOST_TRANSACTION 12 Transaction identifier not found in the transaction
table

INITIATOR_COMMAND_MISMATCH 13 Reply command type does not match the command
type sent in the command packet (1)

INITIATOR_INITIATOR_MISMATCH 14 Reply initiator field does not match the initiator field
sent in the command packet (1)

INITIATOR_TARGET_MISMATCH 15 Reply target field does not match the target field
sent in the command byte (1)

INITIATOR_DATA_CRC_ERROR 16 Reply data CRC is invalid

INITIATOR_BUS_REQUEST_ERROR 17 Timeout while waiting for BUS_GNT

INITIATOR_BUS_ERROR 18 Host bus controller sets BUS_ERROR when the
RMAP core is trying to perform a DMA operation

INITIATOR_BUS_TRANSFER_TIMEOUT 19 Transfer on the external bus timed out due to the
slave setting BUS_WAIT

INITIATOR_DATA_EOP_ERROR 20 End of packet received during data processing

INITIATOR_DATA_EEP_ERROR 21 Error end of packet received during data processing

INITIATOR_DATA_EEP_AFTER_CRC 22 Error end of packet received instead of normal end
of packet after the data CRC

INITIATOR_HEADER_DATA_AFTER_CRC 23 Data received where the header end of packet
should be receive

INITIATOR_BUFFER_TOO_SMALL 24 Reply data length is greater than expected data
length

(1) The command, initiator address and target address are checked if CFG_INI_EXTRA_CHECK is equal

to 1.

5.15 INITIATOR DELETE/CLEAR INTERFACE

The initiator delete/clear interface is used to delete single or all transactions from the transactions table. If a

single transaction is deleted the host specifies the transaction identifier to be deleted. If the transaction

identifier is found in the table the transaction is deleted otherwise the table is unchanged. If a clear operation

is requested by the host any outstanding transactions are cleared and the table is returned to its original

state. The delete interface will wait until the command and reply units are idle before starting a delete or clear

SpaceNet – RMAP IP
VHDL User Manual

40 © University of Dundee

operation. This ensures invalid RMAP command packets are not generated or the core does not try to

access invalid memory locations.

Signal Width I/O Description

INI_CLEAR 1 In Clear all transactions from the records array.

INI_DELETE 1 In Status of the reply decoder and RMAP reply handler

INI_DELETE_STATUS 1 In Host acknowledge

INI_DELETE_TID 16 In Transaction identifier to delete

INI_DELETE_ACK 1 Out Acknowledge from the RMAP core

The delete status is 1 when a delete is successful or a clear operation has completed or 0 when the

transaction identifier is not found in the transaction table.

5.16 INITIATOR TRANSACTION TABLE DEBUG PORT INTERFACE

The transaction table stores information on the replies expected by the initiator core. When a reply does not

arrive the transaction remains in the table indefinitely or until a times-out occurs and the transaction record is

removed by the core. The debug port allows the host to view the outstanding transactions in the table. The

interfaces are listed in the following table

Signal Width I/O Description

DBG_RD_REQ_ACCESS 1 In Request access to the transaction table

DBG_RD_GNT_ACCESS 1 Out Granted access to the transaction table

DBG_RD_ADDRESS Variable In Address to read from in the transaction table

DBG_RD_EN 1 In Enable output data from the transaction table

DBG_RD_DATA 32 Out Returned data from the transaction table address
when DBG_RD_EN is set

DBG_CURRENT_PTR Variable Out Pointer to the next free location in the transaction
table maintained by the RMAP initiator. The size is
dependent on CFG_INI_TRTABLE_ABITS.

DBG_TIMER 34 Out Transaction timeout timer.

The length of the read address is dependent on the generic CFG_INI_TRTABLE_ABITS.

When the host wishes to use the debug read port it sets DBG_RD_REQ_ACCESS and waits for

DBG_RD_GNT_ACCESS to be set. DBG_RD_GNT_ACCESS is set for one system clock cycle to grant

access. The debug port retains access to the bus while DBG_RD_REQ_ACCESS is held high after grant.

When access to the debug port is completed the host should set DBG_RD_REQ_ACCESS low before

performing another read. Commands and replies cannot be processed while the debug read port is active. A

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 41

pipelined read port is used. To access the port the address DBG_RD_ADDRESS and DBG_RD_EN should

be set and on the next clock cycle the read data DBG_RD_DATA is available.

SpaceNet – RMAP IP
VHDL User Manual

42 © University of Dundee

6 EXTERNAL BUS INTERFACE

The external bus interface is the most important for connecting the RMAP IP core to other IP. The sections

below describe the bus operation in more detail and have been taken from the architecture document. See

Section 5.8 for the list of bus signals.

6.1 EXTERNAL BUS CONNECTIONS

The external bus is expected to be connected directly to a similar bus system or connected through a bridge.

The expected usage of the external bus is illustrated in the following figures.

6.1.1 Direct Connection to Host Bus

In Figure 6-1 the RMAP IP core is connected directly to the host system bus.

Figure 6-1: RMAP IP Core connected directly to host bus

Target and initiator transactions occur between the RMAP IP Core and the host memory. This is the most

efficient usage of the IP core. Control interfaces can be set up between the core and the processor using

directly mapped IO or configuration and status registers. In the case of the AMBA bus extra logic external to

the RMAP IP core is required to implement all the AMBA bus signals.

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 43

6.1.2 Connection to Host Bus Through a Bridge

In Figure 6-2 the RMAP IP core is connected to the host system through a bridge.

