
PTME-001-01
Version 0.7 rev 2
September 2005

Först Långgatan 19 tel +46 31 7758650
413 27Göteborg fax +46 31 421407
Sweden www.gaisler.com

Packet Telemetry Encoder (PTME) VHDL Model
Data Sheet

Prepared by Sandi Habinc

http://www.gaisler.com

PTME-001-01 2
Table of contents

1 INTRODUCTION.. 5
1.1 Scope .. 5
1.2 Introduction .. 5
1.3 Applicable standards and limitations ... 5
1.4 Commissioned and non-commissioned functions.. 5
1.5 Configuration at compile time and during operation 5
1.6 Not implemented .. 5
1.7 Applicable documents .. 6
1.8 Applicable VHDL source code .. 6
1.9 Reference documents ... 6
1.10 Acronyms and abbreviations .. 7
1.11 Reed-Solomon code patent... 8
1.12 Turbo code patent... 8
1.13 Change history.. 8

2 CONVENTIONS.. 9
2.1 Advanced Microcontroller Bus Architecture ... 9
2.2 Consultative Committee for Space Data Systems.. 9
2.3 Galois Field .. 9
2.4 Telemetry Transfer Frame format .. 10
2.5 Reed-Solomon encoder data format ... 11
2.6 Turbo encoder data format ... 12
2.7 Attached Synchronisation Marker.. 12
2.8 Command Link Control Word ... 13
2.9 Source Packet ... 13
2.10 Asynchronous bit serial data format... 14
2.11 Waveform formats.. 14

3 OVERVIEW... 15

4 MODULE SPECIFICATIONS .. 16
4.1 Packet Telemetry Encoder (PTME) ... 16
4.2 Telemetry Encoder (TME) ... 17
4.2.1 Implementation options selected at compile time .. 17
4.2.2 Transfer Frame generation ... 18
4.2.3 Bandwidth allocation and selection.. 24
4.2.4 Time strobe... 24
4.2.5 Virtual Channels... 25
4.3 Reed-Solomon Encoder (RSE)... 32
4.4 Turbo Encoder (TE) ... 34
4.5 Pseudo-Randomiser (PSR) ... 36
4.6 Non-Return-to-Zero Mark encoder (NRZ)... 36
4.7 Convolutional Encoder (CE) .. 36
4.8 Split-Phase Level modulator (SP) .. 37
4.9 Clock Divider (CD) .. 37

PTME-001-01 3
5 MODULE DESCRIPTIONS.. 38
5.1 Telemetry Encoder (TME) ... 38
5.2 Virtual Channel Encoder (VCE) .. 39
5.2.1 Virtual Channel Assembler (VCA) .. 39
5.2.2 Virtual Channel Multiplexer (VCM).. 41
5.2.3 Virtual Channel Buffer (VCB) ... 44
5.3 Reed-Solomon Encoder (RSE)... 52
5.3.1 Adder .. 54
5.3.2 Check symbol memory... 54
5.3.3 Parallel multiplier ... 54
5.3.4 Serial shift and parallel hold registers .. 54
5.3.5 Control.. 54
5.4 Turbo Encoder (TE) ... 55
5.4.1 Interleaver... 57
5.4.2 Constituent encoders .. 57
5.4.3 Table... 57
5.4.4 Control.. 57
5.5 Pseudo-Randomiser (PSR) ... 58
5.6 Non-Return-to-Zero Mark encoder (NRZ)... 58
5.7 Convolutional Encoder (CE) .. 59
5.8 Split-Phase Level modulator (SP) .. 60
5.9 Clock Divider (CD) .. 61
5.10 Packet Telemetry Encoder (PTME) ... 64
5.10.1 Connectivity ... 64
5.10.2 Limitations.. 65

6 MODULE INTERFACES.. 66
6.1 Multiple input interfaces .. 66
6.2 Virtual Channel Interface (VCI) definition .. 66
6.3 PTME Internal Bus (PIB or PI-bus) definition .. 67
6.4 Virtual Channel Request (VCR) definition .. 67

7 PTME DESIGN OPTIONS.. 68

8 PTME INTERFACES .. 70
8.1 System interface ... 74
8.2 Bit rate interface ... 74
8.3 Memory allocation interface .. 74
8.4 General configuration interface.. 74
8.5 Virtual Channel Assembler configuration interfaces 76
8.6 Virtual Channel Interface (VCI)... 77
8.7 PacketWire (PW) input interface ... 78
8.8 PacketAsynchronous (PA) input interface ... 79
8.9 PacketParallel (PP) input interface... 79
8.10 PacketAPB (PAPB) input interface.. 80
8.11 Memory test interface... 82
8.12 Memory interface ... 82
8.13 EDAC interface .. 82
8.14 AMBA AHB master interface.. 83

PTME-001-01 4
8.15 Telemetry test interface .. 85
8.16 Channel Access Data Unit output interface ... 85
8.17 Bandwidth Allocation Table interface ... 86
8.18 Operation Control Field / CLCW / TTC-B-01 interface.................................. 87

9 PTME VHDL SOURCE CODE DESCRIPTION.. 88
9.1 Packages and libraries, interface port and generic types.................................. 88
9.2 Compilation order... 88
9.3 Simulation .. 88
9.4 Model hierarchy ... 89

APPENDIX A: THEORETICAL BACKGROUND ON REED-SOLOMON CODING 90
A.1 Reference documents .. 90
A.2 Reed-Solomon encoding... 90
A.3 Galois fields .. 93
A.4 Derivation of ESA standard from CCSDS recommendation.................. 98
A.5 Parallel multiplication in dual basis.. 103

PTME-001-01 5
1 INTRODUCTION

1.1 Scope

This document describes the Packet Telemetry Encoder (PTME) VHDL model. The objective
is to describe the VHDL model at a level of detail allowing its integration into an overall system.
It is not the objective to describe the VHDL model to a level of detail allowing modifications or
usage of individual modules in the model hierarchy.

1.2 Introduction

The purpose of the Packet Telemetry Encoder (PTME) synthesizable VHDL model is to provide
the user with a single module implementing the Consultative Committee for Space Data
Systems (CCSDS) recommendations for telemetry and channel coding.

1.3 Applicable standards and limitations

The PTME model is based on the European Space Agency (ESA) Procedures, Standards and
Specifications (PSS) and the CCSDS recommendations. The model has been specified to
support both sets of standards as far as possible. Any discrepancies due to conflicts between the
two sets have been explained in the text. At the time of writing there were no relevant
documents available from the European Cooperation for Space Standardization (ECSS).

1.4 Commissioned and non-commissioned functions

The PTME model has been partitioned in commissioned and in non-commissioned
functionalities. The non-commissioned functionalities have been classified as such because not
properly verified or validated, because the interfaces of the functions are not user oriented, or
because a function might be removed in a future revision of the model. Non-commissioned
functions are not described in detail in this document.

The main non-commissioned functionalities are listed hereafter and are repeated in the text:
• Telemetry test interface on the boundary of the PTME
• Virtual Channel Interface (VCI) on the boundary of the PTME
• Dynamic memory allocation interface on the boundary of the PTME
• Physical addressing on the PTME Internal Bus (PIB)
• Memory test interface on the boundary of the PTME, based on the PTME Internal Bus (PIB)

1.5 Configuration at compile time and during operation

The PTME VHDL model can be configured at compile or synthesis time to include various
functions in a design. The resulting instantiation of the design can then be configured during
operation to enable the use of implemented functions. It is important to recognise the difference.

1.6 Not implemented

The PTME VHDL model does not implement the following:
• Telemetry Encoder does not support Reed-Solomon encoding interleave depths 3 and 8.
• The length of received Source/Telemetry Packets must be greater than the on-chip input

buffers of the Telemetry Encoder (see gLength generic).

PTME-001-01 6
1.7 Applicable documents

AD1 Packet Telemetry Standard, ESA PSS-4-106, Issue 1, January 1988
AD2 Packet Telemetry, CCSDS 102.0-B-5, Issue 5, November 2000

AD3 Telemetry Channel Coding Standard, ESA PSS-04-103, Issue 1, September 1989
AD4 Telemetry Channel Coding. CCSDS 101.0-B-5, Issue 6, October 2002

AD5 Radio Frequency and Modulation Standard, ESA PSS-04-105, Issue 1, Dec. 1989

AD6 Packet Telecommand Standard, ESA PSS-04-107, Issue 2, April 1992
AD7 Telecommand: Part 2 - Data Routing Service, CCSDS 202.0-B-3, June 2001
AD8 Telecommand Decoder Specification, ESA PSS-04-151, Issue 1, September 1993

AD9 AMBATM Specification, Rev 2.0, ARM IHI 0011A, 13 May 1999, Issue A, first
release, ARM Limited

AD10 RS-232 EIA/TIA Standard

1.8 Applicable VHDL source code

AD11 Packet Telemetry Encoder (PTME) synthesizable VHDL model, version 0.8c,
February 2004, ptme_lib.vhd

AD12 AMBA synthesizable VHDL package, version 0.5, February 2002, amba.vhd

1.9 Reference documents

RD1 Space Data Communication, ESA PSS-04-0, March 1991
RD2 Telemetry Summary Concept and Rationale, CCSDS 100.0.G-1, December 1997
RD3 Packet Telemetry Service Specification, CCSDS 103.0-B-2, Issue 2, June 2001

RD4 ESA VHDL Modelling Guidelines, ASIC/001, Issue 1, September 1994
RD5 IEEE Standard VHDL Language Reference Manual, IEEE Std 1076-1993
RD6 IEEE Standard Multivalue Logic System for VHDL Model Interoperability

(Std_Logic_1164), IEEE Std 1164-1993
RD7 IEEE Standards Interpretations: IEEE Standard VHDL Language Reference Manual,

IEEE Std 1076/INT-1991

RD8 Bit Serial Encoder, E. Berlekamp, European Patent Specification, publication number
0 066 618, 24 September 1986

RD9 US4410989: Bit serial encoder, Elwyn R. Berlekamp, Cyclotomics, Inc.,
11 December 1980

RD10 US5446747: Error-correction coding method with at least two systematic
convolutional codings in parallel, corresponding iterative decoding method, decoding
module and decoder, Claude Berrou, France Télécom, 16 April 1992

PTME-001-01 7
1.10 Acronyms and abbreviations

AHB Advanced High-performance Bus (AMBA interface)
AMBA Advanced Microcontroller Bus Architecture TM

APB Advanced Peripheral Bus (AMBA interface)
AOS Advanced Orbiting Systems
ASIC Application Specific Integrated Circuit
ASM Attached Synchronisation Marker
BAT Bandwidth Allocation Table
CCSDS Consultative Committee for Space Data Systems
CD Clock Divider
CE Convolutional Encoder
CLCW Command Link Control Word
CRC Cyclic Redundancy Code
DMA Direct Memory Access
ECSS European Cooperation for Space Standardization
EDAC Error Detection and Correct
ESA European Space Agency
FECW Frame Error Control Word
FHP First Header Pointer
FPGA Field Programmable Gate Array
GF Galois Field
LFSR Linear Feedback Shift Register
NRZ Non Return to Zero
OPCF Operational Control Field
PA PacketAsynchronous
PAPB PacketAPB
PIB PTME Internal Bus (internal PTME interface)
PP PacketParallel
PSR Pseudo Randomiser
PSS Procedures, Standards and Specifications
PW PacketWire
RSE Reed-Solomon Encoder
SEU Single Event Upset
SP Split-Phase
TE Turbo Encoder
TM Telemetry
TME Telemetry Encoder
VC Virtual Channel
VCA Virtual Channel Assembler
VCB Virtual Channel Buffer
VCE Virtual Channel Encoder
VCI Virtual Channel Interface (internal PTME interface)
VCM Virtual Channel Multiplexer
VCR Virtual Channel Request (internal PTME interface)

PTME-001-01 8
1.11 Reed-Solomon code patent

The Reed-Solomon encoder implementations previously used by the European Space Agency
(ESA) have been based on the bit serial encoder patented by Berlekamp under US Patent
4,410,989 (RD9) and its counterparts in other countries (RD8). That architecture exploits
maximum resource sharing by implementing all Galois field operations bit serially. The core of
the encoder is the bit serial multiplier which can perform the Galois field multiplication using a
serial shift register and some combinatorial logic. The patent relies on the usage of a Galois field
representation that has a dual basis, which enables bit serial multiplication. The ESA and
CCSDS telemetry channel coding standard Galois Field representation has a dual basis, since it
has been selected for envisaged implementations using the Berlekamp encoder.

The benefits of the bit serial multiplier are insignificant when implementing a monolithic
encoder. A bit serial encoder approach using a parallel multiplier only adds a marginal area
overhead. The benefit of such an approach is that the encoder can be used without restrictions
since the Berlekamp patent is not infringed. The Reed-Solomon Encoder (RSE) described in
this document is therefore based on a bit serial implementation with a parallel multiplier.

1.12 Turbo code patent

Implementers should be aware that a wide class of turbo codes is covered by a patent by France
Télécom and Télédiffusion de France under US Patent 5,446,747 (RD10) and its counterparts
in other countries. Potential user agencies should direct their requests for licenses to:

Mr. Christian Hamon
CCETT GIE/CVP
4 rue du Clos Courtel, BP59,
35512 CESSON SEVIGNE Cedex, France
Tel: +33 2 99 12 48 05, Fax: +33 2 99 12 40 98

1.13 Change history

In version 0.4 the ClockDivider only operates on BitClk, which can be divided to generate an
output bit rate frequency. A separate input has been added, IdleSegmentLen, to set the Segment
Length Identifier bits in Idle Transfer Frames when output on a separate Virtual Channel in
order to avoid conflicts between CCSDS and ESA PSS recommendations. The Reed-Solomon
E=8 (255, 239) code is fully integrated. Flexible Virtual Channel Identifier allocation has been
added. Support for 16 and/or 32 bit OPCF data transfer has been added.

