

© University of Dundee

SpaceNet – RMAP IP Core

End User Test-bench Manual

Revision: Issue 1.1

Date: 12th February 2009

ESA Contract Number 220774-07-NL/LvH

Ref: RMAP IP WP2-400.7-1

Space Technology Centre

School of Computing

University of Dundee

Dundee, DD1 4HN

Scotland, UK

spacetech.computing.dundee.ac.uk

http://spacetech.computing.dundee.ac.uk/

SpaceNet – RMAP IP
End User Test-bench Manual

2 © University of Dundee

Document Authors

Chris McClements (CMC)

Document Change Log

Date Revision No Comments

30
h
 January 2009 Issue 1.0 CMC: First issue

12
th
 February Issue 1.1 CMC: Normal and Embedded Test-bench

CMC: Detailed information on end user test-

bench expanded.

A comprehensive list of the changes which have been made to this document in each revision is provided in

section 6.

SpaceNet – RMAP IP
End User Test-bench Manual

© University of Dundee 3

CONTENTS

CONTENTS .. 3

I LIST OF FIGURES .. 5

II LIST OF TABLES ... 6

1 INTRODUCTION ... 7

1.1 AIMS AND OBJECTIVES ... 7

1.2 GUIDE TO DOCUMENT .. 7

1.3 ACRONYMS AND ABBREVIATIONS .. 7

1.4 TERMS AND DEFINITIONS ... 8

1.5 REFERENCE DOCUMENTS .. 8

1.6 APPLICABLE DOCUMENTS .. 8

2 END USER TEST-BENCH SUMMARY ... 9

2.1 END USER TEST-BENCH FLOW ... 9

2.2 END USER TEST-BENCH (TB_CORE) ... 10

2.3 END USER TEST-BENCH WITH EMBEDDED RMAP CORE (TB_EMB) 10

3 TEST-BENCH ENVIRONMENT ... 12

3.1 SUPPORTED SIMULATORS .. 12

3.2 SOURCE FILES AND DIRECTORY STRUCTURE .. 12

3.3 SOURCE FILES .. 12

3.4 LOG FILES ... 14

3.5 TEST-BENCH SCRIPTS.. 14

3.6 VENDOR LIBRARIES ... 15

3.7 TEST-BENCH COMPLETION ... 15

4 END USER TEST-BENCH (TB_CORE) ... 17

4.1 ARCHITECTURE ... 17

4.2 RMAP CORE CONFIGURATION ... 18

SpaceNet – RMAP IP
End User Test-bench Manual

4 © University of Dundee

4.3 RMAP CORE INTERFACES ... 18

4.4 TEST DESCRIPTIONS .. 19

4.5 RUNNING THE TEST-BENCH.. 26

4.6 NETLIST OR BACK ANNOTATED TIMING SIMULATION ... 26

5 EMBEDDED TEST-BENCH (TB_CORE) .. 27

5.1 ARCHITECTURE AND USAGE ... 27

5.2 EXAMPLE TEST DESCRIPTIONS ... 28

5.3 RUNNING THE TEST-BENCH .. 29

5.4 NETLIST OR BACK ANNOTATED TIMING SIMULATION ... 29

6 DOCUMENT CHANGES .. 30

SpaceNet – RMAP IP
End User Test-bench Manual

© University of Dundee 5

I LIST OF FIGURES

Figure 2-1 End user test-bench (TB_CORE) with access to the UUT interfaces. The test-bench can
check all ports on the RMAP core, enabling it to initiate commands and authorise target commands. 9

Figure 2-2 End user test-bench (TB_EMB) with embedded RMAP IP core inside the end users system.
The test-bench interface to the system is through the SpaceWire interface. Command initiation and target
authorisation must be performed by the embedded system. ... 9

Figure 4-1 End User Test-bench Architecture. The WaveGen process sets the inputs and checks the
outputs of the RMAP core. The monitor_fifo components are used to record data transmitted and receive to
and from a FIFO. The SpaceWire interface is used to interface to the SpaceWire port17

Figure 5-1 End user test-bench embedded architecture...27

SpaceNet – RMAP IP
End User Test-bench Manual

6 © University of Dundee

II LIST OF TABLES

Table 1-1: Reference Documents ... 8

Table 1-2: Applicable Documents ... 8

Table 3-1 Source file directory structure. ...12

Table 3-2 Source File Descriptions ..13

Table 3-3 Procedures from enduser_tb_pkg.vhd ...13

Table 3-4 Test-bench log files ...14

Table 3-5 Test-bench scripts. ..15

Table 3-6 Test-bench script options ..15

Table 4-1 Procedures from enduser_tb_pkg.vhd ...18

Table 4-2 Non-Verified write test parameters...20

Table 4-3 Verified write test parameters ..21

Table 4-4 Read command test parameters ..22

Table 4-5 Read Modify Write test parameters ..22

Table 4-6 Initiator command test parameters...24

Table 4-7 Initiator command test parameters...25

Table 5-1 Non-Verified write test parameters...28

Table 5-2 Verified write test parameters ..29

Table 6-1 Changes to Document ...30

SpaceNet – RMAP IP
End User Test-bench Manual

© University of Dundee 7

1 INTRODUCTION

1.1 AIMS AND OBJECTIVES

WP2 in the SpaceNet activity aims to provide a SpaceWire interface VHDL core that includes the RMAP

protocol extension to SpaceWire. This will enable users to readily implement the RMAP protocols in FPGAs

or ASICs.