Figure 6-2: RMAP IP Core connected through a bridge

The core has a separate memory space specifically used for target and initiator operations. Initiator and

target, header and/or data information is copied between the RMAP memory and the host memory by the

RMAP IP core bridge. Control interfaces are set up by the processor and the RMAP IP Core bridge.

6.1.3 Direct Connection to Peripheral/Controller

In Figure 6-3 the RMAP IP core is connected directory to a host peripheral or controller.

Figure 6-3: RMAP IP Core connected directly to peripheral/controller

In this configuration it is likely the host is a target only and the RMAP IP core is used to configure the host,

write data to the host and read data from the host.

6.2 EXTERNAL BUS OPERATION

An external bus operation consists of an address phase and a data phase.

 In the address phase the bus master sets the transaction type, address and write flag.

 In the data phase the data is presented or captured and the wait/error flags are driven.

Bus operations are pipelined so that the instruction cycle of one operation can overlap with the data cycle of

the previous operation.

SpaceNet – RMAP IP
VHDL User Manual

44 © University of Dundee

Note that in the remaining parts of this section, the master has been granted control over the bus via

BUS_REQ/BUS_GNT unless otherwise stated.

6.2.1 Bus Transfer States

The bus transfer state driven on BUS_TRANS has one of four possible values:

State Value Purpose

IDLE 00 Used when the codec is not issuing the address of an operation.

START 01 Used to mark the first address phase after an IDLE state.

ENABLED 10 Used to mark the address phase of remaining operations of a burst.

BUSY 11 Used to mark an idle phase in the middle of a burst.

From the table above it can be seen that the START and ENABLED states are similar: the START state may

be useful to smart buses which split transfers into smaller groups. From the table it can also be seen that

IDLE and BUSY states are similar: the BUSY state allows gaps to be inserted into a burst without the need to

start a new burst.

6.2.2 General Basic Transfer

A general bus transfer operation is illustrated in Figure 6-4.

Figure 6-4: External bus basic transfer operation

In a basic transfer with no wait cycle or error:

 The RMAP IP core drives the BUS_ADDR, BUS_WRITE and BUS_TRANS signals during the

address phase of the operation.

 In the data phase of a write operation the data is written to BUS_DATA_OUT by the core. In the data

phase of a read operation the data is captured from BUS_DATA_IN by the core.

With no waits the data arrives on the cycle after the address phase.

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 45

6.2.3 Transfer with Bus Wait

The middle of a transfer with wait states is illustrated in Figure 6-5.

Figure 6-5: External bus operation with wait states

In a transfer with wait cycles:

 The RMAP IP core drives the BUS_ADDR, BUS_WRITE and BUS_TRANS signals during the

address phase of the operation.

 In the data phase the BUS_WAIT is set HIGH by the external user memory controller. In a write

operation BUS_DATA_OUT is valid until BUS_WAIT is set LOW. In a read operation the data on

BUS_DATA_IN is not ready until BUS_WAIT is set LOW.

Due to the BUS_WAIT the data isn‟t captured until the third data cycle. Bus waits are inserted by the slave

when it is unable to supply or capture data during a data phase cycle.

6.2.4 Transfer with Bus Error

The middle of a transfer with a bus error is illustrated in Figure 6-6.

Figure 6-6: External bus operation with bus error

SpaceNet – RMAP IP
VHDL User Manual

46 © University of Dundee

In the bus error terminated transfer shown above:

 The RMAP IP core drives the BUS_ADDR, BUS_WRITE and BUS_TRANS signals during the

address phase of the operation.

 In the data phase the BUS_WAIT is set HIGH by the external user memory controller. Eventually the

host realises it cannot perform the transfer and sets BUS_ERROR and the transfer is terminated by

the RMAP IP core DMA controller.

A bus error may be raised for a variety of reasons including attempts to access memory that isn‟t mapped,

has the wrong access permissions, or perhaps due to a timeout in the slave.

6.2.5 Multiple Transfer Operation

The middle of a multiple transfer operation is illustrated in Figure 6-7.

Figure 6-7: External bus multiple transfer operation

In the multiple transfer operation shown above:

 The RMAP IP core drives the BUS_ADDR, BUS_WRITE and BUS_TRANS signals during the

address phase of the operation.

 In the data phase of a write operation the data is written to BUS_DATA_OUT by the core. The data

is held stable if BUS_WAIT is asserted and the concurrent address phase of the next operation is

also held stable.

 In the data phase of a read operation the data is captured from BUS_DATA_IN by the core. The

data is invalid if BUS_WAIT is asserted and the concurrent address phase of the next operation is

also held stable.

 Transfer B had one wait state.

Notice how the data phase of A overlaps with the address phase of B etc.

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 47

6.2.6 Transfer with Busy States

The middle of a multiple transfer operation with busy states is illustrated in Figure 6-8.

Figure 6-8: External bus operation with BUSY state

In a bus operation with a BUSY state such as that shown above:

 The RMAP IP core drives the BUS_ADDR, BUS_WRITE and BUS_TRANS signals during the

address phase of the operation.

 In the data phase of a write operation the data is written to BUS_DATA_OUT by the core. In the data

phase of a read operation the data is captured from BUS_DATA_IN by the core.

 If the codec is unable to accept more data it may insert a busy state such as the one for transfer B.

The data for transfer A must be provide or accepted but the request for transfer B is delayed by one

cycle by setting BUS_TRANS to BUSY.

The codec may use BUSY states to control the flow of data. However, in practice the codec will release the

bus when it is unable to provide data for a write or consume data for a read. It will wait until it is able to

continue a burst of transfers before requesting the bus again.