In version 0.5 the packet abort function is fully integrated, but the packet length check function
has been removed completely. The CLCW interface functionality has been extended. The
latency requirements for the Turbo encoder has been reduced. The relation between telemetry
bit rate and system clock has been improved.

In version 0.6 the telemetry channel encoders are controlled by means of generics instead of
constants defined in a package. For the overall PTME however, the same constants are still used
to define what values are to be assigned to said generics. Improved usage of the Conv_UnSigned
functions has been implemented in the definition package to avoid synthesis problems.

In version 0.7 a buffer empty indicator was introduced for each VCA.

PTME-001-01 9
2 CONVENTIONS

2.1 Advanced Microcontroller Bus Architecture

Convention according to the Advanced Microcontroller Bus Architecture (AMBA)
Specification, AD9, applying to the AHB and APB interfaces:
• Signal names are in upper case, except for the following:
• A lower case 'n' in the name indicates that the signal is active low.
• Constant names are in upper case.
• The least significant bit of an array is located to the right, carrying index number zero.

2.2 Consultative Committee for Space Data Systems

Convention according to the Consultative Committee for Space Data Systems (CCSDS)
recommendations, applying to all relevant structures:
• The most significant bit of an array is located to the left, carrying index number zero, and is

transmitted first.
• An octet comprises eight bits.

General convention, applying to signals and interfaces:
• Signal names are in mixed case.
• An upper case '_N' suffix in the name indicates that the signal is active low.

2.3 Galois Field

Convention according to the Consultative Committee for Space Data Systems (CCSDS)
recommendations, applying to all Galois Field GF(28) symbols:
• A Galois Field GF(28) symbol comprises eight bits.
• The least significant bit of a symbol is located to the left, carrying index number zero, and is

transmitted first.

AMBA n-bit field
most significant least significant

n-1 n-2 down to 1 0

Table 1: AMBA n-bit field definition

CCSDS n-bit field
most significant least significant

0 1 to n-2 n-1

Table 2: CCSDS n-bit field definition

Galois Field GF(28) symbol
least significant most significant

0 1 to 6 7

Table 3: Galois Field GF(28) symbol definition

PTME-001-01 10
2.4 Telemetry Transfer Frame format

The telemetry Transfer Frame specified in AD1 and AD2 is composed of a Primary Header, a
Secondary Header, a Data Field and a Trailer with the following structures.

Transfer Frame
Transfer Frame Header Transfer Frame Data Field Transfer Frame Trailer

Primary Secondary (optional) ket | Packet | Pa OPCF / FECW (optional)
6 octets 0 / 4 octets variable 0 / 2 /4 / 6 octets

223 / 446 / 892 / 1115 / 239 / 478 / 956 / 1195 octets

Table 4: Transfer Frame format

Transfer Frame Primary Header
Frame Identification Master

Channel
Frame
Count

Virtual
Channel
Frame
Count

Frame
Data
Field
Status

Version S/C
Id

VC
Id

OPCF
Flag

2 bits
0:1

10 bits
2:11

3 bits
12:14

1 bit
15

8 bits 8 bits 16 bits

2 octets 1 octet 1 octet 2 octets

Table 5: Transfer Frame Primary Header format

Frame Data Field Status

Secondary Header Flag Sync Flag Packet Order Flag Segment Length Id First Header Pointer

1 bit
0

1 bit
1

1 bit
2

2 bits
3:4

11 bits
5:15

2 octets

Table 6: Part of Transfer Frame Primary Header format

Transfer Frame Secondary Header (optional)
Secondary Header Identification Secondary Header Data

Secondary Header Version Secondary Header Length Virtual Channel Frame Count

2 bits
0:1

6 bits
2:7

24 additional bits
0:23

1 octet 3 octets

Table 7: Transfer Frame Secondary Header format

Transfer Frame Trailer (optional)
Operational Control Field (optional) Frame Error Control Word (optional)

0 / 4 octets 0 / 2 octets

Table 8: Transfer Frame Trailer format

PTME-001-01 11
2.5 Reed-Solomon encoder data format

The applicable standards AD3 and AD4 specify a Reed-Solomon E=16 (255, 223) code
resulting in the frame lengths and codeblock sizes listed in table 9.

The applicable standards AD4 also specifies a Reed-Solomon E=8 (255, 239) code resulting in
the frame lengths and codeblock sizes listed in table 10.

Interleave depth Attached Synchronisation Marker Transfer Frame Reed-Solomon Check Symbols

1 4 octets 223 octets 32 octets
2 446 octets 64 octets
3 669 octets 96 octets
4 892 octets 128 octets
5 1115 octets 160 octets
8 1784 octets 256 octets

Table 9: Reed-Solomon E=16 codeblocks with Attached Synchronisation Marker

Interleave depth Attached Synchronisation Marker Transfer Frame Reed-Solomon Check Symbols

1 4 octets 239 octets 16 octets
2 478 octets 32 octets
3 717 octets 48 octets
4 956 octets 64 octets
5 1195 octets 80 octets
8 1912 octets 128 octets

Table 10: Reed-Solomon E=8 codeblocks with Attached Synchronisation Marker

PTME-001-01 12
2.6 Turbo encoder data format

The applicable standard AD4 specifies four Turbo code information block lengths k. It also
specifies four code rates r. The resulting Turbo encoded block size is dependent on both the
information block length and the code rate, n=32/r + (k+4)/r, as shown in table 13.

2.7 Attached Synchronisation Marker

The Attached Synchronisation Marker pattern depends on the encoding scheme in use, as
specified in AD4 and shown in table 14.

Information block length [bits] Information block length [octets] Reed-Solomon interleave depth

1784 223 1
3568 446 2
7136 892 4
8920 1115 5

Table 11: Turbo encoder information block length as per AD4

Information block

length k [bits]

Codeblock length n [bits]

rate 1/2 rate 1/3 rate 1/4 rate 1/6

1784 3576 5364 7152 10728
3568 7144 10716 14288 21432
7136 14280 21420 28560 42840
8920 17848 26772 35696 53544

Table 12: Turbo codeblock lengths as per AD4

Attached Synchronisation Marker
Turbo Codeblock

Encoded Transfer Frame Trellis Termination

32/r bits k/r bits 4/r bits

Table 13: Structure of a Turbo encoded block as per AD4

Mode Hexadecimal stream (left to right)

Nominal 1ACFFC1Dh

Alternative 352EF853h

Rate 1/2 turbo encoded 034776C7272895B0h

Rate 1/3 turbo encoded 25D5C0CE8990F6C9461BF79Ch

Rate 1/4 turbo encoded 034776C7272895B0 FCB88938D8D76A4Fh

Rate 1/6 turbo encoded 25D5C0CE8990F6C9461BF79C DA2A3F31766F0936B9E40863h

Table 14: Attached Synchronization Marker hexadecimal pattern

PTME-001-01 13
2.8 Command Link Control Word

The Command Link Control Word (CLCW) can be transmitted as part of the Operation Control
Field (OPCF) in a Transfer Frame Trailer. The CLCW is specified in AD6 and AD7 and is listed
in table 15, table 16 and table 17.

2.9 Source Packet

The Source Packet defined in the ESA PSS AD1 standard and the CCSDS AD2
recommendation is used in this document and is listed in table 18, although the Segmentation
Flags are interpreted differently in the two referenced documents. The Telemetry Packet defined
in ESA PSS AD1 standard has also this same format, although the Packet Length and Data Field
are interpreted differently. The differences have no effect on the commissioned part of the
Telemetry Encoder (TME).

Command Link Control Word
Static part Dynamic part

Generated by the Telemetry Encoder (TME), or
from external data interface

From external data interface

0:15 16:31
16 bits 16 bits

Table 15: Command Link Control Word overview

Static part of the Command Link Control Word
Control Word Type Version Number Status Field COP in Effect Virtual Channel Identifier Reserved Field

0 1:2 3:5 6:7 8:13 14:15
1 bit 2 bits 3 bits 2 bits 6 bits 2 bits

Table 16: Command Link Control Word static part

Dynamic part of the Command Link Control Word
No RF Available No Bit Lock Lock Out Wait Retransmit FARM B Counter Report Type Report Value

16 17 18 19 20 21:22 23 24:31
1 bit 1 bit 1 bit 1 bit 1 bit 2 bits 1 bit 8 bits

Table 17: Command Link Control Word dynamic part

Source Packet / Telemetry Packet
Packet Header Packet Data Field

Packet Identification Packet Sequence Control Packet
Length

Data Field
Header

(optional)

Source
Data

Packet Error
Control

(optional)Version
Number

Type Data Field
Header Flag

Application
Process Id

Segmentation
Flags

Source
Sequence

Count
0:2 3 4 5:15 16:17 18:31 32:47

3 bits 1 bit 1 bit 11 bits 2 bits 14 bits 16 bits variable variable variable

Table 18: Source Packet and Telemetry Packet format

PTME-001-01 14
2.10 Asynchronous bit serial data format

The asynchronous bit serial interface complies to the data format defined in AD10. It also
complies to the data format and waveform shown in table 19 and figure 1. The interface is
independent of the transmitted data contents. Positive logic is considered for the data bits. The
number of stop bits can optionally be either one or two. The parity bit can be optionally
included, although the value of the bit is not used in the design described this document.

2.11 Waveform formats

The Packet Telemetry Encoder (PTME) accepts and generates the waveform formats shown in
the following figures.

Figure 1: Asynchronous bit serial waveform

Figure 2: Synchronous bit serial waveform

Figure 3: Synchronous bit serial waveform, Telemetry Interface (AD8)

Asynchronous
bit serial format

start D0 D1 D2 D3 D4 D5 D6 D7 parity stop stop
first lsb msb last

General data format
i = {0, n}

8*i+7 8*i+6 8*i+5 8*i+4 8*i+3 8*i+2 8*i+1 8*i
last first

Table 19: Asynchronous bit serial data format

D0 D1 D2 D3 D4 D5 D6 D7
start parity stoplsb msb stop

P

Delimiter

Clock

Data 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 70 1 2 376

Sampling

Clock

Data 0 1 2 3 4 5 6 7 n-3 n-2 n-1n-7 n-6 n-5 n-4n-8

PTME-001-01 15
3 OVERVIEW

The Packet Telemetry Encoder (PTME) VHDL model comprises several encoders and
modulators implementing the Consultative Committee for Space Data Systems (CCSDS)
recommendations and the European Space Agency (ESA) Procedures, Standards and
Specifications (PSS) for telemetry and channel coding. The Packet Telemetry Encoder (PTME)
VHDL model comprises the following:
• Telemetry Encoder (TME)
• Reed-Solomon Encoder (RSE)
• Turbo Encoder (TE)
• Pseudo-Randomiser (PSR)
• Non-Return-to-Zero Mark encoder (NRZ)
• Convolutional Encoder (CE)
• Split-Phase Level modulator (SP)
• Clock Divider (CD)

The Telemetry Encoder (TME) implements the AD1 and AD2 telemetry standards. The VHDL
model implementing the TME is possible to configure to support from 1 to 8 Virtual Channels
(VCs). The Reed-Solomon Encoder (RSE) implements encoding according to the AD3 and
AD4 channel coding standards. The Turbo Encoder (TE) implements encoding according to the
AD4 channel coding recommendation. The Pseudo-Randomiser (PSR) implements encoding
according to the AD3 and AD4 channel coding standards. The Convolutional Encoder (CE)
implements encoding according to the AD3 and AD4 channel coding standards. The Non-
Return-to-Zero Mark encoder (NRZ) and Split-Phase Level modulator (SP) implements signal
modulation according to the AD5 standard. The Clock Divider (CD) generates the bit rates and
clock enable signals for the different encoders and modulators above.

Figure 4: PTME block diagram (example with eight Virtual Channels)

VCE

PW

RSE

PSR

NRZ

CD

VCM

VCB

PA

PTME

VCA

VCA

VCA

VCA VCR

VCR

VCR

VCI

PIB

VCI

VCI

VCI

Asynchronous

PacketWire

Telemetry

Bit rate clock

VCAVCI VCR

VCR

PAPB

PWPacketWire

AMBA APB

PAPBAMBA APB

VCI

VCIPPPacketParallel

PAAsynchronous VCA

VCA
PIB

VCR

VCR

TE

CEPIB

TME

AMBA AHB / Memory Interface to external buffer memory

VCAVCIPPPacketParallel

CLCWBATConfiguration

SP

PTME-001-01 16
4 MODULE SPECIFICATIONS

The Packet Telemetry Encoder (PTME) VHDL model comprises a set of modules implementing
the embedded encoders and modulators. The overall specification of each module will be
discussed in this section. It should be noted that it is not always possible to utilise all the
specified capabilities of each module in the PTME due to architectural constraints.