This document gives an overview of the test-bench architecture and user instructions to run the end user

test-bench and check the results. The end user test-bench is intended to run a series of packet checks on an

RTL, netlist or placed and routed model of a design where the RMAP core has been embedded in the logic

of the design.

1.2 GUIDE TO DOCUMENT

Section 2 defines introduces the end user test-bench and the embedded end user test-bench.

Section 3 describes the test-bench environment

Section 4 describes the end user test-bench in detail giving descriptions of the test-bench architecture and

the tests performed.

Section 5 describes the embedded end user test-bench in detail giving descriptions of the test-bench

architecture and the tests performed.

Section 6 lists the changes to the document.

1.3 ACRONYMS AND ABBREVIATIONS

UUT Unit Under Test

SpW SpaceWire

RMAP Remote Memory Access Protocol

FIFO First In First Out

RTL Register Transfer Level

VHDL VHSIC Hardware description Language

VHSIC Very High speed Integrated Circuit

SpaceNet – RMAP IP
End User Test-bench Manual

8 © University of Dundee

1.4 TERMS AND DEFINITIONS

1.4.1 Numbers

In this document hexadecimal numbers are written with the prefix 0x, for example 0x34 and 0xdf15. Binary

numbers are written with the prefix 0b, for example 0b01001100 and 0b01.

1.5 REFERENCE DOCUMENTS

The documents referenced in this document are listed in Table 1-1.

Table 1-1: Reference Documents

REF Document Number Document Title

RD1 UoD-SpaceNet v7, 23
rd

 April

2007

Proposal for SpaceWire Network and Future Onboard Data-

Handling, Technical, Management and Administrative Proposal

RD2 TEC-ED/WG/2005.15 SpaceWire Network “SpW-Net” SpaceWire and Future Onboard

Data Handling SpaceNet Statement of Work Annex1

1.6 APPLICABLE DOCUMENTS

The documents applicable to this document are listed in Table 1-2.

Table 1-2: Applicable Documents

REF Document Number Document Title

AD1 ECSS-E-ST-50-11C SpaceWire Protocols, Draft 1.3 – July 2008

AD2 RMAP IP WP2-100.1 SpaceNet RMAP IP Core Requirements 6
th
 Feb 2008

AD3 RMAP IP WP2-100.2 SpaceNet RMAP IP Core Functional Specification 4
th
 April 2008

AD4 RMAP IP WP2-100.2 SpaceNet RMAP IP Core Interface Specification 4
th
 April 2008

AD5 RMAP IP WP2-400.3 SpaceNet RMAP IP Core User Manual

SpaceNet – RMAP IP
End User Test-bench Manual

© University of Dundee 9

2 END USER TEST-BENCH SUMMARY

The end user test-bench is intended to run a series of tests on an RTL, netlist or placed and routed model or

a design where the RMAP core has been embedded in the logic of the design. The end user test-bench is

not intended to be a complete validation of all the functions of the RMAP core. A separate validation test-

bench which checks the functions of the core is not supplied with the user release.

Two types of testing can be performed in the end user test-bench, the first test-bench provides tests to check

the interfaces of the core, Figure 2-1, and the second provides tests to check the response of the core when

it is embedded in the end users system and the only interface available is the SpaceWire interface, Figure

2-2.

Figure 2-1 End user test-bench (TB_CORE) with access to the UUT interfaces. The test-bench can

check all ports on the RMAP core, enabling it to initiate commands and authorise target

commands.

Figure 2-2 End user test-bench (TB_EMB) with embedded RMAP IP core inside the end users system.

The test-bench interface to the system is through the SpaceWire interface. Command

initiation and target authorisation must be performed by the embedded system.

2.1 END USER TEST-BENCH FLOW

A typical flow for testing of the RMAP core in a target system is given in the following list:

 Run the RMAP core end user test-bench to check the behaviour of the RMAP core is correct and

gain experience with the test-bench.

 Synthesise and/or place and route the RMAP core using the end user synthesis tool and

environment. Run the end user test-bench (TB_CORE) on the synthesised and/or placed and routed

model to ensure the correct behaviour has survived synthesis (see section 2.2).

SpaceNet – RMAP IP
End User Test-bench Manual

10 © University of Dundee

 Embed the RMAP core in the user system. Connect the test-bench to the embedded RMAP core in

the end users system. Setup the embedded end user test-bench to send and receive RMAP packets

to and from the end user system. Functions and packet array structures are provided (see section

2.3)

 Run the embedded core test-bench (TB_EMB) on the end user embedded model.

2.2 END USER TEST-BENCH (TB_CORE)

The end user test-bench provides a method to check the interfaces, target and initiator, of the RMAP core as

shown in Figure 2-1.