6.2.7 Complete Example of a Read Burst

A complete example of a read burst operation is shown in Figure 6-9.

Figure 6-9: Complete example of a read burst

SpaceNet – RMAP IP
VHDL User Manual

48 © University of Dundee

The codec asserts BUS_REQ and waits for BUS_GNT to be asserted in response. After a couple of cycles

the bus is granted to the codec. In this example the codec marks the bus IDLE during the cycle in which it

was granted but it need not do this (it could issue a START immediately).

On the next cycle the codec issues a read for address A1 using the START state because this is the first

operation of a burst. On the next cycle the data D1 can be captured for address A1; at the same time the

codec issues a read for address A2 using state ENABLED for this and subsequent operations. On the next

cycle the codec expects the data D2 to arrive for address A2 and issues a read for address A3. However, the

slave is unable to provide D2 and asserts BUS_WAIT for one cycle. The codec holds BUS_TRANS,

BUS_WRITE and BUS_ADDR stable for another cycle during which the expected data D2 arrives.

The last operation of the burst is to read from address A4. However, since the bus is pipelined the BUS_GNT

signal will remain asserted for the next address cycle so the codec is permitted to deassert BUS_REQ at the

same time as issuing the last read operation for address A4. Because the bus is still granted during the

address phase of the A4 operation the data D4 is expected in the following cycle even though BUS_GNT

has been deasserted.

Note that if the data D4 was not ready the slave would assert BUS_WAIT as normal and the codec would

wait for the data to become ready. If data D3 was not ready then the bus master may not deassert

BUS_GNT until the end of address phase A4.

6.2.8 Complete Example of a Write Burst

A complete example of a read burst operation is shown in Figure 6-10.

Figure 6-10: Complete example of a write burst

The codec asserts BUS_REQ and waits for BUS_GNT to be asserted in response. After a couple of cycles

the bus is granted to the codec. In this example the codec marks the bus IDLE during the cycle in which it

was granted but it need not do this (it could issue a START immediately).

On the next cycle the codec issues a write for address A1 using the START state because this is the first

operation of a burst. On the next cycle the data D1 is driven for address A1; at the same time the codec

issues a write for address A2 using state ENABLED for this and subsequent operations. On the next cycle

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 49

the codec drives data D2 for address A2 and issues a write for address A3. However, the slave is unable to

accept D2 and asserts BUS_WAIT for one cycle. The codec holds BUS_TRANS, BUS_WRITE, BUS_ADDR

and BUS_DATA_OUT stable for another cycle during which the data D2 is captured by the slave.

The last operation of the burst is to write from address A4. However, since the bus is pipelined the

BUS_GNT signal will remain asserted for the next address cycle so the codec is permitted to deassert

BUS_REQ at the same time as issuing the last write operation for address A4. Because the bus is still

granted during the address phase of the A4 operation the data D4 will be driven in the following cycle even

though BUS_GNT has been deasserted.

Note that if the data D4 could not be captured the slave would assert BUS_WAIT as normal and the codec

would wait for the data to be captured. If data D3 could not be captured then the bus master may not

deassert BUS_GNT until the end of address phase A4.

SpaceNet – RMAP IP
VHDL User Manual

50 © University of Dundee

7 INITIATOR

The RMAP Initiator Handler uses several memory structures inside the RMAP IP core and also inside

initiator user memory. The structures are used to control the passing of commands from initiator user

memory to the RMAP IP core and the passing of replies from the RMAP IP core to initiator user memory.

Figure 7-1: Initiator Data Structures

In the initiator user memory there are four possible memory areas or buffers associated with each RMAP

command: transaction details record, header information, write data, and reply data.

The transaction details array holds the following information: pointer to command header in user memory,

pointer to any data to be sent with a write or read-modify-write command, pointer to memory location to be

written for sent notification, pointer to space for a reply to a read or read-modify-write command, pointer to

memory location to be written for reply notification, length of data to be read or written, reply time-out value

and transaction status.

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 51

The header information buffer holds the RMAP command header information including the Target SpW

Address and the Reply Address.

The write data buffer holds any data to be sent with a write or read-modify-write command.

The reply data buffer is reserved space into which any data associated with a read or read-modify-write

command will be written.

7.1 SENDING A NEW COMMAND

To send an RMAP command the user sets up the header of the command in a header information buffer,

any data to be sent with the command in a write data buffer and space for any reply in a reply data buffer.

The user then creates a transaction record with pointers to the header information buffer, write data buffer

and reply data buffer along with information about the amount of data in these buffers. It also provides

pointers to memory locations (or registers) where sent and reply notifications are to be made. Finally it adds

into the transaction record a reply time-out value (0 = no wait, 0x00000001-0xFFFFFFFE wait time in µs,

0xFFFFFFFF = infinite wait). Once the transaction record is complete the initiator user application informs

the RMAP IP core that is has an RMAP command to send and passes the RMAP IP core a pointer to the

corresponding transaction record.

If the transaction details record flags field indicates that the command is expecting a reply the command is

not started (sent) until there is room for another transaction in its outstanding transaction array. The RMAP

IP core will then send the command by copying the header information from user memory to the SpaceWire

interface, adding any detail necessary (e.g. header CRC). The header information is copied twice so the

information can be checked and then sent. Any errors which are detected in the header are recorded and

output on the status interface and to the notify sent register, if used.

If there is any write data to be sent this will be copied from the write data buffer in user memory to the

SpaceWire interface and appending the data CRC. Finally an EOP marker will be added to complete the

packet. The initiator user application will be informed that the command has been sent by the RMAP IP core

writing the transaction ID and status to the memory location specified by the sent notify pointer in the

transaction details array element.