4.1 Packet Telemetry Encoder (PTME)

The Packet Telemetry Encoder (PTME) module always instantiates the following modules:
• Telemetry Encoder (TME)
• Clock Divider (CD)

The PTME module can be configured at compile time to instantiate separately each of the
following modules:
• Reed-Solomon Encoder (RSE)
• Turbo Encoder (TE)
• Pseudo-Randomiser (PSR)
• Non-Return-to-Zero Mark encoder (NRZ)
• Convolutional Encoder (CE)
• Split-Phase Level modulator (SP)

The PTME module provides the interconnection between the different encoders and supports all
permissible coding chains. It facilitates an external telemetry test interface, although not
commissioned, to allow telemetry insertion to the Reed-Solomon Encoder (RSE) and Turbo
Encoder (TE), bypassing the Telemetry Encoder (TME). The symbol output of the last encoder
in the coding chain is routed to the output interface of the PTME for which a re-synchronisation
of the signal is performed to avoid glitch generation.

The PTME module combines the internal unidirectional data buses of the memory interface to
a single bidirectional data bus interface. This is also done for the Bandwidth Allocation Table
(BAT) interface data bus.

Is should be noted that the Telemetry Encoder (TME) module is not a separate entity in the
PTME VHDL model. It is merely a constellation of modules related to the telemetry encoding
process. The description given in this document is principally oriented around the functional
structure rather than the implementation oriented structure of the PTME VHDL model. Details
will be provided in section 5.1. For time being it is sufficient to state that the PTME module
instantiates the components constituting the TME.

PTME-001-01 17
4.2 Telemetry Encoder (TME)

The Telemetry Encoder (TME) generates telemetry data according to ESA PSS standard AD1
and CCSDS recommendation AD2. The TME incorporates the user interfaces to the telemetry
encoder, the control of the temporary buffering of user data, the generation of the telemetry
Transfer Frame, the downlink bandwidth arbitration between Virtual Channels, and the control
of subsequent encoders and modulators.

4.2.1 Implementation options selected at compile time

The TME can be configured at compile time to provide a variety of services, each option being
selected individually. All configuration options are listed in section 7. The most important
options are explained in this section, having a substantial impact on the implemented design.

The number of Virtual Channels to be implemented is selectable between one and eight. The
Virtual Channel Identifiers are assigned automatically sequentially beginning at 0, or via
external input when flexible allocation is selected. It is possible to generate Idle telemetry
Transfer Frames on any of the implemented channels or on a separate Virtual Channel on which
no user data can be transmitted.

The different Virtual Channels share a common external buffer memory in which data received
on the user interfaces are temporarily stored. The sizing and splitting of the external buffer
memory between the Virtual Channels is fixed to some extent at compile time. The following
parameters are set: the overall memory size, the number of areas into which the memory is split,
the number of areas that can be grouped and allocated to any Virtual Channel.

Support for alternative Attached Synchronisation Marker (ASM) generation, as per AD1, can
be selected. Support for Secondary Header generation, Version-1 as per AD1, can be selected.
Support for Operation Control Field (OPCF) generation can be selected. It is also possible to
select non-standard 32 bit wide OPCF insertion. Selection between a serial synchronous
interface or a parallel implementation for the OPCF data input is supported. Support for Frame
Error Control Word (FECW) generation can be selected. Support for time strobe generation can
be selected. The Bandwidth Allocation Table (BAT) is used for the arbitration of the downlink
bandwidth and the following interfaces can be selected: no interface, asynchronous memory
type interface, or the BAT can be implemented outside the TME (and PTME). Support for
implementing 223 octet based and/or 239 octet based frame lengths is provided.

Several parameters control the implementation of each individual Virtual Channel and their
interfaces. The following parameters are configurable at compile time. Support for packet
handling can be selected, generating the First Header Pointer dynamically. Support for Idle
Source Packet insertion can be selected. Support for external buffer memory availability
indication can be selected. Support for user abort of packet input can be selected. The input
interface to the Virtual Channel can be selected from one of the following options: PacketWire
(PW), PacketAsynchronous (PA), PacketParallel (PP), PacketAPB (PAPB) with associated data
width selection, or direct connection via the Virtual Channel Input (VCI) which is an internal
interface format and is not commissioned. The number of memory areas allocated to the Virtual
Channels can either be done statically at compile time or dynamically via an external interface,
the latter not being commissioned.

PTME-001-01 18
4.2.2 Transfer Frame generation

The Telemetry Encoder (TME) generates the telemetry Transfer Frame according to AD1 and
AD2 as described in the subsequent sections. Some of the fields in the Transfer Frame are
optional, of which some are indicated by means of flags in the Primary Header and the inclusion
of other fields is handled by management rather than by the communication protocol.

4.2.2.1 Operational configuration

The encoder allows the following fields to be enabled/disabled or varied during operation,
provided that the corresponding implementation option has been selected at compile time. The
encoder should be reset after a configuration change.
• Nominal or alternative Attached Synchronisation Marker
• Time strobe periodicity
• Transfer Frame length
• Spacecraft Identifier
• Virtual Channel Identifier allocation
• Transfer Frame Secondary Header (selected individually per Virtual Channel)
• Operation Control Field (selected collectively for all Virtual Channels)
• Frame Error Control Field
• Blank space generation for Reed-Solomon check symbols
• Blank space generation for Turbo code trellis termination

4.2.2.2 Attached Synchronisation Marker

The encoder always generates an Attached Synchronisation Marker (ASM) in front of the
Transfer Frame. The encoder generates a 32 bit long ASM. The other ASM lengths listed in
table 14, are produced by subsequent encoders. The encoder is always capable of generating the
nominal ASM as listed in table 14. If selected at compile time, the encoder can also produce the
alternative ASM listed in table 14. The alternative ASM can be used when a stream of Transfer
Frames is embedded as data in another stream using the nominal ASM. The encoder implements
one output stream for which either the nominal or alternative ASM will be produced at a time.

4.2.2.3 Transfer Frame lengths

The TME supports the Transfer Frame lengths listed in table 20.

Transfer Frame length choice Transfer Frame lengths

000b 223 octets
001b 446 octets
010b 892 octets
011b 1115 octets
100b 239 octets
101b 478 octets
110b 956 octets
111b 1195 octets

Table 20: Transfer Frame length alternatives

PTME-001-01 19
4.2.2.4 Transfer Frame Primary Header

The Transfer Frame Primary Header format is listed in table 6.

4.2.2.4.1 Frame Identification

The Transfer Frame Version Number is permanently set to 00b (Version-1). The Version
Number can be only modified by changing a constant in the source code, which is not
recommended.

The Spacecraft Identifier is configurable during operation.

The Virtual Channel Identifier is dynamically generated, depending on what Virtual Channel
has been chosen for transmission in the Transfer Frame being composed. The Virtual Channel
selection is described in section 4.2.3. If the TME has been configured at compile time to
support flexible Virtual Channel Identifier allocation, it is possible to configure the individual
Virtual Channel Identifier fields via an external input, provided that the encoder is reset in
between changes. The Virtual Channel Identifier used for Idle Transfer Frames is set at compile
time when flexible allocation is not selected.

The Operational Control Field Flag is configurable during operation and indicates whether or
not the Operation Control Field (OPCF) is included in the Transfer Frame, provided the option
is selected at compile time. The OPCF is transferred in all Transfer Frames when enabled.

4.2.2.4.2 Master Frame Counter

The Master Frame Counter is an 8 bit wide modulo 256 sequential binary counter, incremented
for each transmitted Transfer Frame.

4.2.2.4.3 Virtual Channel Frame Counter

There is one Virtual Channel Frame Counter for each Virtual Channel implemented. The Virtual
Channel Frame Counter is an 8 bit wide modulo 256 sequential binary counter, incremented for
each Transfer Frame in which the associated Virtual Channel is transmitted. The Virtual
Channel Frame Counter width can be extended to 32 bits as described in section 4.2.2.5.

4.2.2.4.4 Frame Data Field Status

The Frame Data Field Status is associated with the Virtual Channel being transmitted in the
Transfer Frame.

The Secondary Header Flag indicates whether or not a Transfer Frame Secondary Header is
transmitted in the Transfer Frame. It is possible to enable the transmission of the Secondary
Header on a per Virtual Channel basis, as declared valid in the CCSDS AD2 recommendation.

The Data Field Synchronisation Flag indicates whether packets are synchronously inserted,
when 0b, or whether data are asynchronously inserted, when 1b, in the Data Field of the Transfer
Frame. Refer to the ESA telemetry standard AD1 for a detailed definition

PTME-001-01 20
The Packet Order Flag indicates in which order packets have been inserted in the Data Field.
The flag is only used as a data bit by the TME and has no other effect on its operation.

The Segment Length Identifier selects the maximum field length of the standard Telemetry
Packets inserted in the Transfer Frame. The identifier is only used as data bits by the TME and
has no other effect on its operation.

The First Header Pointer is required for the packet chaining process during packet de-
multiplexing on the ground. The encoder generates Transfer Frames in the active or idle mode
as defined in AD1. The data contained in an active Transfer Frame can be either packets or non-
packet data. Packets are referred to as synchronous data in AD1, whereas non-packet data are
referred to as asynchronous data. Since packets may be of varying lengths, it is unlikely that an
integer number of packets will be exactly contained within a Transfer Frame Data Field, some
packets will consequently be split between two Transfer Frames. The encoder calculates the
position of the first octet of the first packet to be placed in each Transfer Frame, in accordance
with AD1, and then inserts this value into the First Header Pointer (FHP) field in the Transfer
Frame. The FHP is initiated to all ones at reset. If a packet is longer than the data field of the
Transfer Frame, the FHP is set to all ones. The encoder fully supports the FHP formation and
does not require any alignment of the data with the Transfer Frame boundary.

Part of the Frame Data Field Status field for the Idle Transfer Frames described in
section 4.2.2.6.3 is fixed in the encoder. The Data Field Synchronisation Flag is 0b, since idle
data is inserted as per AD2. The Packet Order Flag is 0b. The First Header Pointer is set to the
predefined Idle First Header Pointer code. This code is the same both for packet and non-packet
data: 11111111110b.

4.2.2.5 Transfer Frame Secondary Header

The generation of the Secondary Header specified in the ESA PSS AD1 standard is supported
by the TME. If this option is selected, the support for Secondary Header generation will be
implemented for all Virtual Channels. The TME allows the Secondary Header to be included or
omitted individually for each Virtual Channel, as permitted in the CCSDS AD2
recommendation. The ESA PSS AD1 standard only allows the inclusion or omission to be done
collectively for all Virtual Channels.

4.2.2.5.1 Secondary Header Identifier

The Secondary Header Version Number is permanently set to 00b (Version-1). The Secondary
Header Length field is permanently set to 000011b, indicating a length for the entire Secondary
Header of four octets.

PTME-001-01 21
4.2.2.5.2 Secondary Header Data

The Secondary Header Data field contains an additional 24 bits of the Virtual Channel Frame
Counters associated with the transmitted Transfer Frame. These bits are the 24 most significant
bits of the resulting extended Virtual Channel Frame Counter of 32 bits. The 8 least significant
bits of the counter are transmitted in the Primary Header Virtual Channel Counter field.

4.2.2.6 Transfer Frame Data Field

The data transmitted in the Transfer Frame Data Field is either user data, defined as the active
state, or when no user data is available, a pseudo-random bit sequence as specified in
section 4.2.2.6.3, defined as the idle state.

The information stored in the Transfer Frame Data Field in the active state can either be packets,
defined as synchronous insertion, or any other data, defined as asynchronous insertion or bit
streaming. The main difference between the two insertion types is the generation of the First
Header Pointer, which is always dynamic for the former and normally fixed for the latter.

4.2.2.6.1 Supported formats

For the synchronous insertion, the encoder supports all packet formats defined in the CCSDS
AD2 recommendation:
• Source Packet (Version Number 000b - Version-1)
• CCSDS Network Protocol (NP) Datagram
• Internet Protocol Datagram (IPv4)
• Encapsulation Packet

For the synchronous insertion, the encoder additionally supports the packet formats defined in
the ESA PSS AD1 standard:
• Source Packet (Version Number 100b - Version-2)
• Telemetry Packet (Version Number 100b - Version-2)

The encoder actually supports any privately defined or future data format for synchronous data
insertion since being largely independent of the data contents.

The encoder supports any privately defined data format for asynchronous data insertion into the
Transfer Frame Data Field. It also provides the possibility for dynamic First Header Pointer
generation for asynchronous insertion, although not endorsed by the ESA PSS and CCSDS
telemetry standards and recommendations.

For the Idle Source Packet insertion function described in section 4.2.5.3, both the Source
Packet and the Telemetry Packet formats are supported. The Segment Length Flags are set to

MSB 32 bit Virtual Channel Frame Counter LSB

0 23 24 31

MSB Secondary Header Data LSB MSB Virtual Channel Frame Count LSB

0 23 0 7

Table 21: Virtual Channel Frame Counter definition

PTME-001-01 22
11b, which means that the Source Packet is identical to the Telemetry Packet since no
segmentation is performed (Version-2) or no packet grouping is performed (Version-1). The
Version Number can be set during operation.

4.2.2.6.2 Data fetch

The Transfer Frame Data Field is fetched from the external buffer memory area allocated to the
Virtual Channel selected for transmission in the Transfer Frame. The Transfer Frame generation
process is not concerned with the content of the data being fetched. The data reception process
in the interface of each individual Virtual Channel is however concerned with the data
delimiting, and in some cases the contents, as described in section 4.2.5.

4.2.2.6.3 Idle Transfer Frame generation

When there is insufficient data available from the implemented Virtual Channels to complete a
Data Field, the encoder generates an Idle Transfer Frame on the fly. The Idle Transfer Frame
Data Field need not to contain any useful data and is filled with a pseudo-random bit sequence.
The pseudo-random generator polynomial is h(x) = x9+x4+1 and is implement as a many-to-
one implementation, which is a Fibonacci version of a Linear Feed-back Shift Register (LFSR),
with x0 as output. The pseudo-random generator is free-running, but is only shifted once for
each bit generated for the Data Field. The generator is initialized to all ones at reset and each
time the associated Virtual Channel Frame Counter reaches zero. In this way the contents of the
Data Field are deterministic and are possible to reproduce on ground provided that the Virtual
Channel Frame Counter value is known for the Transfer Frame being analysed.