The test-bench works by controlling the inputs to the RMAP core, either through the test-bench SpaceWire

interface or by directly driving the inputs and checking the expected behaviour of the core against the actual

output behaviour. A SpaceWire interface is used to connect to the SpaceWire ports on the RMAP core and

the test-bench transmits and receives SpaceWire packets through the interface.

The tests which are run on the interface are listed below.

1) Initialise test-bench

2) Reset

3) Non-RMAP loopback

4) Target non-verified write operation with reply

5) Target verified write operation with reply

6) Target read

7) Target read modify write

8) Initiator initiate command and receive reply

9) Initiator initiate command and delete expected transaction record

10) Send and receive time-code

An overview of the end user test-bench architecture and tests is given in section 4.

2.3 END USER TEST-BENCH WITH EMBEDDED RMAP CORE (TB_EMB)

The end user test-bench with embedded RMAP core provides a method to transmit and receive RMAP and

SpaceWire packets through the SpaceWire interface to the RMAP core as illustrated in Figure 2-2.

SpaceNet – RMAP IP
End User Test-bench Manual

© University of Dundee 11

The embedded test-bench works by controlling the FIFO and time-code interfaces to the SpaceWire link in

the test-bench which allows it to transmit and receive SpaceWire commands. When the test-bench starts it

starts the SpaceWire link and expects the link to be running after a period of 100 µs.

Two example SpaceWire target operations are given in the test-bench file “enduser_tb_embedded.vhd”. The

tests perform a non-verified write and a verified write operation with reply expected.

An overview of the embedded test-bench architecture and example commands with instructions on how to

implement additional commands is defined in section 5.

SpaceNet – RMAP IP
End User Test-bench Manual

12 © University of Dundee

3 TEST-BENCH ENVIRONMENT

3.1 SUPPORTED SIMULATORS

The RMAP core end user test-bench script files are written for the Mentor Graphics Modelsim simulator. The

test-bench is tested on version 6.4c of the simulator but is compatible with all 6.3 and 6.4 versions.

3.2 SOURCE FILES AND DIRECTORY STRUCTURE

The core directory src/enduser_tb holds the source VHDL and script files required to run the test-bench. The

source directory structure is listed in Table 3-1.

File Description

src/enduser_tb/mem Memory structures for the test-bench SpaceWire link

src/enduser_tb/scripts Modelsim scripts

src/enduser_tb/spw SpaceWire files to interface to the RMAP core

src/enduser_tb/tb Test-bench modules

src/enduser_tb/top Top level test-bench files

src/enduser_tb/uut UUT control files

Table 3-1 Source file directory structure.

3.3 SOURCE FILES

The source files for the RMAP IP core are listed in Table 3-2. The root directory for each is not shown and

should be assumed to be <ip_dir>/src/enduser_tb/

File Description

mem/asyncfifologic.vhd SpaceWire link test-bench memory file. Dual port FIFO logic

mem/dpfifo.vhd SpaceWire link test-bench memory file. Dual port FIFO wrapper

mem/fifo_out_valid.vhd SpaceWire link test-bench memory file. FIFO output encoder

mem/memblock.vhd SpaceWire link test-bench memory file.

mem/readptr.vhd SpaceWire link test-bench memory file. Dual port read pointer.

mem/writeptr.vhd SpaceWire link test-bench memory file. Dual port write pointer

scripts/enduser_tb.do End user test-bench Modelsim script

scripts/enduser_tb_embedded.do Embedded end user test-bench Modelsim script

spw/enduser_tb_spwrlinkwrap_verif.vhd SpaceWire link wrapper for test-bench including memory blocks.

SpaceNet – RMAP IP
End User Test-bench Manual

© University of Dundee 13

spw/enduser_tb_spwrlink_pkg.vhd SpaceWire link configuration file for test-bench

tb/monitor_fifo.vhd VHDL module to record reads and writes over a SpaceWire

interface to a text file

top/enduser_tb_pkg.vhd Common test-bench functions and constants

top/enduser_tb_tests_pkg.vhd Tests to perform on the RMAP core

top/enduser_tb.vhd Top level of test-bench (TB_CORE)

top/enduser_tb_embedded_pkg.vhd Functions and constants for the embedded test-bench.

top/enduser_tb_embedded.vhd Top level of the end user test-bench (TB_EMB)

uut/rmap_codec_ip_spwrlink_pkg.vhd Configuration of RMAP core SpaceWire link

uut/embedded_core.vhd Dummy embedded core which automatically authorises target

commands, grants bus access and returns dummy data when a

bus read is performed.

Table 3-2 Source File Descriptions

A number of helper procedures are available in enduser_tb_pkg.vhd. The procedures are listed in the Table

3-3.