7.2 RECEIVING A REPLY

When an RMAP reply is received the RMAP IP core searches the outstanding transaction array for an entry

with a transaction identifier that matches the transaction identifier of the reply. Assuming there is a match the

RMAP IP core then writes any data from a read or read-modify-write reply to the user memory location

specified by the reply data pointer for the corresponding entry in the transaction details array. The RMAP IP

core writes the transaction identifier and status to the memory location specified by the reply notification

SpaceNet – RMAP IP
VHDL User Manual

52 © University of Dundee

pointer in the transaction details array entry. When this has been done the relevant entry in the outstanding

transaction array is cleared freeing it for use by another RMAP transaction.

7.3 TRANSACTION DETAILS RECORD

The transaction details record is setup in user memory by the host application when it wishes to send an

RMAP command. The format of the command is shown in Figure 7-2 Transaction Details Record Memory

SetupFigure 7-2. The flags field is a bit mask which holds properties on the transaction record.

 31 23 15 7 0

0 Unused Flags

1 Header Pointer

2 Write Data Pointer

3 Sent Notify Pointer

4 Reply Data Pointer

5 Reply Notify Pointer

6 Unused Data Length

7 Reply Timeout

Figure 7-2 Transaction Details Record Memory Setup

The transaction details record fields are described in the table below.

Field Size
(bits)

Description

Flags(7:0) – Target SpW Length 8 Number of target SpaceWire addresses. Up to 256
SpaceWire path addresses can be added to the front of an
RMAP command

Flags(9:8) – Reply Addresses 2 Number of SpaceWire reply addresses to send in the RMAP
command. The actual number is multiplied by 4 when

Flags(10) – MSB First 1 Send the RMAP data bytes most significant byte first

Flags(11) – Bit swap 1 Reverse the bits in the RMAP data byte

Flags(12) – Notify Sent 1 When set the notify sent memory location is valid

Flags(13) – Notify Reply 1 When set the notify reply memory location is valid

Flags(14) – DMA Header Inc 1 When set the external bus address is incremented when
accessing the header information array

Flags(15) – DMA data Inc 1 When set the external bus address is incremented when
accessing the write and reply data buffers

Flags(16) – Reply Expected 1 When set a reply is expected and a location in the
transaction table is required

Header Pointer 32 Pointer to the header information buffer in user memory

Write data pointer 32 Pointer to the write data buffer in user memory which
contains data to be sent in a write or RMW command for

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 53

writing into target memory.

Sent notify pointer 32 Pointer to the memory location (or register) which is to be
written to when the RMAP command has been sent. The
transaction identifier and status are written to the memory
location.

Reply data pointer 32 A pointer to the buffer in user memory reserved for any data
received in a reply from the RMAP command.

Reply notify pointer 32 Pointer to the memory location (or register) which is to be
written to when the RMAP reply has been received and any
associated data written to memory. The transaction identifier
and status are written to the memory location.

Data Length 24 The amount of data to be read in a read command or written
in a write command. For a read-modify-write command this
field holds the length of the data plus mask, which is twice
the size of the data to be read.

Reply time-out 32 The amount of time to wait for a reply to an RMAP

command.

0x00000000 - do not wait.

0x00000001 to 0xFFFFFFFFE - time-out time in µs.

0xFFFFFFFF - wait forever.

Table 7-1 Transaction Record Fields

7.4 HEADER INFORMATION RECORD

The header information record holds information on the RMAP command parameters to be sent. The header

information record is stored in memory as shown in Figure 7-3. In the example there are 4 target SpaceWire

addresses and 1 block of reply SpaceWire addresses.

 31 23 15 7 0

0 Target Path Addr 1 Target Path Addr 2 Target Path Addr 3 Target Path Addr 4

1 Target Address Protocol ID Instruction Key

2 Reply Path Addr 1 Reply Path Addr 2 Reply Path Addr 3 Reply Path Addr 4

3 Initiator Address Transaction ID 1 Transaction TID 0 Extended Address

4 Address 3 Address 2 Address 1 Address 0

5 Data Length 2 Data Length 1 Data Length 0 Unused

Figure 7-3 Header Information Record Setup

SpaceNet – RMAP IP
VHDL User Manual

54 © University of Dundee

The header information is checked by the initiator core before it is sent.

Field Size Description

Target SpaceWire Address Variable Target SpaceWire path addresses. Any leading zeros are
removed before transmission.

Target Logical Address 1 A logical address of the target that the RMAP command is
intended for.

Protocol Identifier 1 0x01 for RMAP

Instruction 1 The RMAP packet type and command.

Key 1 A value that is checked by the target for security.

Reply Address Variable Reply path addresses

Initiator logical address 1 A logical address of the initiator.

Transaction identifier 2 The transaction identifier value to be sent in the command.
If automatic transaction identifier generation is selected the
RMAP Initiator Handler will ignore the transaction identifier
value in the header information buffer.

Extended address 1 The most-significant 8-bits of the address of the memory
that is to be accessed in the target.

Address 4 The least-significant 32-bits of the address of the memory
that is to be accessed in the target.

Data length 3 The amount of data to be written to, read from or read-
modify-written in target memory.

Table 7-2 Header information record fields

7.5 NOTIFY SENT/REPLY RECORD

The notify sent and reply records are used to store the transaction ID and status of the commands and

replies which are processed by the initiator RMAP core.