The encoder can implement a separate Virtual Channel for Idle Transfer Frame generation or
use one of the Virtual Channels implemented for user data transfers. This is selectable at
compile time at which the Virtual Channel Identifier is set for the Idle Transfer Frame creation,
when flexible Virtual Channel Identifier allocation is not selected.

4.2.2.7 Transfer Frame Trailer

The Transfer Frame Trailer comprises two optional fields; the Operation Control Field and the
Frame Error Control Word.

4.2.2.7.1 Operation Control Field

The encoder supports the generation of the Operation Control Field (OPCF) if this option is
selected at compile time. It is possible to enable or disable the OPCF insertion during a mission.
The OPCF is transmitted in each Transfer Frame if enabled, as specified in the ESA PSS AD1
standard and the CCSDS AD2 recommendation. It is not possible to transmit the OPCF in
Transfer Frames associated with only a specific Virtual Channel, which is additionally
permitted in AD2.

It is possible to input 16 and/or 32 bits of the OPCF via an external interface, which is selectable
at compile time. If both options are implemented, 32 bit insertion can be explicitly enabled via
an input. When 32 bit insertion is used, the format of the OPCF is under user responsibility. The
format of the OPCF for 16 bit insertion is described hereafter. It is possible to overwrite bits 16
and 17 with discrete input values instead of using the information available in the CLCW. This
option is enabled by means of a configuration input.

PTME-001-01 23
The first leading bit of the OPCF is the Type Flag. Only the Type-1-Report (Type Flag being 0b)
is supported by the encoder. The Type-1-Report contains the Command Link Control Word
(CLCW) specified in AD6 and AD7 and listed in table 16 and table 17. The first static part of
the CLCW is assembled by the encoder, as listed in table 22, and the second dynamic part of the
CLCW is received via an external interface, as listed in table 23. The encoder supports
interfacing of two CLCW sources, by providing two Virtual Channel Identifier inputs that can
be associated with two different Packet Telecommand Decoders.

The encoder implements two interface types for the retrieval of the dynamic part of the CLCW,
which are selectable at compile time. To be compatible with existing Packet Telecommand
Decoders, the Telemetry Interface specified in AD8 is implemented. The interface is also know
as the TTC-B-01 Serial 16-Bit Digital Channel from an older ESA document. This interface
provides two synchronous bit serial channels. For future use, the encoder features a direct
parallel input for providing the CLCW data, for which the interfacing to multiple sources should
be implemented outside the encoder. Both interfaces support 16 and 32 bit data transfer.

4.2.2.7.2 Frame Error Control Word

The encoder supports the generation of the Frame Error Control Word (FECW) if the option is
selected at compile time. It is possible to enable or disable the FECW insertion during a mission.
The FECW is inserted in all Transfer Frames when enabled. The FECW contains a Cyclic
Redundant Code (CRC) calculated over the Transfer Frame. The polynomial is g(x) =
x16+x12+x5+1 and is a one-to-many implementation, which is a Galois version of a Linear
Feed-back Shift Register (LFSR) with x0 as output. The LFSR is initialised to all ones between
Transfer Frames. The field is known as the Frame Error Control Field (FECF) in AD2.

4.2.2.8 Coding space

The encoder can insert blank space between the end of the Transfer Frame and the beginning of
the subsequent ASM to accommodate Reed-Solomon and Turbo coding, if individually selected
at compile time. The encoder supports Transfer Frame lengths directly compatible with the
E=16 (255, 223) Reed-Solomon code, as specified AD3 and AD4. The appropriate number of
zero-value octets are inserted for each information block length as listed in table 9. The encoder
also supports insertion of zero-value octets in amounts specified for the E=8 (255, 239) Reed-
Solomon code as listed in table 10. The encoder supports insertion of four zero-value bits for
the Turbo coding as specified in AD4.

Dynamic/Static part of the Command Link Control Word
Control Word Type Version Number Status Field COP in Effect Virtual Channel Identifier Reserved Field

0 1:2 3:5 6:7 8:13 14:15
0b 00b 000b 01b mission configurable 00b

Table 22: Command Link Control Word dynamic/static part assignment

Dynamic part of the Command Link Control Word
No RF Available No Bit Lock Lock Out Wait Retransmit FARM B Counter Report Type Report Value

16 17 18 19 20 21:22 23 24:31
all bits retrieved from external interface

Table 23: Command Link Control Word dynamic part

PTME-001-01 24
4.2.3 Bandwidth allocation and selection

The encoder provides two built-in algorithms for selecting which Virtual Channel to output in
the next Transfer Frame. It is not possible to perform the Virtual Channel selection externally
to the encoder. The Bandwidth Allocation algorithm guarantees a minimum bandwidth for each
Virtual Channel. In this algorithm the encoder uses adaptive channel ordering in order to utilize
the available bandwidth as efficiently as possible. In the Priority Selection algorithm the
encoder selects the highest priority Virtual Channel that has a Data Field ready for transmission.

The Bandwidth Allocation Table (BAT) is used for the arbitration of the downlink bandwidth
and is used for both algorithms. The following options can be selected at compile time: internal
BAT with no interface, internal BAT with asynchronous memory type interface, or the complete
BAT is located outside the encoder. For the latter option, all modifications of the BAT contents
must be done synchronously with the encoder clock or when a write indicator output is asserted
by the encoder. The size of the BAT is selectable at compile time.

When the BAT is located in the encoder, it is initialised at reset. It will be initialised to contain
an incremental sequence of values in the range of the implemented Virtual Channel Identifiers.
All Virtual Channels will therefore have a nearly equal bandwidth allocated when the
Bandwidth Allocation algorithm is selected. If the Priority Selection algorithm is enabled, this
initialisation sequence will mean that Virtual Channel with identifier zero will have the highest
priority and the Virtual Channel with the highest identifier value will have the lowest priority.
For example, in an implementation with four Virtual Channels and 32 entries, the BAT will
contain the following sequence after reset: 0, 1, 2, 3, 0, 1, 2, 3 and so on.

4.2.4 Time strobe

A time strobe is generated according to AD1, being asserted simultaneously with the first bit of
the Attached Synchronisation Marker output. The timing of the time strobe is not valid if Turbo
encoding is applied because data buffering takes place. The accuracy of the time strobe is
reduced by the usage of other encoders and modulator. Usually the time strobe is being
produced one bit clock period earlier for each simple encoder in use. The time strobe is asserted
for 128 bit clock periods. The periodicity of the time strobe is configurable during a mission,
being linked to the eight least significant bits of the Virtual Channel Frame Counter of Virtual
Channel number 0, as listed in table 24.

Time strobe periodicity setting Virtual Channel 0 Frame Count values (8 bits)

0000b 0, 1, 2, 3, 4... 253, 254, 255
0001b 0, 2, 4, 6, 8... 250, 252, 254
0010b 0, 4, 8, 12, 16... 244, 248, 252
0011b 0, 8, 16, 24, 32... 232, 240, 248
0100b 0, 16, 32, 48, 64... 208, 224, 240
0101b 0, 32, 64, 96, 128, 160, 192, 224
0110b 0, 64, 128, 192
0111b 0, 128
1---b 0

Table 24: Time strobe periodicity

PTME-001-01 25
4.2.5 Virtual Channels

The Virtual Channels in the Telemetry Encoder (TME) are treated as separate entities, each
being individually configured during operation.

4.2.5.1 Operational configuration

The encoder allows the following functions or protocol fields to be varied during operation for
each Virtual Channel, provided that the corresponding design option is selected at compile time.

The following fields in the Frame Data Field Status can be configured:
• Secondary Header Flag (used as data bit and Secondary Header insertion qualifier)
• Data Field Synchronisation Flag (use as data bit and Idle Source Packet generation qualifier)
• Packet Order Flag (used as data bit only)
• Segment Length Identifier (used as data bits only) as listed in table 25

The following functions can be configured or enabled for the data reception process:
• External buffer memory allocation to the Virtual Channel (non-commissioned)
• Threshold for external buffer memory availability indication, as listed in table 26
• Dynamic or static First Header Pointer calculation, where dynamic calculation must be used

with synchronous data insertion and can be used with asynchronous data insertion (although
not endorsed in telemetry standards), and where static calculation must only be used with
asynchronous data insertion (independent of Data Field Synchronisation Flag setting above)

For the Idle Source Packet generation the following can be configured during operation:
• Version Number (most significant bit, 000b and 100b supported) (used as data bit only)
• Threshold for number of polls before generation commences, as listed in table 27 and

explained in section 4.2.5.3

Segment Length Identifier Maximum Data Field length of Telemetry Packets (AD1)

00b 256 octets (only in AD1)
01b 512 octets (only in AD1)
10b 1024 octets (only in AD1)
11b 65536 octets (no segmentation) (both AD1 and AD2)

Table 25: Segment Length Identifier interpretation

Threshold selection Available unused octets in external buffer memory

00b ≥ 262 (256 + 6)
01b ≥ 518 (512 + 6)
10b ≥ 1030 (1024 + 6)
11b ≥ length of Transfer Frame Data Field

Table 26: Threshold setting for external buffer memory availability indication

PTME-001-01 26
4.2.5.2 Data buffering

The Virtual Channels receive data, via the interfaces described later, which are stored in the
external buffer memory. Each Virtual Channel keeps track of the number of octets received and
the packet boundaries in order to calculate the First Header Pointer discussed in
section 4.2.2.4.4. Data are stored in pre-allocated external buffer memory slots comprising
Transfer Frame Data Fields. The Frame Data Field Status for each Transfer Frame, including
the First Header Pointer, is also stored in the external buffer memory.

Since the external buffer memory is shared between Virtual Channels, each Virtual Channel is
allocated a portion of the memory space. The external buffer memory allocated to each Virtual
Channel is treated as a circular buffer of Transfer Frame Data Fields. The encoder provides two
options for partitioning the memory space in pre-allocated slots. There is an optimised scheme
and a simplified scheme, trading buffering capability versus implementation complexity, as
listed in table 28. The allocation selection is nominally done at compile time, but also be done
dynamically during operation via an non-commissioned interface, as described in section 5.2.3.

The access to the external buffer memory is divided in two paths; one for storing data received
from the user and one for storing auxiliary data such as the Frame Data Field Status. The
auxiliary path is also used for storing Idle Source Packets as described in section 4.2.5.3. By
isolating the path for user data from the path for auxiliary data it is possible to provide a
guaranteed user data throughput for the user interface.

Poll threshold setting Number of polls

000b Idle Source Packets always inserted (no polls required)
001b 1
010b 4
011b 16
100b 64
101b 256
110b 1024
111b Idle Source Packets never inserted

Table 27: Poll threshold setting for Idle Source Packet insertion

Transfer Frame length

setting

Transfer Frame length

[octets]

Allocated memory space [octets]

optimised simplified

000b 223 256 - 32 = 224 256
001b 446 512 - 64 = 448 512
010b 892 1024 - 128 = 896 1024
011b 1115 1024 + 128 = 1152 2048
100b 239 256 - 16 = 240 256
101b 478 512 - 32 = 480 512
110b 956 1024 - 64 = 960 1024
111b 1195 1024 + 256 = 1280 2048

Table 28: Allocated external buffer memory space per Transfer Frame Data Field

PTME-001-01 27
The Virtual Channels do not perform segmentation of Source Packets (Version-2), as specified
in AD1, which should be done by the data source. The Virtual Channels can handle packets and
data blocks with data fields of up to 65536 octets. Note that only a part of the maximum size
packet will reside in the external buffer memory at a time if the memory allocated to a Virtual
Channel is smaller than the 65536+6 octets.

The encoder does not check the contents or the format of the packets provided by the source.
The Virtual Channel is thus independent of the packet format and any data structure can be used.

4.2.5.3 Idle Source Packet generation

The encoder can optionally generate and insert Idle Source Packets for each Virtual Channel to
fill up an incomplete Transfer Frame Data Field. This ensures that user data do not remain
inaccessible due to an incomplete Transfer Frame being resident in the external buffer memory.
This function is only available when the Virtual Channel is operating with packets, referred to
as synchronous data insertion in AD1. Idle Source Packets should not be confused with Idle
Transfer Frames.

The Idle Source Packet insertion process starts when all of the following conditions are met:
• the Virtual Channel operates with packets (Data Field Synchronisation Flag is 0b)
• the source is not sending data
• the Virtual Channel has no Data Field completed and available for transmission
• the Virtual Channel contains an incomplete Data Field (containing non-Idle Source Packets

or part of a non-Idle Source Packet) that is resident in the external buffer memory
• the poll threshold is not set to 111b
• the appropriate number of polls have been counted as listed in table 27

When the Idle Source Packet insertion process has filled the Data Field, the Virtual Channel will
indicate to the encoder that it has a Data Field completed and available for transmission. The
Idle Source Packet insertion process stops after the last Idle Source Packet has been stored in
the Data Field in the external buffer memory. In the case that the last Idle Source Packet spilled
over, it will be written to the next Data Field. The time required to complete a Data Field with
Idle Source Packets depends on how much space there is left to be filled. Should the source
begin to send data after the Idle Source Packet insertion process has started, the current Idle
Source Packet will be completed in parallel with the storing of received data and then the Idle
Source Packet insertion process will be suspended. As soon as the source stops sending data
again, indicating the end of the normal packet, the Idle Source Packet insertion process resumes
and continues until the Data Field has been completed (it will not stop due to a new packet being
received) unless the Data Field was already completely filled with normal packets.