Filename Function Description

enduser_tb_pkg.vhd check Check if an output of the RMAP core is equal to the expected

output

enduser_tb_pkg.vhd reverse Swap bits in a vector

enduser_tb_pkg.vhd rmap_calccrc Calculate the next value of the CRC register using the current

value and the next byte.

enduser_tb_pkg.vhd compute_data_crc Compute the CRC of a SpaceWire packet

enduser_tb_pkg.vhd check_spw_data Check the contents of a SpaceWire packet against an

expected packet.

enduser_tb_pkg.vhd transmit_spw_packet Transmit a SpaceWire packet to a FIFO interface

enduser_tb_pkg.vhd receive_spw_packet Receive a SpaceWire packet from a FIFO interface

enduser_tb_pkg.vhd run_for_cycles Run the test-bench for a number of clock cycles.

Table 3-3 Procedures from enduser_tb_pkg.vhd

SpaceNet – RMAP IP
End User Test-bench Manual

14 © University of Dundee

3.4 LOG FILES

The simulation produces a Modelsim waveform (WLF) file, which can be viewed after simulation completes,

and a number of text log files which output recorded data from the interfaces on the test-bench. The log files

are listed below.

File Description

enduser_tb.log Modelsim text log file which records simulator output and information on the

tests being performed.

enduser_tb.wlf Modelsim waveform log file. All signals are logged to the log file using the

Modelsim command “add log –r /*”.

auth_data.txt Text file which records target authorisation parameters when the test-bench

authorises a target command. This file is generated by the test-bench VHDL

code.

non_rmap_data.txt Text file which records read and write operations over the non RMAP

interface. If a read and write are performed on the same cycle then they are

both recorded on the same line. This text file is only available in the normal

end user test-bench and is not available in the embedded test-bench, as the

non RMAP interface is not available.

spw_data.txt Text file which records read and write operations over test-bench SpaceWire

link transmit and receive interface. If a read and write are performed on the

same cycle then they are both recorded on the same line.

ports.txt Text file which records the state of the inputs and outputs from the RMAP

core model on each cycle. This file is only available in the normal end user

test-bench.

Table 3-4 Test-bench log files

3.5 TEST-BENCH SCRIPTS

The test-bench scripts, normal and embedded test-benches, are located the src/enduser_tb/scripts directory.

The script files are listed in Table 3-5.

File Description

enduser_tb.do Modelsim script to run the normal test-bench. The script is in Modelsim “do” file

TCL format.

enduser_tb_embedded.do Modelsim script to run the embedded test-bench. The script is in Modelsim “do”

file TCL format.

SpaceNet – RMAP IP
End User Test-bench Manual

© University of Dundee 15

Table 3-5 Test-bench scripts.

Both test-bench scripts accept the options listed in Table 3-6.

option Description

-restart After compilation restart the test with “restart -f; run –all” command

-top_only Re-compile the top level verification files only. The files which are recompiled

are top/enduser_tb_tests_pkg.vhd and top/enduser_tb.vhd.

-netlist <file> Specify a netlist file to compile instead of the RMAP core RTL files

-timing <sdf> <target> Specify an SDF timing file to be linked against the netlist target in the

testbench file.

Table 3-6 Test-bench script options

An example command to run the test-bench with a netlist and timing file is shown below. The /UUT

parameter specifies the path to the target model in the test-bench VHDL top level file.

 do ../../src/enduser_tb/scripts/enduser_tb.do \

 –netlist ../../design/test/rmap_core.vhd \

 –timing ../../design/test/rmap_core.sdf /UUT

3.6 VENDOR LIBRARIES

When the CFG_TECH generic is set to TECH_MEM_PROASIC the Actel proasic3 library should be

available in the Modelsim library path.

When CFG_TECH generic is set to TECH_MEM_AXCELERATOR the Actel axcelerator library should be

available in the Modelsim library path.

If the Modelsim version is not an Actel specific version then the libraries can be compiled into Modelsim

using the source files located in the designer installation directory “Model\actel\Vhdl\src”.

3.7 TEST-BENCH COMPLETION

The end user test-bench (TB_CORE) completes with the message:

** Note: ----- []: Completed

Time: 111995520 ps Iteration: 1 Instance: /enduser_tb

The end user test-bench (TB_EMB) completes with the message:

** Note: ----- []: Completed

Time: 33248670 ps Iteration: 1 Instance: /enduser_tb_embedded

SpaceNet – RMAP IP
End User Test-bench Manual

16 © University of Dundee

The message is displayed after all tests have completed successfully and the test-bench clocks have

stopped.

SpaceNet – RMAP IP
End User Test-bench Manual

© University of Dundee 17

4 END USER TEST-BENCH (TB_CORE)

4.1 ARCHITECTURE

The end user test-bench architecture is defined in Figure 4-1.

Figure 4-1 End User Test-bench Architecture. The WaveGen process sets the inputs and checks the

outputs of the RMAP core. The monitor_fifo components are used to record data transmitted

and receive to and from a FIFO. The SpaceWire interface is used to interface to the

SpaceWire port

The test-bench WaveGen process controls the inputs to the RMAP core and checks the outputs from the

core are the expected values. For example the WaveGen process writes a packet to the SpaceWire

interface, causing the target interface to request authorisation.

The monitor_fifo components monitor a FIFO read/write interface and write operations over the interface to a

text file specified in the generics of the component.

The auth_mon_process process monitors the authorisation interface and writes authorisation information to a

text file.