The command sent notify record is shown in Figure 7-4

31 23 15 7 0

Transaction ID 1 Transaction ID 0 Unused Command Status

Figure 7-4 Notify Sent Record

The command sent notify record is shown in Figure 7-5

31 23 15 7 0

Transaction ID 1 Transaction ID 0 Status Field Decoder Status

Figure 7-5 Notify Reply Record

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 55

The status field is a copy of the reply status from the RMAP command and the reply decoder status is the

reply status as shown in §5.14.

7.6 DEBUG READ PORT DETAILS

The debug read port can be used to view the contents of the transaction records table in the RMAP IP core

memory block. Each record in the transaction memory block is setup when a reply is expected. A transaction

record requires 7 locations in the transaction memory block and each transaction record is sequential, i.e.

transaction 1 is at address 0 and transaction 2 is at address 7 and so on.

 31 23 15 7 0

0 Core Field Core Field Core Field Status/Used

1 Unused Core Field Transaction ID 1 Transaction ID 0

2 Unused Instruction Initiator Address Target Address

3 Reply Data Pointer

4 Reply Notify Pointer

5 Timeout Used Data Length

6 Core Field

Figure 7-6 Debug port transaction record details

The core fields are fields which are used only by the RMAP core.

Bit 0 of the Status/Used field indicates if the transaction record is in use and represents a valid transaction

record for an outstanding reply. Bit 1 indicates if the command has been sent and bit 2 indicates if a reply

has been received. Note a reply may be received before the complete command has been sent, for example

a long write operation may not be authorised so the target can return an RMAP reply packet with the status

set to not authorised before the command packet has completed.

Bit 2 of the Timeout Used field indicates if the transaction timeout is active and if the transaction will be

deleted by the core after the specified timeout period has expired and no reply has been received.

The other fields are copied directly from the transaction record and header information record as the

command is sent.

7.7 REPLY PACKET TIMEOUT DETECTION

A timeout field in the transaction details record can be set to force the initiator to stop waiting for the packet

reply after a period of time. When a timeout occurs the initiator frees up the location in the transaction table

and discards the reply if it eventually is returned. The reply timeout field details are listed in Table 7-1.

SpaceNet – RMAP IP
VHDL User Manual

56 © University of Dundee

The configuration generics CFG_INI_TIMEOUT_CHECK_WAIT and CFG_INI_TIMEOUT_CHECK_MAX,

defined in sections 5.1.25 and 5.1.26, controls the timing of initiator timeout checks. The initiator does not

hold a counter for each outstanding transaction which could be costly for device area. Instead the absolute

timeout value for each packet is held in the internal transaction table array. When a transaction is started the

value of the transaction timeout in the transaction details array is added to the value of the internal timer and

then stored in the internal array. The value is then checked at a regular intervals to determine if it exceeds

the current value of the internal timer and if so a timeout is detected. Note using this method multiple

expected replies may have timed out and remain in the transaction table but they will eventually be caught

when the next timeout check is performed. It is also possible for the reply packet to be received when an

expected reply has already timed out but has not been caught. This situation is guarded against by checking

the timeout field when a reply is matched in the transaction table before the reply is acted upon.

The regular interval for timeout checks is controlled by the configuration signal

CFG_INI_TIMEOUT_CHECK_WAIT and the duration of the timeout check is controlled by

CFG_INI_TIMEOUT_CHECK_MAX. When timeout check is being performed by the initiator no command or

reply packets can be processed so CFG_INI_TIMEOUT_CHECK_MAX should be kept to a few micro

seconds. The interaction of CFG_INI_TIMEOUT_CHECK_WAIT and CFG_INI_TIMEOUT_CHECK_MAX is

shown in Figure 7-7.

Figure 7-7 Timeout check settings interaction

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 57

8 VERIFICATION

Verification of the RMAP core is performed using the RMAP core validation test-bench. The validation test-

bench it is not provided with the core, instead a cut down test-bench which is used to allow the end user to

test a netlist or placed and routed model is supplied.

Two end user test-benches are supplied with the core. The first test-bench tests the functions and the

interfaces of the core where all interfaces are available i.e. the implementation is the RMAP IP core alone.

The second test-bench checks packets sent and received by the core when only the SpaceWire interface is

available and the other RMAP core interfaces are embedded in the end user system. The user defines the

packets to be sent and received according to the characteristics of their system.

SpaceNet – RMAP IP
VHDL User Manual

58 © University of Dundee

9 SYNTHESIS

9.1 CLOCK PERFORMANCE

The RMAP CODEC IP has one system clock input (Clk) which clocks all flip-flops in the design except the

receive clock domain of the SpaceWire link. The SpaceWire transmitter can also be clocked from a separate

clock input on the core Txclk dependent on the SpaceWire link configuration setting CFG_BITCLK in

src/vhdl/spw/spwrlink_pkg.vhd.

A typical way to implement the RMAP core design is to run the system clock (Clk) at the byte rate of the

system and use a separate transmit clock to transmit the bytes at the required bit rate. For example a system

which processes RMAP data at 20 Mbytes/s requires a 100 MHz transmit clock to transmit the byte data at

100 Mbps, taking into account the SpaceWire data character length of 10 bits.

9.2 SYNTHESIS RESULTS

The configuration of the RMAP core used to get synthesis results are listed in Table 9-1.