When a Transfer Frame Data Field contains no user packets or when it contains only part of an
Idle Source Packet, the Idle Source Packet insertion process will not start. The situation where
a Data Field contains only part of an Idle Source Packet occurs when an Idle Source Packet
spilled over from the previous Transfer Frame and it is the only data in the new Transfer Frame.

The structure of the Idle Source Packet is listed in table 29. Note that the CCSDS AD2 standard
permits simultaneous transmission of Source Packets and the other packet formats defined in
the standard. This makes it possible to use Idle Source Packet insertion also with other packet

PTME-001-01 28
formats than the Source Packets format alone. The Data Field of the Idle Source Packet is
generated with a pseudo-random generator. The pseudo-random generator polynomial is h(x) =
x9+x4+1 and is implement as a many-to-one implementation, which is a Fibonacci version of a
Linear Feed-back Shift Register (LFSR), with x0 as output.

4.2.5.4 Input interfaces

The Telemetry Encoder (TME) provides an internal interface format between the Virtual
Channels and the user interfaces. The available user interface types are described in the
subsequent sections. They all provide the same basic functionality for interfacing the Virtual
Channels as will be described hereafter. The main purpose of the user interfaces is to receive
data from a given communication protocol and forward the data to the Virtual Channel. Octet
and packet boundaries are extracted in the process and signalled to the Virtual Channel. The data
structure used by the Virtual Channel is octet based and the adaptation of any differences in data
size with the input protocol is performed by the user interface modules. The user interfaces
provide feed back from the Virtual Channel, signalling when there is space left in the external
buffer memory for a data block of a predefined length (buffer availability indication) and when
the Virtual Channel input is busy or not ready to receive any data (busy signalling).

The Telemetry Encoder (TME) provides the possibility to abort the insertion of a packet. This
option is selected at compile time. A Transfer Frame is normally released for transmission as
soon as its Data Field is completely filled. This can lead to parts of a packet being sent before
the complete packet has been received by the encoder, making it impossible to abort the packet
insertion without violating the communication protocol. The encoder provides optional support
to avoid this problem by holding any Transfer Frame which contains part of a packet that is not
completely received by the encoder. As long as the packet is not completely received by the
encoder, signalled by the user via the packet delimiter input, the packet can be retracted by the
user and the complete packet is removed from the external buffer memory. There is a discrete
input provided for this function. The abort input should be de-asserted before the insertion of a

Packet Identification:

Version Number (bit 0): configurable during operation

Version Number (bit 1 to 2): 00b

Type (bit 3): 0b

Data Field Header Flag (bit 4): 0b

Application Process Identifier (bit 5 to 15): 11111111111b

Packet Sequence Control:

Segmentation Flags (bit 0 to 1): 11b

Source Sequence Count (bit 2 to 15): 00000000000000b

Packet Length:

Packet Length (bit 0 to 15): 0000000000000111b

Idle Source Packet Data Field:

Idle Source Packet Data Field (bit 0 to 63): pseudo-random data

Table 29: Idle Source Packet structure

PTME-001-01 29
packet begins, i.e. before the packet delimiter is asserted. If asserted before the end of the packet
insertion, i.e. before the packet delimiter is de-asserted, the packet will be aborted and retracted.
No data will be received until the packet delimiter is de-asserted and re-asserted for the insertion
of a new packet. If the abort input is asserted before the insertion of a packet begins, an abort
will not be possible. Transfer Frames containing part of that packet will be released for
transmission as soon as they are completed. There is a possibility for a deadlock situation that
has to be handled by the user. If a large packet is received which is stored in all possible Transfer
Frame Data Fields in the external buffer memory space, it will not be possible for the encoder
to release the corresponding frame, neither will it be possible for the user to insert the complete
packet. It is possible to avoid this situation by never transferring packets for which the size is
close the number of Transfer Frame Data Fields that can be stored in the external buffer memory
space, or not to use the abort function for such large packets. If the situation should still occur,
the only remedy is for the packet to be aborted by the user. A potential deadlock situation can
be observed via the busy output that will be asserted for an infinite period of time.

All interfaces provide an indicator output signal which is asserted when no user packet data is
located in the input buffers of the interfaces or in the external buffer memory. It is also asserted
if only idle packet data (non-user data) is located in the external buffer memory. In this way the
user can know if all user data has been transmitted.

4.2.5.4.1 PacketWire interface (PW)

The PacketWire (PW) interface to the Virtual Channel is a simple bit synchronous protocol. The
data can either be packets or a bit stream. The interface comprises three input signals; bit data,
bit clock and packet delimiter. There are additional discrete signals provided for busy signalling
and external buffer memory availability indication.

Data should consist of multiples of eight bits otherwise the last bits will be lost. The input packet
delimiter signal is used to delimit packets. It should be asserted while a packet is being input,
and de-asserted in between. In addition, the input packet delimiter signal should define the octet
boundaries in the input data stream, the first octet explicitly and the following octets each
subsequent eight bit clock cycles. The packet delimiter can be permanently asserted when non-
packet data are input, provided that the First Header Pointer calculation is static for the Virtual
Channel and the corresponding Data Field Synchronisation Flag is set to 1b.

4.2.5.4.2 PacketParallel interface (PP)

The PacketParallel (PP) interface to the Virtual Channel is a simple parallel asynchronous
memory type interface. Data are written in by means of a write strobe. There are additional
discrete signals provided for packet delimiting, busy signalling and external buffer memory
availability indication. The interface supports 8 bit data input. The packet delimiter signal is
used to delimit packets. It should be asserted while a packet is being input and de-asserted in
between. The packet delimiter can be permanently asserted when non-packet data are input,
provided that the First Header Pointer calculation is static for the Virtual Channel and the
corresponding Data Field Synchronisation Flag is set to 1b.

PTME-001-01 30
4.2.5.4.3 PacketAsynchronous interface (PA)

The PacketAsynchronous interface (PA) to the Virtual Channel is a simple bit asynchronous
protocol used for receiving data only. There are no provision in the data protocol itself for packet
delimiting or handshake. Instead there are some additional discrete signals provided for packet
delimiting, busy signalling and external buffer memory availability indication. The packet
delimiter signal is used to delimit packets. It should be asserted while a packet is being input
and de-asserted in between. The packet delimiter can be permanently asserted when non-packet
data are input, provided that the First Header Pointer calculation is static for the Virtual Channel
and the corresponding Data Field Synchronisation Flag should is set to 1b. The interface
supports 8 bit data with 1 or 2 stop bits and a parity bit that can be masked if required although
the parity value is unused. The protocol is according to AD10 and is listed in table 19 and shown
in figure 1. There are four different baud rates supported which can be chosen during operation
as listed in table 30. The baud rates are determined at compile time towards a fixed system clock
frequency. It is thus not possible to change the system clock frequency without affecting the
baud rates.

4.2.5.4.4 PacketAPB interface (PAPB)

The PacketAPB interface (PABP) to the Virtual Channel is compliant with the AMBA APB
interface specification defined in AD9. Multiple PAPB slave interfaces can be located on the
same AMBA APB bus, provided that the corresponding select signals are generated separately.
The interface supports a variable width data input, although the data are output to the Virtual
Channel as 8 bit wide octets. The maximum input data width is configurable for each interface
at compile time and can be set to 8, 16, 24 or 32 bits. The interface allows simultaneous input
of data up to the corresponding maximum input data width above. It is possible to set
dynamically the data input width for each access, supporting 8, 16, 24 or 32 bits transfers, as
long as being shorter than the aforementioned maximum.

Packet delimiting and handshake is performed through the PAPB Configuration Register. There
are additional discrete signals provided for busy signalling and external buffer memory
availability indication to reduce the number of accesses to the interface. The packet delimiter
bit in the PAPB Configuration Register is used to delimit packets. It should be set while a packet
is being input and cleared in between. The packet delimiter can be permanently asserted when
non-packet data are input, provided that the First Header Pointer calculation is static for the
Virtual Channel and the corresponding Data Field Synchronisation Flag is set to 1b.

The input address is interpreted as a byte address, as per AD12. Since each access is a word
access, the two least significant address bits are assumed always to be zero. Only address bit 10
is decoded during write accesses to allow a maximum burst of 1024 words to the PAPB Data
Input Register. Misaligned addressing is not supported. The address is not decoded during read

Baud rate choice baud rate

00b 9600 baud
01b 19200 baud
10b 38400 baud
11b 57600 baud

Table 30: Baud rates

PTME-001-01 31
accesses, neither are the select, enable and write strobes. Only the PAPB Configuration Register
can be read. The unused data bits 31:7 are always driven to zero. The interface is designed to
work in a multiplexed unidirectional bus scheme. Re-mapping between the opposing numbering
conventions in the CCSDS and AMBA documentation is performed.

Bit number Mode Default Name Remarks

31:7 r all zeros unused all zero during read
6 r 0 Ready Interface ready to receive a segment
5 r 0 Busy Interface busy
4 r 0 unused zero during read
3 r/w 0 Valid Packet delimiter/enable when asserted
2 r/w 0 Abort Abort packet

1:0 r/w 00 Size mode Input data size and transmit order
00b 8 bit: transmit 7:0
01b 16 bit: transmit 15:8, 7:0
10b 24 bit: transmit 23:16, 15:8, 7:0
11b 32 bit: transmit 31:24, 23:16, 15:8, 7:0

Table 31: PacketAPB Configuration Register bit definition

Bit number Mode Default Name Remarks

31:24 w n/a data only transmitted in 32 bit mode
23:16 only transmitted in 32 and 24 bit modes
15:8 only transmitted in 32, 24 and 16 bit modes
7:0 transmitted in all modes

Table 32: PacketAPB Data Input Register bit definition

Register name Address Read/Write Remark Reference

Configuration Register ---- -0--h r/w configuration and status table 31
Data Input Register ---- -4--h w data transfer table 32

Table 33: Address mapping for PacketAPB AMBA APB slave interface

PTME-001-01 32
4.3 Reed-Solomon Encoder (RSE)

The CCSDS recommendation AD4 specifies two similar Reed-Solomon codes, one (255, 223)
code and one (255, 239) code. The ESA PSS standard AD3 only specifies the former code.
Although the definition style differs between the AD3 and AD4, the (255, 223) code is the same
in both documents. The definition used in this document is based on the ESA standard AD3.

The Reed-Solomon Encoder (RSE) implements both codes, which can be used directly in the
Packet Telemetry Encoder (PTME) module.

The Reed-Solomon encoder also supports other interleave depths than those specified in AD3
and AD4.

The Reed-Solomon encoder is compliant with the two coding algorithms in AD4:
• there are 8 bits per symbol;
• there are 255 symbols per codeword;
• the encoding is systematic:

• for E=8 or (255, 239), the first 239 symbols transmitted are information symbols, and the
last 16 symbols transmitted are check symbols;

• for E=16 or (255, 223), the first 223 symbols transmitted are information symbols, and
the last 32 symbols transmitted are check symbols;

• the E=8 code can correct up to 8 symbol errors per codeword;
• the E=16 code can correct up to 16 symbol errors per codeword;
• the field polynomial is

• the code generator polynomial for E=8 is

for which the highest power of x is transmitted first;
• the code generator polynomial for E=16 is

for which the highest power of x is transmitted first;
• interleaving is supported for depth I = {1 to 8}, where information symbols are encoded as I

codewords with symbol numbers i + j*I belonging to codeword i {where 0 ≤ i < I and 0 ≤ j
< 255};

• shortened codeword lengths are supported;

fesa x() x8 x6 x4 x3 x2 x 1+ + + + + +=

gesa x() x αi+()
i 120=

135

∏ gj xj⋅
j 0=

16

∑= =

gesa x() x αi+()
i 112=

143

∏ gj xj⋅
j 0=

32

∑= =

PTME-001-01 33
• the input and output data from the encoder are in the representation specified by the
following transformation matrix Tesa, where ι0 is transferred first

• the following matrix T-1
esa specifying the reverse transformation

The encoder is slaved to the telemetry Transfer Frame generation process. The Reed-Solomon
output is non-return-to-zero level encoded.

ι0 ι1 ι2 ι3 ι4 ι5 ι6 ι7 α7 α6 α5 α4 α3 α2 α1 α0

0 0 1 1 0 1 1 1
0 1 0 1 1 1 1 1
1 0 0 0 0 1 1 1
0 0 0 0 1 0 0 1
0 0 1 1 1 1 1 1
0 0 1 0 1 0 1 1
0 1 1 1 1 0 0 1
0 1 1 1 1 0 1 1

×=

α7 α6 α5 α4 α3 α2 α1 α0 ι0 ι1 ι2 ι3 ι4 ι5 ι6 ι7=

1 1 1 0 1 1 0 1
0 1 0 1 1 1 1 1
0 0 0 1 0 1 1 1
0 1 0 1 1 0 1 0
1 0 0 0 1 0 0 0
0 1 0 1 0 1 1 0
0 0 0 0 0 0 1 1
1 0 0 1 1 0 0 0

×

PTME-001-01 34
4.4 Turbo Encoder (TE)

The Turbo Encoder (TE) encodes data from the preceding Telemetry Encoder according to
CCSDS recommendation AD4. It replaces the nominal Attached Synchronisation Marker
(ASM) with a specific ASM as defined for each coding rate.