The SpaceWire interface connects to the serial SpaceWire port of the RMAP core and allows packets and

time-codes to be received.

The UUT is the RMAP core model.

A number of helper procedures are available in enduser_tb_tests_pkg.vhd and are listed in the Table 3-3.

Filename Function Description

enduser_tb_tests_pkg.vhd validate_outputs Check the actual outputs of the RMAP core are equal to

the expected outputs

enduser_tb_tests_pkg.vhd run_for_cycles Run for a number of clock cycles and validate the outputs

SpaceNet – RMAP IP
End User Test-bench Manual

18 © University of Dundee

of the core on each cycle.

enduser_tb_tests_pkg.vhd write_to_file Write the RMAP core inputs and outputs to a text file

enduser_tb_tests_pkg.vhd check_bus_data Check data received from the external bus is valid

enduser_tb_tests_pkg.vhd reverse_bytes Swap bytes in a vector

enduser_tb_tests_pkg.vhd reverse_bus_data Swap bytes in each vector of a bus data structure

enduser_tb_tests_pkg.vhd swap_bits Swap bits in each byte of a bus data structure

enduser_tb_tests_pkg.vhd slave_bus_write Receive data from the external bus when a bus write is

performed.

enduser_tb_tests_pkg.vhd slave_bus_read Make data available to the external bus when a bus read is

performed.

Table 4-1 Procedures from enduser_tb_pkg.vhd

4.2 RMAP CORE CONFIGURATION

The RMAP core configuration constants are defined in the VHDL file src/enduser_tb/top/enduser_tb.vhd. The

configuration section is identified by the VHDL comments:

 -- {START RMAP CODEC CONFIGURATION CONSTANTS}

 ...

 -- {END RMAP CODEC CONFIGURATION CONSTANTS}

When netlist or post place and route simulation is performed the configuration should be set to the

configuration used to synthesise the core. This allows the test-bench to insert and check the correct data

patterns dependent on the bus parameters; CFG_WORD_SIZE, CFG_TARGET_MSB_FIRST,

CFG_TARGET_BITSWAP, CFG_INI_CODEC_MSB_FIRST and CFG_INI_CODEC_BITSWAP.

4.3 RMAP CORE INTERFACES

The interfaces of the RMAP core are checked by the end user test-bench. The interfaces are listed in the

following list:

1. SpaceWire serial interface

2. Time-code interface

3. Initiator status interface

4. Initiator command encode interface

5. Initiator reply decode interface

SpaceNet – RMAP IP
End User Test-bench Manual

© University of Dundee 19

6. Initiator delete interface

7. Target authorisation interface

8. Target status interface

9. Target RMW interface

10. Bus interface

11. Non RMAP port

4.4 TEST DESCRIPTIONS

The tests which are performed by the end user test-bench are described in this section. The tests are

defined in the VHDL file src/enduser_tb/top/enduser_tb_tests_pkg.vhd.

The tests which are performed are listed below:

1. Initialise test-bench

2. Reset

3. Non-RMAP loopback

4. Target non-verified write operation with reply

5. Target verified write operation with reply

6. Target read

7. Target read modify write

8. Initiator initiate command and receive reply

9. Initiator initiate command and delete expected transaction record

10. Send and receive time-code

The tests are described in detail in the following sections.

4.4.1 Test 1: Initialise test-bench

The initialise test-bench operation is performed in the VHDL function “do_init_and_reset”. In the function the

inputs and initialise to default values and the expected outputs are set.

4.4.2 Test 2: Reset

Reset of the RMAP core is performed in the VHDL function “do_init_and_reset”. Reset is pulsed low for 4

clock cycles and then released.

SpaceNet – RMAP IP
End User Test-bench Manual

20 © University of Dundee

4.4.3 Test 3: Non RMAP Loopback

The non RMAP loopback test writes a 1024 byte packet to the non RMAP port and checks the reply. The

1024 byte packet consists of an incrementing pattern starting at 0 and ends with an EOP. If the packet is

received correctly the test is a success.

4.4.4 Test 4: Target Non-Verified Write

The non-verified write test checks the targets response to a non-verified write operation. The authorisation

parameters used in the target command are shown in Table 4-2.

Parameter Value

Logical Address 0xfa

Command 0x6c, write=1, reply=1, acknowledge=1

Key 0x20

Initiator Logical Address 0xfe

Transaction ID 0xabcd

Extended Address 0x00

Address 0x001f4502

Data Length 8

Table 4-2 Non-Verified write test parameters

The test procedure is listed below:

1. Generate test data accounting for word size, byte order and bit swapping.

2. Send RMAP command packet with correct header and data CRC.

3. Check authorisation parameters on the RMAP core and authorise the command with no error.

4. Grant bus access and check the data written to the external bus accounting for word size, byte order

and bit swapping.

5. Receive RMAP reply and check format, CRCs and data.

4.4.5 Test 5: Target verified write operation with reply

The verified write test checks the targets response to a verified write operation. The verify write buffer is used

to store data by the target before it is written to the external bus. The authorisation parameters used in the

target command are shown in Table 4-3.