Generic Name Value Used Comments

CFG_TECH TECH_MEM_PROASIC

TECH_MEM_AXCELERATOR

Correct memory type for

architecture

CFG_INITIATOR_EN 1 Initiator enabled

CFG_TARGET_EN 1 Target enabled

CFG_TARGET_MSB_FIRST 1

CFG_TARGET_BITSWAP 0

CFG_WORD_SIZE 4 32 bit bus size

CFG_TARGET_VERIFY_BUF_ABITS 8 256 byte verify buffer

CFG_TRGT_FIFO_OUT_ABITS 6 64 word buffer

CFG_TRGT_FIFO_IN_ABITS 6 64 word buffer

CFG_TRGT_BURST_SIZE 64 64 word per DMA

transaction

CFG_TRGT_WATCHDOG_TIMEOUT 1024

CFG_TRGT_EN_WATCHDOG 1 Watchdog mode

enabled

CFG_REQ_TIMEOUT_NBITS 8

CFG_SEND_REPLY_ON_EEP_AFTER_CRC 1 Return packet

CFG_SEND_REPLY_ON_RESERVED_PKT 0

CFG_ALLOW_LOOPBACK 1 Loopback mode enabled

CFG_DEMUX_ROUTE_RESERVED-

_TO_TARGET

0

CFG_DEMUX_ROUTE_REPLIES- 0

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 59

_TO_TARGET

CFG_INI_MAX_COMMANDS 36 Use maximum table size

CFG_INI_TRTABLE_ABITS 8

CFG_INI_OUTSTANDING_BITS 8

CFG_INI_EXTRA_CHECKS 0 No extra packet checks

CFG_INI_CODEC_MSB_FIRST 1

CFG_INI_CODEC_BITSWAP 0

CFG_INI_TIMEOUT_CHECK_WAIT 50

CFG_INI_TIMEOUT_CHECK_MAX 20

CFG_INI_BURST_SIZE 64 64 word burst size

CFG_INI_WATCHDOG_TIMEOUT 1024

CFG_INI_EN_WATCHDOG 1

CFG_INI_FIFO_OUT_ABITS 6 64 word buffer

CFG_INI_FIFO_IN_ABITS 6 64 word buffer

Table 9-1 “rmap_codec_ip.vhd” Generic settings for area usage figures

The results of synthesis runs on the Mentor Graphics Precision synthesiser are given below. The figures for

“Kernel Only” are the RMAP core with imitator and target but without the SpaceWire link interface.

Model
AX2000 Spartan3E 1600 ProASIC3E1500

FF Comb Modules Slices Tiles

Core 2957 6249 9206 (29.06%) 3095 (20.97%) 11261 (29.33%)

Initiator Only 2029 4434 6463 (20.04%) 2213 (15.00%) 7987 (20.80%)

Target Only 1425 2962 4464 (13.84%) 1134 (7.69%) 4576 (11.92%)

Kernel Only 2599 5634 8233 (26.20%) 2584 (17.52%) 10206 (26.58%)

Table 9-2 Area usage of RMAP core synthesised with Mentor Graphics Precision

The results of synthesis runs on the Synplicity Synplify synthesiser are given below. In Synplify the

syn_hierarchy attribute is set to “firm”, syn_encoding is set to “gray”. The figures for “Kernel Only” are the

RMAP core with imitator and target but without the SpaceWire link interface.

SpaceNet – RMAP IP
VHDL User Manual

60 © University of Dundee

Model
AX2000 ProASIC3E1500

FF Comb Modules Tiles

Core 3665 6955 10620 (33%) 19420 (50%)

Initiator Only 2491 5040 7531 (24%) 15365 (40%)

Target Only 1845 2745 4590 (15%) 6238 (16%)

Kernel Only 2491 5040 7531 (24%) 17796 (46%)

Table 9-3 Area usage of RMAP core synthesised with Synplicity Synplify

9.3 AREA OPTIMISATION

The RMAP core units designed using finite state machines (FSM), therefore the type and settings of the

synthesis tool will greatly affect the area usage. To reduce area further the generic settings of the RMAP

core are modified as listed in Table 9-4.

Generic Name Initial Value Value Used

CFG_TARGET_VERIFY_BUF_ABITS 8 4

CFG_TRGT_FIFO_OUT_ABITS 6 3

CFG_TRGT_FIFO_IN_ABITS 6 3

CFG_TRGT_BURST_SIZE 64 2

CFG_INI_MAX_COMMANDS 36 2

CFG_INI_TRTABLE_ABITS 8 4

CFG_INI_OUTSTANDING_BITS 8 2

CFG_INI_TIMEOUT_CHECK_MAX 50 20

CFG_INI_BURST_SIZE 64 4

CFG_INI_FIFO_OUT_ABITS 6 3

CFG_INI_FIFO_IN_ABITS 6 3

Table 9-4 Generics modified for reduced area consumption results

To reduce the area usage of the core the FSM encoding should be set to gray or binary. Note binary and

gray encoding can increase the number of combinatorial cells used. One hot encoding will increase the size

of the core but also increase the performance.

Model
AX2000 ProASIC3E1500

Modules Tiles

Core, one hot FSM 11184 (34.7%) 11397 (29.7)%

Core, gray coded FSM 10352 (32.1%) 11794 (31%)

Table 9-5 Area optimisation synthesis results (Mentor Graphics Precision)

The gray coded FSM has the precision “setup_design –compile_for_area” option set in the command line.

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 61

Note: one hot encoding produces better results for ProASIC3E devices but may reduce performance for

“safe mode” state machines. Area optimisation does not provide a significant area decrease therefore it is

not recommended.

9.4 MEMORY BLOCKS AND FIFOS

The RMAP IP core block uses a number of memory blocks and FIFO structures to store and buffer data.

The memory blocks used in the core are listed in Table 9-6.