The Turbo encoder is compliant with the coding algorithm in AD4:
• Code type: systematic parallel concatenated turbo code.
• Number of component codes: 2 (plus an uncoded component to make the code systematic).
• Type of component codes: recursive convolutional codes.
• Number of states of each convolutional component code: 16.
• The nominal code rate is selectable with r = 1/2, 1/3, 1/4 or 1/6 bit per symbol.
• The specified information block lengths k are shown in table 11. The corresponding

codeblock lengths in bits, n=(k+4)/r, for the specified code rates are shown in table 12.
• The permutation for each block length k is given by a particular reordering of the integers 1,

2, . ., k as generated by the algorithm in figure 5. The constant k is expressed as k=k1k2. The
parameters k1 and k2 for the specified block sizes are given in table 34. The operations in the
algorithm are performed for s=1 to s=k to obtain the permutation numbers π(s). In the
equation below, x denotes the largest integer less than or equal to x, and pq denotes one of the
prime integers listed in table 35. The interpretation of the permutation numbers is such that
the sth bit read out on line “in b” in figure 6 is the π(s)th bit of the input information block.

Figure 5: Permuter algorithm

Information block length k, bits k1 k2

1784 8 223 x 1
3568 8 223 x 2
7136 8 223 x 4
8920 8 223 x 5

Table 34: Standard k1 and k2 parameters

p1 = 31 p2 = 37 p3 = 43 p4 = 47 p5 = 53 p6 = 59 p7 = 61 p8 = 67

Table 35: Prime integers

m s 1–() mod 2=

i s 1–
2 k2⋅
------------=

j s 1–
2

----------- ik2–=

t 19i 1+() mod
k1
2
-----=

q t mod 8 1+=

c pqj 21m+() mod k2=

π s() 2 t c
k1
2
----- 1+ +

 m–=

PTME-001-01 35
• Backward and forward connection vectors (see figure 6):
• Backward connection vector for both component codes and all code rates: G0 = 10011b.
• Forward connection vector for both component codes and rates 1/2 and 1/3: G1 = 11011b.

• Puncturing of every other symbol from each component code is necessary for rate 1/2.
• No puncturing is done for rate 1/3.

• Forward connection vectors for rate 1/4: G2 = 10101b, G3 = 11111b (1st component code);
G1 = 11011b (2nd component code). No puncturing is done for rate 1/4.

• Forward connection vectors for rate 1/6: G1 = 11011, G2 = 10101b, G3 = 11111b
(1st component code); G1 = 11011b, G3 = 11111b (2nd component code). No puncturing
is done for rate 1/6.

• The Attached Synchronisation Marker (ASM) differs for the four code rates. The number of
bits are proportional to the code rate, with the marker length being 32/r-bit for r = 1/2, 1/3,
1/4 and 1/6, e.g. r = 1/6 gives a sequence of 192 bits. As for Reed-Solomon coding, the ASM
is used for frame synchronisation. The different ASMs are listed in table 14.

Figure 6: Turbo Encoder functional block diagram

The Turbo encoder output is non-return-to-zero level encoded. The encoder increases the output
bit rate with a factor of two to six, depending on the selected coding rate. It is not allowed to
simultaneously engage both Turbo and Reed-Solomon and/or Convolutional encoding. The
Turbo encoding introduces a latency corresponding to one Transfer Frame transmission
duration, since a complete Transfer Frame needs to be available and buffered before encoding
can commence. The encoder is slaved to the telemetry Transfer Frame generation process.

G1

G3

Encoder A

in

Out

 = Take every symbol
 = Take every other symbol
 = Exclusive OR

Address
A

Address
B

Frame
buffer

11 1 1

G2

in a

ra
te

 1
/2

ra
te

 1
/3

ra
te

 1
/4

ra
te

 1
/6

G1

G3

Encoder A

11 1 1

G2

in b

G0

G0

PTME-001-01 36
4.5 Pseudo-Randomiser (PSR)

The Pseudo-Randomiser (PSR) generates a bit sequence according to AD3 and AD4 which is
xor-ed with the data output of preceding encoders. This function allows the required bit
transition density to be obtained on a channel in order to permit the receiver on ground to
maintain bit synchronisation.

The polynomial for the Pseudo-Randomiser is h(x) = x8+x7+x5+x3+1 and is implemented as a
Fibonacci version (many-to-one implementation) of a Linear Feedback Shift Register (LFSR).
The registers of the LFSR are initialised to all ones between Transfer Frames. The Attached
Synchronisation Marker (ASM) is not effected by the encoding.

4.6 Non-Return-to-Zero Mark encoder (NRZ)

The Non-Return-to-Zero Mark encoder (NRZ) encodes differentially a bit stream from
preceding encoders according to AD5. The waveform is shown in figure 11.

Both data and the Attached Synchronisation Marker (ASM) are affected by the coding. When
the encoder is not enabled, the bit stream is by default non-return-to-zero level encoded.

4.7 Convolutional Encoder (CE)

The Convolutional Encoder (CE) implements two convolutional encoding schemes. The ESA
PSS standard AD3 specifies a basic convolutional code without puncturing. This basic
convolutional code is also specified in the CCSDS recommendation AD4, which in addition
specifies a punctured convolutional code.

The basic convolutional code has a code rate of 1/2, a constraint length of 7, and the connection
vectors G1 = 1111001b (171 octal) and G2 = 1011011b (133 octal) with symbol inversion on
output path, where G1 is associated with the first symbol output.

The punctured convolutional code has a code rate of 1/2 which is punctured to 2/3, 3/4, 5/6 or
7/8, a constraint length of 7, and the connection vectors G1 = 1111001b (171 octal) and
G2 = 1011011b (133 octal) without any symbol inversion. The puncturing and output sequences
are listed in table 36. The encoder also supports rate 1/2 unpunctured coding with
aforementioned connection vectors and no symbol inversion.

Puncturing pattern Code rate Output sequence

1 = transmitted symbol

0 = non-transmitted symbol
C1(t), C2(t) denote values at bit time t

C1: 1 0
C2: 1 1

2/3 C1(1) C2(1) C2(2)...

C1: 1 0 1
C2: 1 1 0

3/4 C1(1) C2(1) C2(2) C1(3)...

C1: 1 0 1 0 1
C2: 1 1 0 1 0

5/6 C1(1) C2 (1) C2(2) C1(3) C2(4) C1(5)...

C1: 1 0 0 0 1 0 1
C2: 1 1 1 1 0 1 0

7/8 C1(1) C2(1) C2(2) C2(3) C2(4) C1(5) C2(6) C1(7)...

Table 36: Puncture code sequence for convolutional code rates

PTME-001-01 37
4.8 Split-Phase Level modulator (SP)

The Split-Phase Level modulator (SP) modulates a bit stream from preceding encoders
according to AD5. The waveform is shown in figure 14.

Both data and the Attached Synchronisation Marker (ASM) are effected by the modulator. The
modulator will increase the output bit rate with a factor of two.

4.9 Clock Divider (CD)

The Clock Divider (CD) provides clock enable signals for the telemetry and channel encoding
chain in Packet Telemetry Encoder (PTME). The clock enable signals are used for controlling
the bit rates of the different encoder and modulators. The source for the bit rate frequency is
always the dedicated bit rate clock input BitClk.

The bit rate clock input BitClk can be divided to a degree 2n which is set at compile time. The
divider can be configured during operation to divide the bit rate clock frequency from 1/1 to 1/
2n, where n is the width of the clock divider.

The bit rate frequency can either be based on the output frequency of the last encoder in a coding
chain or as the input frequency for all non-rate-increasing encoders, being selectable at compile
time. No actual clock division is performed, since clock enable signals are used. No clock
multiplexing is performed in the PTME.

The Clock Divider (CD) supports clock rate increases for the following encoders and rates:
• Turbo Encoder (TE), rate 1/2, 1/3, 1/4 and 1/6;
• Convolutional Encoder (CE), 1/2, 2/3, 3/4, 5/6 and 7/8;
• Split-Phase Level modulator (SP), rate 1/2.

The asynchronous reset input is synchronised towards the BitClk and Clk clock inputs and the
resulting synchronised reset outputs are used for the reset of the encoders and modulators in the
PTME.

It is possible to optimise the PTME to operate only on the system clock Clk, which will remove
any synchronisation logic otherwise required between the Clk and BitClk clock domains. The
Clk and BitClk inputs should then be tied together outside the PTME.

PTME-001-01 38
5 MODULE DESCRIPTIONS

Each module used in the Packet Telemetry Encoder (PTME) can be used in a stand alone mode,
but since the objective of this document is to describe the PTME VHDL model as a top level
element, each module will not be discussed in detail. Only modules requiring further discussion
other than what has been specified in preceding sections will be described hereafter.

5.1 Telemetry Encoder (TME)

Is should be noted that the Telemetry Encoder (TME) module is not a separate module in the
PTME VHDL model. It is only a constellation of individual modules related to the telemetry
encoding, i.e. the Virtual Channel Encoder (VCE) and the input interface modules PacketWire
(PW), PacketAsynchronous (PA), PacketParallel (PP) and PacketAPB (PAPB). The description
given in this document is more oriented around the functional structure rather than the
implementation oriented structure of the PTME VHDL model. The discrepancies are however
unlikely to cause any misunderstandings for most user since entirely internal to the PTME.

The internal Telemetry Encoder (TME) architecture is based around an proprietary bus
structure, the PTME Internal Bus (PIB or PI-bus). The PIB is also shared by the Turbo Encoder
(TE) in configurations when it is included in the PTME. The PIB could additionally be shared
by the Reed-Solomon Encoder (RSE), but would require some adaptations of the VHDL model.
The main purpose of the PIB is to allow data buffering for the different Virtual Channels to a
common external buffer memory. This external buffer memory can also be used by the TE. The
external buffer memory is nominally located outside the device implementing the PTME, but
can be located on-chip if technology permits it. The PTME accesses the external buffer memory
via the Virtual Channel Buffer (VCB) module. The VCB acts as an arbiter on the PIB and
allocates the appropriate memory bandwidth between the different clients. The VCB can be
connected to the external buffer memory directly via an asynchronous interface or via the
AMBA Advanced High-performance Bus (AHB) master interface.

For each Virtual Channel there is a Virtual Channel Assembler (VCA) which receives data from
various types of input interface and stores it in the external buffer memory via the VCB. The
VCA keeps track of the number of octets received and the packet boundaries.

The Virtual Channel Multiplexer (VCM) creates telemetry Transfer Frames, taking the data and
the packet boundary information from the external buffer memory as previously stored by the
VCA. The VCAs inform the VCM when there is data available for transmission via the Virtual
Channel Request interface (VCR) which adheres to a proprietary protocol.

There are several types of input interfaces that can be used for the Virtual Channels. The
interface between such an input interface module and the corresponding VCA is named the
Virtual Channel Interface (VCI) which adheres to a proprietary protocol. The interface types
supported are PacketWire interface (PW), PacketAsynchronous (PA), PacketParallel (PP) and
PacketAPB (PAPB). The interfaces are situated outside the VCE.

The number of Virtual Channels to be implemented is set with the gNumberOfVCs constant at
compile time. If the gIdleFrameVC constant is set outside the number of implemented Virtual
Channels, a separate Virtual Channel will be implemented for Idle Transfer Frames. Support for
implementing 223 octet based and/or 239 octet based frame lengths is set with gFrameLength.

PTME-001-01 39
5.2 Virtual Channel Encoder (VCE)

The Virtual Channel Encoder (VCE) is mainly a hierarchical structure in which the VCAs, the
VCM and the VCB are instantiated.

The VCE implements the partitioning of the external buffer memory between the different
Virtual Channel, allocating each module its share of the memory taking into account the selected
Transfer Frame length etc. This is preformed when the gGroupInterface constant in the
PTME_Configuration package is cleared, see section 7. The allocation process will be described
in detail in section 6.3. The following parameters are generated dynamically by the VCE for
each Virtual Channel:
• identifier of the memory base area allocated to a Virtual Channel
• number of Transfer Frame Data Fields allocated to a Virtual Channel
• number of octets allocated per Data Field for a given Virtual Channel.

If the gGroupInterface constant is set, then the allocation is performed outside the VCE and the
PTME. This design option is however not commissioned.

5.2.1 Virtual Channel Assembler (VCA)

Each Virtual Channel Assembler (VCA) module can be configured by means of generics as
described in section 4.2.1 and listed in table 58. It should be noted that the value of the gLength
generic should be interpreted as an increase of the internal input buffer size (in octets) from the
default size of one octet. The gIdle generic (selecting Idle Source Packet insertion) is only
meaningful when the gPacket generic is selected (selecting packet handling). The gAbort
generic (selecting packet insertion abort possibility) is only is only meaningful when the
gPacket generic is selected.

The VCA receives data over the Virtual Channel Interface (VCI) which are transferred over the
PTME Internal Bus (PIB) to the Virtual Channel Buffer (VCB) which will store them in the
external buffer memory. The data are initially buffered locally in the VCA. The sizing of the
internal input buffer has been mentioned above and will also be discussed later. The purpose of
the internal input buffer is to allow for latency and jitter on the PIB. The VCI is described in
section 6.2.