SpaceNet – RMAP IP
End User Test-bench Manual

© University of Dundee 21

Parameter Value

Logical Address 0xb5

Command 0x7c, write=1, verify=1, reply=1, acknowledge=1

Key 0xa5

Initiator Logical Address 0x5a

Transaction ID 0x1122

Extended Address 0x00

Address 0xa5a5a5a5

Data Length 8

Table 4-3 Verified write test parameters

The test procedure is listed below:

1. Generate test data accounting for word size, byte order and bit swapping.

2. Send RMAP command packet with correct header and data CRC.

3. Check authorisation parameters on the RMAP core and authorise the command with no error. Verify

bit should be set on the command byte

4. Grant bus access and check the data written to the external bus accounting for word size, byte order

and bit swapping.

5. Receive RMAP reply and check format, CRCs and data.

4.4.6 Test 6: Target read

The target read test checks the targets ability to read data from the external bus and return the data in an

RMAP packet. The target read command uses return path addresses in the RMAP command to add leading

bytes to the return packer. The authorisation parameters used in the target command are shown in Table

4-4.

Parameter Value

Logical Address 0x23

Command 0x4d, write=0, reply=1, acknowledge=1, path

length=1

Key 0x1f

Return Path Address 0x00 0x00 0x01 0x02

Initiator Logical Address 0x22

SpaceNet – RMAP IP
End User Test-bench Manual

22 © University of Dundee

Transaction ID 0x0001

Extended Address 0x00

Address 0x51a40dc7

Data Length 16

Table 4-4 Read command test parameters

The test procedure is listed below:

1. Send RMAP command packet with correct header CRC.

2. Check authorisation parameters on the RMAP core and authorise the command with no error.

Command should be a read command with return path address length set to 1.

3. Grant bus access and set data in to return data to the RMAP core from the external bus.

4. Receive the RMAP command and check the format, reply data, header CRC and data CRC. The

leading path bytes should be received before the RMAP command.

4.4.7 Test 7: Target read modify write

The target read modify write checks a read modify write operation to a target memory address. A read

modify write operation reads data from the bus, provides the data from the bus and the command packet to

the RMW interface, writes data back to the bus and returns an RMAP reply packet with the original bus data.

The authorisation parameters used in the target command are shown in Table 4-5.

Parameter Value

Logical Address 0x43

Command 0x4d, command=0111b

Key 0xfc

Initiator Logical Address 0xe5

Transaction ID 0x0112

Extended Address 0x00

Address 0x12345678

Data Length 8, Data (4) + Mask (4)

Table 4-5 Read Modify Write test parameters

The test procedure is listed below:

1. Send RMAP command packet data and mask information.

SpaceNet – RMAP IP
End User Test-bench Manual

© University of Dundee 23

2. Check authorisation parameters on the RMAP core and authorise the command with no error.

Command should be a read modify write command.

3. Grant bus access and set data in to return original RMW data to the RMAP core from the external

bus.

4. Check RMW command parameters and return modified data by acknowledging the RMW operation.

5. Grant bus access and check the modified data is written back to the bus in the correct format.

6. Receive a RMAP command and check the returned data length is 4 and the returned data is the

original data read from the external bus. Check the packet format and the header and data CRCs.

4.4.8 Test 8: Initiator initiate command and receive reply

The initiator command and reply test checks the ability of the RMAP core to generate and send an RMAP

command and to decode an RMAP reply to the command. The parameters of the RMAP command are given

in Table 4-6.

Parameter Value

Command Pointer 0x11234456

Generate TID 0

Transaction Flags MSB first=1, notify sent=1, notify reply=1,

header inc=1, DMA inc=1, reply expected=1

Header Pointer 0x0000c000

Data Pointer 0x0000c100

Sent Notify Pointer 0x0000c200

Reply Data Pointer 0x0000c300

Reply Notify Pointer 0x0000c400

Data Length 8

Reply Timeout 0xffffffff, infinite timeout

Header Logical Address 0xe3

Command 0x5c, command=0111 (Read Modify Write)

Key 0x22

Initiator Logical Address 0x3a

Transaction ID 0x5678

Extended Address 0

Address 0x12345678

SpaceNet – RMAP IP
End User Test-bench Manual

24 © University of Dundee

Data Length 8

Table 4-6 Initiator command test parameters

The test procedure is listed below:

1. Initiate command using the initiator interface. The command pointer sets the address in memory to

read the transaction record.

2. Grant bus access for the initiator to read the transaction flags from the transaction record.

3. Grant bus access for the initiator to read the remainder of the transaction record.

4. Grant bus access for the initiator to read the header. The header is read in two passes; pass 1 reads

and checks the header for errors and pass 2 reads and sends the header as an RMAP packet.