Memory block Description

SpaceWire transmit FIFO FIFO for SpaceWire transmit data. This FIFO can be relatively small, as

little as 8 locations, as its purpose is to synchronise data to the transmit

clock. The FIFO size is configurable in src/vhdl/spw/spwrlinkwrap.vhd

SpaceWire receive buffer Receive buffer to store received SpaceWire characters. The receive buffer

size is set by the constant CFG_RXBUF_ADDRLEN in

src/vhdl/spw/spwrlink_pkg.vhd

DMAC input/output FIFO Each DMA controller has an input and output FIFO to facilitate burst

transfers over the external bus. The size of the DMAC FIFO is configurable

through the VHDL generics.

Verify buffer The verify buffer is used to store data from an RMAP packet until the data

CRC can be checked and the data can then be written to external memory.

The size of the verify buffer can be set through the generic

CFG_TARGET_VERIFY_BUF_ABITS.

Transaction Table The transaction table is used to store information on RMAP commands sent

by the initiator. The table size is set through the generic

CFG_INI_TRTABLE_ABITS.

Table 9-6 Core memory blocks

The SpaceWire transmit FIFO uses a two clock dual ported memory block to store SpaceWire data. The

memory block is implemented in src/vhdl/async_fifo/async_memblock.vhd. Three models are available, each

with a different filename. The first model builds the memory block using flip-flop resources, the second model

infers a dual port RAM on most synthesisers and the third block generates a Xilinx block RAM component.

The other memory blocks are implemented using a single clock dual ported memory block implemented in

src/vhdl/sync_fifo/sync_memblock.vhd. Again three models are available, each with a different filename. The

first model builds the memory block using flip-flop resources, the second model infers a dual port RAM on

most synthesisers and the third block generates a Xilinx block RAM component.

SpaceNet – RMAP IP
VHDL User Manual

62 © University of Dundee

The memory structures available in the VHDL code are listed in Figure 9-1.

Figure 9-1 Synchronous and asynchronous dual port memory blocks

A description of each VHDL file is given in Table 9-7.

VHDL file Description

mem/mem_cell.vhd Register with write enable intended for memory block

build with flip-flop banks.

sync_fifo/sync_memblock.vhd Single clock, dual port memory built from mem_cell

blocks.

sync_fifo/sync_memblock_bram.vhd Single clock, dual port memory using Xilinx BRAM

components. Uses RAMB4_S16_S16 which is

compatible with Virtex and Spartan designs.

sync_fifo/sync_memblock_fpga_memory.vhd Single clock, dual port memory using VHDL code to

instantiate technology memory blocks.

async_fifo/async_memblock.vhd Two clock, dual port memory build from mem_cell blocks

and with additional asynchronous output filtering to the

memory output register.

async_fifo/async_memblock_and.vhd AND gate for output data multiplexer.

async_fifo/async_memblock_dataena.vhd Output data multiplexer build from AND gates and OR

gates.

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 63

async_fifo/async_memblock_demux.vhd Binary to one-hot output register selection block. Selects

the row of memory which should be enabled to the output

register through the data enabler AND gates.

async_fifo/async_memblock_bram.vhd Two clock, dual port memory using Xilinx BRAM

components. Uses RAMB4_S16_S16 which is

compatible with Virtex and Spartan designs.

sync_fifo/sync_memblock_fpga_memory.vhd Two clock, dual port memory using VHDL code to

instantiate technology memory blocks.

Table 9-7 VHDL memory block files.

When synthesising, the correct technology memory block should be added to the synthesis project.

9.5 SEU PROTECTION

SEU protection is not provided in the RMAP IP core model. It is expected that the fabric of the FPGA or ASIC

technology will provide SEU protection for synchronous elements in the design (flip-flops).

Typically memory blocks are not protected, therefore they should either be implemented as flip-flops; or a

drop in replacement for the single and dual clocked memory blocks should be used in the final synthesised

model. For example memory blocks with error detection and correction (EDAC) using error correcting codes

(ECC) are provided with the Actel Libero and designer toolchain.

Critical memory blocks for SEU protection in the design are the verity buffer, transaction table and DMA

controller FIFOs. Scrubbing may also be desirable in the transaction table memory block as the transactions

may be in the memory block for a long period of time and be susceptible to repeated single events before the

data is read from the memory. Scrubbing support is not compiled in the transaction table controller, and may

be provided in a later version of the core.

The SpaceWire interface transmit and receive FIFOs are also critical but if the RMAP protocol is used the

packet data is protected by header and data CRCs. In this case SEU protection may not be required,

dependent on the initiator hosts ability to resend an RMAP command on a corrupted data byte in the RMAP

packet.

9.6 SYNTHESIS EXAMPLE FOLDER “DESIGN/SYNTH_EXAMPLE/”

A Mentor Graphics precision script and example spwrlink_pkg.vhd configuration file are available in the

design/synth_example folder. The script synthesises the core for the Actel AX2000, Actel ProASIC3E and

Xilinx Spartan3E technologies.

SpaceNet – RMAP IP
VHDL User Manual

64 © University of Dundee

10 DOCUMENT CHANGES

The changes made this document are listed in table 10.1

(Issue 1.6 to Issue 1.7)

Section/Reference Change

 Update RMAP and SpaceWire standard document reference numbers

(Issue 1.5 to Issue 1.6)

Section/Reference Change

9.2 Update synthesis results after initiator reply decoder change.

(Issue 1.4 to Issue 1.5)

Section/Reference Change

5.16 Add additional transaction debug/status signals

(Issue 1.3 to Issue 1.4)

Section/Reference Change

2 Add note on CFG_ALLOW_LOOPBACK=1 results in long static timing

path.

3 design/units directory becomes design/synth_example

4 Update architecture diagram with FIFOs and verify control path flow

4.x Add section headings for architecture blocks.