The VCA keeps track of the number of octets received and the packet boundaries in order to
calculated the First Header Pointer (FHP) discussed hereafter. The data are stored in pre-
allocated slots in the external buffer memory comprising Transfer Frame Data Fields. The FHP
is also stored in the slot for each Transfer Frame, as part of the Frame Data Field Status (FDFS).
The VCA fully supports the FHP generation and does not require any alignment of the packets
with the Transfer Frame Data Field boundary. The FHP can either be generated dynamically
(when the gPacket generic is selected and the DynamicFHP input port is asserted) based on the
aforementioned packet boundary information, or it can be fixed to all ones (when the gPacket
generic is not selected or the DynamicFHP input port is de-asserted). Since the generation of
the FHP is not directly linked to the Sync input port, it is possible to generate a dynamic FHP
even if the Sync flag is set to one in the FDFS (i.e. asynchronous non-packet data insertion).

A too large internal input buffer size could cause problems for the FHP generation if the
received packets are shorter than the internal input buffer size. If a short packet is the first packet

PTME-001-01 40
in a Transfer Frame and which also spills over into the next Transfer Frame, only the first end
of packet would be taken into account and the FHP for the second Transfer Frame would not be
correct. A work around is not to size the internal input buffer larger than the smallest possible
packet, which is seven octets for CCSDS Source Packets but could be as small as one octet for
the CCSDS Encapsulation Packet.

The insertion of the Transfer Frame Secondary Header is performed outside the VCA. The
SecHeader input port is only used as a data bit for the FDFS and does not effect the sizing of
the Transfer Frame Data Field in any sense. The Sync input port is used as a data bit for the
FDFS and is also used as one of the qualifiers for the Idle Source Packet insertion. The PktOrder
input port is only used as a data bit for the FDFS. The SegmentLen input port is only used as
data bits for the FDFS and does not effect the external buffer memory availability signalling
described hereafter.

The external buffer memory space allocated to each VCA is treated as a circular buffer. The
VCA manages this circular buffer by means of frame and octet pointers. The write frame and
octet pointer pair is used for handling the incoming data and are communicated to the VCB over
the PIB (nominal data). The FDFS frame and octet pointer pair is used for writing the FDFS to
the external buffer memory. The Idle Source Packet frame and octet pointer pair is used for
inserting said packets in the external buffer memory. The FDFS and Idle Source Packet pointer
pairs are combined in common auxiliary frame and octet pointer pairs for accesses to the VCB
over the PIB (auxiliary data). A read frame pointer is used for tracking the read out of the data
and is only communicated to the VCM over the Virtual Channel Request (VCR) interface.

The nominal write and read frame pointers are used for calculating whether the external buffer
memory is full, whether there is space available for incoming data and whether there is at least
one complete Data Field in the external buffer memory. The VCA will indicate via the VCI
when it is not prepared to receive another octet (busy signalling) due to the internal input buffer
being full. An additional cause is that the external buffer memory allocated to the VCA is filled.

The VCA will indicates over the VCI when there is space left in the external buffer memory for
a predefined amount of octets. The threshold choice is done with the RdyThreshold input port
and is defined in table 26. The implementation of the threshold can either be exact or
approximated when the gFPGA constant is set in the PTME configuration package (see
table 57). In the latter case the threshold is fixed to three frames in memory independently of
the threshold choice, which guarantees a that there are 518 octets available independently of
frame size (for a minimum frame length of 223 or 239).

All VCAs in a PTME are sized according to the same external buffer memory size, the number
of memory areas and the number of areas that can be grouped together for a single VCA. Each
VCA can then be allocated an individual number of frames that can be stored in memory (via
the MaxFramePtr input port) and the number of octets that can be stored in one such frame (via
the MaxOctetPtr input port). Note that there must be at least three frames allocated to each
VCA. Note that it is not a complete Transfer Frame that is stored in memory, only the Data Field
and the Frame Data Field Status field. It is possible to change the allocation during operation,
provided that the module is reset after a change. It should be noted that it is the responsibility of
the VCA user to ensure that the number of octets set for a frame correspond to the Transfer
Frame Data Field. This value is affected by the lengths of the Transfer Frame, Secondary Header
and Trailer and are calculated outside the VCA. The FDFS information is stored as two octets
just after the Data Field in the associated memory slot.

PTME-001-01 41
As mentioned earlier, the VCA implements two PIB write ports: nominal and auxiliary. The PIB
can be configured at compile time for logical pointer addressing or physical addressing. The
aforementioned pointers are directly used for the logical pointer addressing option (when
gPhysicalAddress is cleared), while the pointers are merged to a physical address for the latter
which is not commissioned. The VCA needs to know the size of the Transfer Frame (via the
FrameLen input port) in order to calculate the physical offset address. The base address for
physical addressing is copied directly from the BaseAddress input port. The logical addressing
is independent of the Transfer Frame length and the base pointer used is copied directly from
the BaseAreaPtr input port. The PIB is described in section 6.3. The memory address
generation is described in section 5.2.3. Physical addressing is a non-commissioned option.

The VCA communicates with the VCM module over the VCR interface. The VCA indicates
when there is at least one frame available for transfer. The interface is described in section 6.4.
The base pointer for the VCR interface is copied directly from the BaseAreaPtr input port or
the BaseAddress input port when the gPhysicalAddress constant is set. There are no latency
requirements between the VCA and VCM with respect to the external memory buffer, since no
frame will be released by the VCA for read out from the VCM before it is completely written
to the memory.

Idle Source Packets are generated by the VCA and inserted into the external buffer memory as
described in section 4.2.5.3. The poll threshold is set with the PollThreshold input port for
which the interpretation is listed in table 27. The most significant bit of the Version number of
the Source Packet is set with the PktVersion input port. The insertion process has been designed
to constrain the insertion rate to one octet every eight clock cycles.

The VCA module is in the system clock domain clocked by the Clk clock input port and is reset
by the Reset_rise_N input port. The reset of the module can either be performed synchronously
or asynchronously, depending on the gSyncReset constant in the PTME configuration package,
see section 7. The data, control and reset input ports are assumed to be synchronised with
respect to the input clock port. All clocking is performed on the rising input port clock edge.
The VCA should be reset after a change of configuration port values.

5.2.2 Virtual Channel Multiplexer (VCM)

The Virtual Channel Multiplexer (VCM) creates Transfer Frames, taking the Frame Data Field
Status information and the Data Field from the external buffer memory, as previously stored by
the VCA. The VCM module has no generics, instead it is configured at compile time through
the PTME_Configuration package described in section 7. The VCM produces the rest of the
Transfer Frame Primary Header, including the Master Channel Frame Counter. The VCM holds
a Virtual Channel Frame Counter for each Virtual Channel. It is incremented after the
transmission of a telemetry Transfer Frame corresponding to the relevant Virtual Channel.

The VCM will produce the alternative Attached Synchronisation Marker (ASM) when the
AltASM input port is asserted and the gAltASM constant is set at compile time. Otherwise only
the nominal ASM will be generated.

The VCM will generate the time strobe as specified in section 4.2.4, with the periodicity being
set with the TimeMode input port as described in table 24.

PTME-001-01 42
The Transfer Frame length is chosen with the FrameLen input port as described in table 28.
This input is also used, together with the SecHeader, IdleSecHeader, OPCF and FECW input
ports, to calculate the Data Field size for each Virtual Channel. The calculation is performed
locally in the VCM. The same calculation is also performed in the VCE where the result is
distributed to each individual VCA.

The Spacecraft Identifier is set with the SCId input port. The individual Virtual Channel
Identifiers can be set via the FlexVCId input port in designs where flexible allocation is
implemented by setting the gFlexVCId constant.

The generation of the Secondary Header is enabled individually for each Virtual Channel with
the SecHeader input port.

The following applies when Idle Transfer Frames are generated on a separate Virtual Channel:
the generation of a Secondary Header is enabled with the IdleSecHeader input port, the
IdleSegmentLen input port is used as data bits for the FDFS, and the IdleFlexVCId input port
is used as data bits for the Virtual Channel Identifier.

For active Transfer Frames, i.e. non-idle, the VCM fetches data from the external buffer
memory via the PIB. Firstly the two octets corresponding to the FDFS are fetched, since being
transmitted first. Secondly the Data Field is fetched. The VCM features an internal prefetch
buffer which is one octet deep but can be increased by means of the gPreLength constant at
compile time. The prefetching will commence as soon as the corresponding Transfer Frame is
being output. The purpose of the internal prefetch buffer is to allow for latency and jitter on the
PIB. The PIB can either be implemented as logical pointers or physical addressing as previously
discussed in section 5.2.1 and in section 6.3. The corresponding memory area information is
take from either the AreaPtr or BaseAddr input port of the VCA being selected for transfer. The
frame pointer information is always taken from the FramePtr input port. Physical addressing is
not commissioned.

An Idle Transfer Frame is produced on a predefined Virtual Channel when no VCA has stored
a complete frame in the external buffer memory. Idle Transfer Frames are not stored in the
external buffer memory but are generated while being output and their length is identical to a
normal Transfer Frame. Idle Transfer Frames should not be confused with Idle Source Packets.
The VCM can implement a specific Virtual Channel Frame Counter if the Idle Transfer Frames
are transmitted on a separate Virtual Channel on which it is not possible to transfer user data.
The design of the pseudo-random generator ensures that a Single Event Upset (SEU) or any
other spurious event does not cause the generator to jump to an invalid state and incorrectly
produce a static output.

The VCM produces the Transfer Frame Trailer, with the Operation Control Field (OPCF) being
generated when the OPCF input port is asserted and the gOPCF constant is set, and with the
Frame Error Control Word (FECW) generated when the FECW input port is asserted and the
gFECW constant is set.

The VCM implements the Telemetry Memory interface according to AD8 when the
gOPCFInterface constant is cleared. It is possible to generate the interface signals from the
CLCWClk input port or from the BitClk input port when the gOPCFBitClock constant is set. If
the gOPCFInterface constant is cleared, the dynamic part of the CLCW will be taken from the

PTME-001-01 43
parallel input port CLCWData and the CLCWWrite output port will be de-asserted when this
occurs. The data width of the part of the CLCW (or OPCF) to be transferred from the external
input is selected by the gOPCFLength constant. When set to zero, nominal 16 bit transfer is
implemented as described in section 4.2.2.7.1. When set to one, non-standard 32 bit transfer is
implemented, transferring the complete CLCW (or OPCF). When set to two, both 16 and 32 bit
transfers are implemented, the 32 bit transfer being enabled by setting the CLCWLength input.
When the CLCWOverWrite input is asserted, bit 16 of the CLCW will be overwritten with the
CLCWNoRFAvail input value, and bit 17 with the CLCWNoBitLock input value.

The VCM implements the Cyclic Redundancy Code (CRC) for the Frame Error Control Word.
The CRC is calculated over all preceding fields of the Transfer Frame. The Attached
Synchronisation Marker (ASM) is not included in the calculation, neither is the Frame Error
Control Word field itself.

The VCM can generate blank space for insertion of Reed-Solomon check symbols by the Reed-
Solomon Encoder (RSE) when the gReedSolomon constant is selected at compile time. The
ReedSolomon input port enables the insertion and the FrameLen input port decides the number
of blank octets to be inserted as per table 9 and table 10.

The VCM can generate four blank bits for the trellis termination process in the Turbo Encoder
(TE) when the gTurbo constant is selected at compile time. The blank insertion is enabled with
the Turbo input port. The VCM provides special control signals for the TE.

The VCM scans all VCR interfaces for the implemented VCAs in order to determine which
Virtual Channel to output in the next Transfer Frame. The interface is described in section 6.4.
The Bandwidth Allocation Table (BAT) can be accessed via an asynchronous memory type
interface when the gBatInterface constant equals one. The BAT can also be located outside the
VCM when the gBatInterface constant equals two, being read via the BatRegister input port
with the BatWrite output port being de-asserted when this occurs. The Priority Selection scheme
is enabled by means of the BatPriority input port. The depth of the BAT is set with the
gBatDepth constant at compile time.

The part of the VCM module implementing the PIB and VCR interfaces is in the system clock
domain clocked by the Clk clock input port and reset by the Reset_rise_N input port. The rest
of the VCM module is in the bit rate clock domain clocked by the BitClk clock input port and
reset by the Reset_bit_N input port. The clock enable port BitTick is used for defining the bit
rate. The VCM can also include the CLCWClk clock domain, see gOPCFBitClock constant
above. The BatCS_N and BatRW_N input ports also form a local clock domain, see
gBatInterface constant above.

Synchronisation is performed for signals going between clock domains, provided that the
gCommonClock constant is not set at compile time. The reset of the module can either be
performed synchronously or asynchronously, depending on the gSyncReset constant in the
PTME configuration package, see section 7. The data, control, clock enable and reset input ports
are assumed to be synchronised with respect to the input clock port. All clocking is performed
on the rising input port clock edge. The VCM should be reset after a change of configuration
port values.

PTME-001-01 44
5.2.3 Virtual Channel Buffer (VCB)

The Virtual Channel Buffer (VCB) multiplexes the different VCA write accesses and the VCM
read accesses on to a common external buffer memory interface, either directly or via the
AMBA AHB interface. It supports read and write accesses from the TE when included in a
design. The implemented mechanism uses a time slot and a sub-time slot concept.

5.2.3.1 Memory bandwidth allocation

The access bandwidth to the external buffer memory is dynamically allocated in the VCB,
giving an equal amount of guaranteed bandwidth to the different modules. The internal arbiter
scans requests from all modules in parallel to decide which module will be granted an access
the next time slot. The arbiter follows a simple round robin scheme where each VCA is assigned
one write slot, the VCM is assigned one read slot, the Turbo Encoder is assigned one read and
one write slot, and finally all VCAs are assigned one common slot for auxiliary write accesses.
This extra auxiliary write access slot is also arbitrated in a round robin fashion for the different
VCAs, but only takes one slot in the overall time slot arbitration. Auxiliary write accesses are
used for writing Frame Data Field Status information and Idle Telemetry Packet data without
absorbing any of the bandwidth that is guaranteed for normal data transfers from the VCAs. The
Virtual Channel dedicated to Idle Transfer Frame generation does not require any memory area
or access bandwidth when implemented separately for its purpose.