5. Grant bus access for the initiator to send the command header to the SpaceWire core.

6. Grant bus access for the initiator to send data and mask information.

7. Grant bus access for the initiator to write command indication status to the external bus.

8. Check the command indication interface for command success.

9. Receive and check the RMAP command sent by the initiator.

10. Send an RMAP reply packet with the returned RMW data.

11. Grant bus access for the reply data bus transfer.

12. Grant bus access for the reply indication status to be written to the reply notification register.

13. Check reply indication status for success.

4.4.9 Test 9: Initiator initiate command and delete expected transaction record

The initiator command and delete expected transaction checks the delete interface of the RMAP core. A

command is started and the expected reply is deleted by the test-bench. The parameters of the RMAP

command are given in Table 4-6.

Parameter Value

Command Pointer 0x11234456

Generate TID 0

Transaction Flags MSB first=1, notify sent=1, notify reply=1,

header inc=1, DMA inc=1, reply expected=1

Header Pointer 0x0000c000

Data Pointer 0x0000c100

SpaceNet – RMAP IP
End User Test-bench Manual

© University of Dundee 25

Sent Notify Pointer 0x0000c200

Reply Data Pointer 0x0000c300

Reply Notify Pointer 0x0000c400

Data Length 8

Reply Timeout 0xffffffff, infinite timeout

Header Logical Address 0xe3

Command 0x4c, write=0, acknowledge=1, reply=1

Key 0x22

Initiator Logical Address 0x3a

Transaction ID 0x5678

Extended Address 0

Address 0x12345678

Data Length 8

Table 4-7 Initiator command test parameters

The test procedure is listed below:

1. Initiate command using the initiator interface. The command pointer sets the address in memory to

read the transaction record.

2. Grant bus access for the initiator to read the transaction flags from the transaction record.

3. Grant bus access for the initiator to read the remainder of the transaction record.

4. Grant bus access for the initiator to read the header. The header is read in two passes; pass 1 reads

and checks the header for errors and pass 2 reads and sends the header as an RMAP packet.

5. Grant bus access for the initiator to send the command header to the SpaceWire core.

6. Grant bus access for the initiator to send data and mask information.

7. Grant bus access for the initiator to write command indication status to the external bus.

8. Check the command indication interface for command success.

9. Receive and check the RMAP command sent by the initiator.

10. Delete the command from the transaction table.

4.4.10 Test 10: Send and receive time-code

The send and receive time-code test checks that the RMAP core time-code interface can send and receive a

time-code.

SpaceNet – RMAP IP
End User Test-bench Manual

26 © University of Dundee

4.5 RUNNING THE TEST-BENCH

Testing is performed in the “verif/enduser_tb” directory. To run the test-bench start the Modelsim simulator in

the “verif/enduser_tb” directory and run the do file “run.do”. To run the test-bench with options then the test-

bench script should be referenced directly from the Modelsim command line, for example:

 do ../../src/enduser_tb/scripts/enduser_tb.do <options>

4.6 NETLIST OR BACK ANNOTATED TIMING SIMULATION

Netlist simulation can be performed using the test-bench script as described in section 3.5, test-bench

scripts. To perform netlist simulation the VHDL file src/enduser_tb/top/enduser_tb.vhd should be modified to

instantiate the users design. The component declaration and component instantiation is enclosed by the

comments:

-- {START DECLARATION}

....

-- {END DECLARATION}

-- {START INSTANTIATION}

....

-- {END INSTANTIATION}

When instantiating a new netlist model into the VHDL code the interfaces should be connected exactly as

they are in the RTL model.

SpaceNet – RMAP IP
End User Test-bench Manual

© University of Dundee 27

5 EMBEDDED TEST-BENCH (TB_CORE)

5.1 ARCHITECTURE AND USAGE

The end user embedded test-bench architecture is defined in Figure 4-1.

Figure 5-1 End user test-bench embedded architecture

The UUT is the end user system with an embedded RMAP core. In the default test-bench model a dummy

UUT core is located at “src/enduser_tb/uut/embedded_core.vhd”. The dummy core automatically authorises

target commands, grants bus access and returns dummy data when a bus read is performed.

In the end user test-bench the WaveGen process is used to setup a series of packets which will be sent and

received by the test-bench. Procedures in the VHDL file src/enduser_tb/top/enduser_tb_embedded_pkg.vhd

provided a method to send and receive packets from an array of packet data structures automatically.

Two example packets are provided in the WaveGen process, a verified and non-verified write operation to a

dummy RMAP core which authorises all target operations and returns dummy data.

The monitor_fifo component monitors a FIFO read/write interface. The component writes operations over the

interface to a text file specified in the generics of the component.

The enduser_tb_embedded_pkg.vhd procedures which can send and receive packets are listed below:

 transmit_and_receive_spw_packets: Transmit a number of SpaceWire packets to the UUT through

the SpaceWire interface and for each packet transmitted expect a reply. Check the reply packet

against the expected reply packet.

 receive_and_transmit_spw_packets: Receive a number of SpaceWire packets from the UUT through

the SpaceWire interface and check the format and size of the packets against the expected packets.

For each packet received transmit a reply packet.