Add sections on receive and transmit FIFOs, transaction table

controller, delete controller and target verify controller.

5 Add overview table of configuration generics.

5 CFG_ALLOW_LOOPBACK default set to 0 and note added on static

timing results.

6 Fix diagram background when converting to PDF and missing

references

9.2 Use AX2000 and remove references to AX1000 usage

9.4 Add descriptions of memory block VHDL files and hierarchy

9.6 Brief description of design/synth_example folder

SpaceNet – RMAP IP
VHDL User Manual

© University of Dundee 65

(Issue 1.2 to Issue 1.3)

Section/Reference Change

3 Description of design/units directory added to source files section

5.1.6 Fix text in section on CFG_WORD_SIZE so note describes correct use

of CFG_WORD_SIZE when initiator en = 1

5.12 Fix description of doing time-out check

8 Add section on verification of the core in the user manual

9.2 Add configuration of the RMAP core for usage estimate

9.6 Add information on synthesis of units and pie charts for those figures

(Issue 1.1 to Issue 1.2)

Section/Reference Change

4 (CMC) Correct initiator bit order generic descriptions and usage

(Issue 1.0 to Issue 1.1)

Section/Reference Change

4 (CMC) Add initiator interfaces

6 (CMC) Add initiator data structures and procedures

7 (CMC) Add synthesis information

Table 10-1 Document changes

	Contents
	List of Figures
	List of Tables
	Introduction
	Aims and Objectives
	Guide to Document
	Acronyms and Abbreviations
	Terms and Definitions
	Numbers
	SpaceWire Definitions
	RMAP Definitions

	Reference Documents
	Applicable Documents

	Limitations and Information
	VHDL File Hierarchy
	Architecture Overview
	SpaceWire Interface
	Receive Buffer
	Transmit FIFO

	SpaceWire Loopback
	Time-code Handler
	Protocol Demux
	Protocol Mux
	Initiator Command Encoder
	Initiator Transaction Table
	Initiator Transaction Table Controller
	Initiator Reply Decoder
	Initiator Delete Controller
	Target Command Decoder
	Target Reply Encoder
	Target Controller
	Target Verify Controller
	DMA Controller
	Status
	Clock and Reset

	Configuration and Interfaces
	Configuration Generics
	Overview
	CFG_TECH (default TECH_GENERIC)
	CFG_INITIATOR_EN (default 0)
	CFG_TARGET_EN (default 1)
	CFG_TARGET_MSB_FIRST (default 1)
	CFG_TARGET_BITSWAP (default 0)
	CFG_WORD_SIZE (default 4)
	CFG_TARGET_VERIFY_BUF_ABITS (default 8)
	CFG_TRGT_FIFO_OUT_ABITS (default 8)
	CFG_TRGT_FIFO_IN_ABITS (default 8)
	CFG_TRGT_BURST_SIZE (default 8)
	CFG_TRGT_EN_WATCHDOG (default 1)
	CFG_TRGT_WATCHDOG_TIMEOUT (default 1024)
	CFG_REQ_TIMEOUT_NBITS (default 8)
	CFG_SEND_REPLY_ON_EEP_AFTER_CRC (default 0)
	CFG_SEND_REPLY_ON_RESERVED_PKT (default 1)
	CFG_ALLOW_LOOPBACK (default 0)
	CFG_DEMUX_ROUTE_REPLIES_TO_TARGET (default 0)
	CFG_DEMUX_ROUTE_RESERVED_TO_TARGET (default 0)
	CFG_INI_MAX_COMMANDS
	CFG_INI_TRTABLE_ABITS
	CFG_INI_CODEC_MSB_FIRST (default 1)
	CFG_INI_CODEC_BITSWAP (default 0)
	CFG_INI_OUTSTANDING_BITS
	CFG_INI_TIMEOUT_CHECK_WAIT (default 50)
	CFG_INI_TIMEOUT_CHECK_MAX (default 5)
	CFG_INI_BURST_SIZE (default 8)
	CFG_INI_EN_WATCHDOG (default 1)
	CFG_INI_WATCHDOG_TIMEOUT (default 1024)
	CFG_INI_FIFO_OUT_ABITS (default 8)
	CFG_INI_FIFO_IN_ABITS (default 8)

	Clock/Reset Interface
	Low-Level SpaceWire Interface
	High-Level SpaceWire Interface
	Timecode Interface
	Non-RMAP Receive Interface
	Non-RMAP Transmit Interface
	External Bus Interface
	Read Modify Write Interface
	Target Authorisation Interface
	Target Status Interface
	Initiator Configuration/Status Interface
	Initiator Command Interface
	Initiator Reply Interface
	Initiator Delete/Clear Interface
	Initiator Transaction Table Debug Port Interface

	External Bus Interface
	External Bus Connections
	Direct Connection to Host Bus
	Connection to Host Bus Through a Bridge
	Direct Connection to Peripheral/Controller

	External Bus Operation
	Bus Transfer States
	General Basic Transfer
	Transfer with Bus Wait
	Transfer with Bus Error
	Multiple Transfer Operation
	Transfer with Busy States
	Complete Example of a Read Burst
	Complete Example of a Write Burst

	Initiator
	Sending a new command
	Receiving a Reply
	Transaction Details Record
	Header Information Record
	Notify Sent/Reply Record
	Debug Read Port Details
	Reply Packet Timeout Detection

	Verification
	Synthesis
	Clock Performance
	Synthesis results
	Area Optimisation
	Memory blocks and FIFOs
	SEU Protection
	Synthesis Example Folder “design/synth_example/”

	Document Changes