Send and reply packets are built using the spw_packet record and the SpaceWire packet array

spw_packet_array_t type. The types are listed in the VHDL code below:

 -- byte buffer array of data to send

 type spw_byte_array_t is array (0 to MAX_PACKET_SIZE)

 of std_ulogic_vector(8 downto 0);

SpaceNet – RMAP IP
End User Test-bench Manual

28 © University of Dundee

 -- packet with size

 type spw_packet is record

 packet_data : spw_byte_array_t;

 size : integer;

 end record;

 -- array of spacewire packets

 type spw_packet_array_t is array (0 to MAX_PACKETS)

 of spw_packet;

5.2 EXAMPLE TEST DESCRIPTIONS

The example test packets send a verified and non-verified write command to the UUT using the

spw_packet_array_t array of packets and the transmit_and_receive_spw_packets procedure in the

embedded test package.

5.2.1 Test 1: Non-Verified Write Packet

The non-verified write packet parameters are defined in table xx.

Parameter Value

Logical Address 0xfa

Command 0x6c, write=1, reply=1, acknowledge=1

Key 0x40

Initiator Logical Address 0xfe

Transaction ID 0xabcd

Extended Address 0x00

Address 0xffffff00

Data Length 4

Data {0xaa 0xbb 0xcc 0xdd}

Table 5-1 Non-Verified write test parameters

5.2.2 Test 2: Verified Write Packet

The example verified write packet parameters are defined in table xx.

SpaceNet – RMAP IP
End User Test-bench Manual

© University of Dundee 29

Parameter Value

Logical Address 0x21

Command 0x7c, write=1, verify=1, reply=1, acknowledge=1

Key 0x10

Initiator Logical Address 0xab

Transaction ID 0x1234

Extended Address 0x00

Address 0x5a5a5a5a

Data Length 16

Data {0x00 0x01 0x02 ... 0x0e 0x0f}

Table 5-2 Verified write test parameters

5.3 RUNNING THE TEST-BENCH

Testing is performed in the “verif/enduser_tb_embedded” directory. To run the test-bench start the Modelsim

simulator in the “verif/enduser_tb_embedded” directory and run the do file “run.do”. To run the test-bench

with options then the test-bench script should be referenced directly from the Modelsim command line, for

example:

 do ../../src/enduser_tb/scripts/enduser_tb_embedded.do <options>

5.4 NETLIST OR BACK ANNOTATED TIMING SIMULATION

Netlist simulation can be performed using the test-bench script as described in section 3.5, test-bench

scripts. To perform netlist simulation the VHDL file src/enduser_tb/top/enduser_tb_embedded.vhd should be

modified to instantiate the users design. The component declaration and component instantiation is enclosed

by the comments:

-- {START DECLARATION}

....

-- {END DECLARATION}

-- {START INSTANTIATION}

....

-- {END INSTANTIATION}

When instantiating a new netlist model into the VHDL code the interfaces should be connected exactly as

they are in the RTL model.

SpaceNet – RMAP IP
End User Test-bench Manual

30 © University of Dundee

6 DOCUMENT CHANGES

The changes made this document are listed in Error! Reference source not found..

(Issue 1.0 to Issue 1.1)

Section/Reference Change

2 Add overview of the test-benches

3 Add test-bench environment detailed description

4 Add tests, architecture and usage of test-bench

5 Add tests, architecture and usage of embedded test-bench

All Major revisions to all sections and added new sections detailing

architecture and tests for end user and embedded test-benches

All End user test-bench = TB_CORE and embedded test-bench = TB_EMB

3.3 Inserted table on helper functions for enduser_tb_pkg.vhd

3.6 Inserted section on vendor libraries

3.7 Added detailed text on completion message and completion text for

test-benches

4.1 Procedures from enduser_tb_tests_pkg.vhd added

5.1 Procedures from enduser_tb_embedded_pkg.vhd added

Table 6-1 Changes to Document

	Contents
	List of Figures
	List of Tables
	Introduction
	Aims and Objectives
	Guide to Document
	Acronyms and Abbreviations
	Terms and Definitions
	Numbers

	Reference Documents
	Applicable Documents

	End User Test-bench Summary
	End User Test-bench Flow
	End User Test-bench (TB_CORE)
	End User Test-bench with Embedded RMAP Core (TB_EMB)

	Test-bench Environment
	Supported Simulators
	Source Files and Directory Structure
	Source Files
	Log files
	Test-bench Scripts
	Vendor Libraries
	Test-bench Completion

	End User Test-bench (TB_CORE)
	Architecture
	RMAP Core Configuration
	RMAP Core Interfaces
	Test Descriptions
	Test 1: Initialise test-bench
	Test 2: Reset
	Test 3: Non RMAP Loopback
	Test 4: Target Non-Verified Write
	Test 5: Target verified write operation with reply
	Test 6: Target read
	Test 7: Target read modify write
	Test 8: Initiator initiate command and receive reply
	Test 9: Initiator initiate command and delete expected transaction record
	Test 10: Send and receive time-code

	Running the Test-Bench
	Netlist or Back Annotated Timing Simulation

	Embedded Test-bench (TB_CORE)
	Architecture and Usage
	Example Test Descriptions
	Test 1: Non-Verified Write Packet
	Test 2: Verified Write Packet

	Running the test-bench
	Netlist or Back Annotated Timing Simulation

	Document Changes