Since an unused slot is assigned to the next entry in the fixed round robin table, no bandwidth
is wasted. This allows sharing of the bandwidth between different modules. A module with high
input data rate can use temporarily some of the overall bandwidth overhead that is yielded by a
module with a lower input data rate. The latency and jitter is compensated by means of internal
buffers in the modules. The arbiter can sustain full utilisation of the bus without idle periods.
The analysis of bandwidth allocation on the memory or AMBA AHB bus must be done in
conjunction with known system and downlink frequencies and data rates of the input sources.

Module entry Requirement

VCA 0 write 1 access for every 8 bits received
VCA 1 write
VCA 2 write
VCA 3 write
VCA 4 write
VCA 5 write
VCA 6 write
VCA 7 write

Auxiliary VCA write overall low requirement
VCM read 1 access for every 8 telemetry bits transmitted
Turbo read 9 accesses for every 8 telemetry bits transmitted
Turbo write 1 access for every 8 telemetry bits transmitted

Test read n/a
Test write n/a

Table 37: External buffer memory bandwidth allocation

PTME-001-01 45
5.2.3.2 Memory area allocation

The external buffer memory size is configured at compile time by means of the gMemoryDepth
constant in the PTME_Configuration package, described in section 7. It should be interpreted
as a memory of two to the power of gMemoryDepth octets, each octet being eight bits wide.
The memory is divided in memory areas, as defined by the gAreaDepth constant. It should be
interpreted as two to the power of gAreaDepth areas. The size of such a memory area is
determined at compile time and cannot be changed during operation. Each Virtual Channel can
be allocated one or more memory areas.

The number of areas that can be allocated to a single Virtual Channel is defined by the
gGroupDepth constant. It should be interpreted as two to the power of gGroupDepth memory
areas that can be grouped together as a maximum. Each memory area is then divided in frames,
each having a size depending on the length of the Transfer Frame as listed in table 28. The
simplified implementation option is selected at compile time by setting the gFPGA constant.

Since the internal structure of the TME is based on pointers rather than memory addresses, the
sizing of these pointers will be explained in detail here. The octet pointer is used for pointing to
an octet in a frame. The frame in external buffer memory contains both the Transfer Frame Data
Field and the Frame Data Field Status information. The octet pointer is always sized to eleven
bits to cover all possible frame sizes. For small Transfer Frame sizes, down to only eight bits
are required.

The area pointer is used for pointing out the area in which a frame is located. Due to the design
of the TME, it is not necessary to point to the individual areas allocated to a Virtual Channel. It
is sufficient to point to the lowest numbered area allocated to a Virtual Channel, also called the
base area. The frame pointer is thus used for pointing to a frame in a group of areas and is thus
normally oversized. Note that for different Transfer Frame lengths, a different number of bits
are used of the frame pointer to form a memory address. Please refer to table 38 to for the pointer
sizing and definition.

The pointers are formed into a memory address either in the VCB when the gPhysicalAddress
constant is cleared or in each module connected to the PIB when gPhysicalAddress is set. The
principle is the same and is shown in table 39 and table 40, although the latter is an non-
commissioned option. The constants have been abbreviated to gM for gMemoryDepth, gA for
gAreaDepth, gG for gGroupDepth, gF for the width of the frame pointer (equals
gMemoryDepth-8-gAreaDepth+ gGroupDepth), and finally gO for the eleven bit octet pointer
maximum width.

Area pointer Frame pointer Octet pointer

0 to gAreaDepth-1 0 to gMemoryDepth-8-gAreaDepth+gGroupDepth-1 0 to 10

Table 38: Pointer sizing and definition

PTME-001-01 46
It is possible to configure the TME to support Error Detection and Correction (EDAC) by means
of the gEdacSupport constant. One of the possibilities is to locate the EDAC check bytes in the
same memory as the telemetry data. This effectively reduced the available memory area for
telemetry by a half. This is also reflected in the memory address generation as shown in table 40.

Transfer Frame length Pointer or-ed

223 or 239 area 0 to gA-1-gG gA-gG to gA-1
frame 0 to gG-1 gG to gF-1
octet 3 to gO-1

memory 0 to gM -1
446 or 478 area 0 to gA-1-gG gA-gG to gA-1

frame 1 to gG-1+1 gG+1 to gF-1
octet 2 to gO-1

memory 0 to gM -1
892 or 956 area 0 to gA-1-gG gA-gG to gA-1

frame 2 to gG-1+2 gG+2 to gF-1
octet 1 to gO-1

memory 0 to gM -1
1115 or 1195 area 0 to gA-1-gG gA-gG to gA-1

frame 3 to gG-1+3 gG+3 to gF-1
octet 0 to gO-1

memory 0 to gM -1

Table 39: Memory addressing for Transfer Frame lengths, without sequential EDAC

Transfer Frame length Pointer EDAC or-ed

223 or 239 area 0 to gA-1-gG gA-gG to gA-1
frame 1 to gG-1+1 gG+1 to gF-1
octet 3 to gO-1

memory 0 1 to gM -1
446 or 478 area 0 to gA-1-gG gA-gG to gA-1

frame 2 to gG-1+2 gG+2 to gF-1
octet 2 to gO-1

memory 0 1 to gM -1
892 or 956 area 0 to gA-1-gG gA-gG to gA-1

frame 3 to gG-1+3 gG+3 to gF-1
octet 1 to gO-1

memory 0 1 to gM -1
1115 or 1195 area 0 to gA-1-gG gA-gG to gA-1

frame 4 to gG-1+4 gG+4 to gF-1
octet 0 to gO-1

memory 0 1 to gM -1

Table 40: Memory addressing for Transfer Frame lengths, with sequential EDAC

PTME-001-01 47
Each Virtual Channel Assembler (VCA) is assigned an area identifier, a maximum number of
frames and a size of the Data Field of each frame. This allocation is either performed by the
VCE when the gGroupInterface constant is cleared, or it is performed from outside the PTME
via the memory allocation interface although this option is not-commissioned. The former will
be explained in detail hereafter.

Each Virtual Channel is assigned a fixed number of areas by means of the gGroupSize constant,
which should be interpreted as two to the power of gGroupSize memory areas are being
assigned. The PTME will issue a warning if the sum of areas assigned to the Virtual Channels
is more or less than available in the buffer external memory. The area identifiers for the different
Virtual Channels are allocated as follows. The Virtual Channel with the largest number of areas
allocated will be located at the bottom of the memory space, receiving the lowest area value.
The Virtual Channel with the second largest number of areas will receive the next area value,
and so on till the Virtual Channel with the smallest number of allocated areas receives the largest
area value. For Virtual Channels with equal amount of allocated areas, the Virtual Channel with
the highest Virtual Channel Identifier value will receive the lowest area value. The Virtual
Channel located in the highest area will also have its memory reduced by 4096 octets in case
Turbo encoding is engaged. This is done by means of the assignment of the maximum number
of frames allowed to be stored by the relevant Virtual Channel.

The formula for calculating the number of frames allowed for a Virtual Channel is shown in
table 41 and is dependent on the gFPGA constant. The number of octets allowed for each frame
is defined by the Data Field size and can be found in table 42. An example of how an external
memory buffer is partitioned and how the Data Fields of different Virtual Channels are stored
will be shown in section 5.2.3.5.

Since the turbo encoder does not fully implement the PIB addressing, this is performed inside
the VCB. For the physical addressing implementation, the base address output is a direct
combinatorial copy of the base address input, which is performed in the encoder. The twelve
right most bits of the offset addresses are used by the encoder and the remaining bits to the left
are permanently set to logical zeros. For the logical pointer implementation, the twelve bits of
the turbo addresses are used by the encoder. To offset the turbo address range with respect to the
other modules in the PTME, two options are possible. If the gGroupInterface constant is set in
the PTME configuration package, see section 7, then the additional bits required to fill the left
most bits of the memory address are taken from the PTME configuration input port TurboFill.
Otherwise the corresponding bits are set to all ones.

Transfer Frame length optimised simplified

223 gMemoryDepth / gAreaDepth / 224 gMemoryDepth / gAreaDepth / 256
446 gMemoryDepth / gAreaDepth / 448 gMemoryDepth / gAreaDepth / 512
896 gMemoryDepth / gAreaDepth / 896 gMemoryDepth / gAreaDepth / 1024
1115 gMemoryDepth / gAreaDepth / 1152 gMemoryDepth / gAreaDepth / 2048
239 gMemoryDepth / gAreaDepth / 240 gMemoryDepth / gAreaDepth / 256
478 gMemoryDepth / gAreaDepth / 480 gMemoryDepth / gAreaDepth / 512
956 gMemoryDepth / gAreaDepth / 960 gMemoryDepth / gAreaDepth / 1024
1195 gMemoryDepth / gAreaDepth / 1280 gMemoryDepth / gAreaDepth / 2048

Table 41: Number of frames allocated to a Virtual Channel for each allocated area

PTME-001-01 48
5.2.3.3 Memory interface

An asynchronous memory interface is implemented when the gMemoryInterface constant is
selected at compile time. The interface features a single chip select signal and can only support
a single external memory device for data storage. It features separate write and read strobes. The
VCB implements two data buses for input and output data, together with a data enable strobe.
The multiplexing of the two unidirectional buses has to be performed outside the VCB. The
memory interface is based on two simple cycles, the read and the write cycle.

The read cycle only takes one clock period to perform, where chip select and read strobes are
asserted simultaneously with the address output on the rising clock edge. Data are sampled on
the subsequent rising clock edge. The chip select and read strobes are de-asserted on the
subsequent rising clock edge. The hold time for the data read is assumed to be met due to stray
capacitance since the data bus is only to be used by the VCB. This is also the reason why only
a single memory device can be attached to this bus. The write cycle takes two clock cycles,
where the chip select strobe is asserted simultaneously with the address and data output on the
rising clock edge. The write strobe and the data enable strobe are asserted simultaneously on the
subsequent falling clock edge and are again de-asserted on the subsequent falling clock edge.
The write strobe is de-asserted on the subsequent rising clock edge. Also in this case is it
assumed that the write hold time will be met due to stray capacitance since the data bus is only
to be used by the VCB. The half period before and after the write strobe generation and data
enable is sufficient to avoid data bus contention. The read and write cycles can be mixed without
limitations and no idle cycles in between.

The memory interface supports wait state generation, selectable at compile time with the
gWaitStates constant. The number wait states that can be inserted are selectable at compile time
with the gWaitStateDepth constant. The number of wait states to be supported can be selected
for read and write access with the WaitStateRd and WaitStateWr input ports, respectively. The
memory interface supports Error Detection And Correction (EDAC) as described in
section 5.2.3.3.1. The EDAC work on eight bit data and store eight bit check symbols. Check
symbols can either read and write in parallel with the data from a separate memory device or in
sequence from the same memory device. Wait state generation with EDAC is supported.

Transfer

Frame

length

{octets}

Data Field length {octets]

Secondary Header

OPCF OPCF

FECW FECW FECW FECW

223 217 215 213 211 213 211 209 207
446 440 438 436 434 436 434 432 430
892 886 884 882 880 882 880 878 876
1115 1109 1107 1105 1103 1105 1103 1101 1099
239 233 231 229 227 229 227 225 223
478 472 470 468 466 468 466 464 462
956 950 948 946 944 946 944 942 940
1195 1189 1187 1185 1183 1185 1183 1181 1179

Table 42: Octets in a Transfer Frame Data Field

PTME-001-01 49
5.2.3.3.1 Error Correction and Detection (EDAC)

The EDAC implementation can either a classical Hamming code with Single Error Correction
(SEC) and Double Error Detection (DED) capability or a quasi-cyclic (16, 8) code with Double
Error Correction (DEC) capability, selectable by means of the gEdacType constant.
Corresponding parity generation tables are shown in table 43 and table 44.

The first alternative provides a simple implementation with DED only if the errors occur in the
two different nibbles of the byte. The second alternative provides a complex implementation but
provides DEC for the full byte. The implementation requires a look up table for the decoding
procedure. Both encoders are implement with separate encode and decode logic to facilitate
back-to-back read and write accesses. Errors detected during read are signalled via the EdacErr
output port as listed in.

Parity
Data

0 1 2 3 4 5 6 7

0 not x x x
1 x x x
2 not x x x
3 x x x
4 not x x x
5 x x x
6 not x x x
7 x x x

Table 43: Hamming (8,4,4) parity generation

Parity
Data

0 1 2 3 4 5 6 7

0 not x x x x
1 not x x x x x x
2 x x x x
3 x x x x x
4 x x x x
5 x x x x x
6 x x x x x x
7 x x x x

Table 44: Quasi-cyclic code parity generation

no error single error double error multiple errors

00b 01b 10b 11b

Table 45: EDAC error codes

PTME-001-01 50
5.2.3.4 AMBA AHB master interface

The AMBA AHB master interface has been reduced in function to support only what is required
for the PTME. The following AMBA AHB features are constrained:
• does not support HRESP = ERROR, SPLIT or RETRY
• assumed that accesses will always be completed with HRESP = OKAY
• HSIZE=BYTE, HTRANS=NONSEQ or IDLE, HBURST=SINGLE, HPROT=0000b
• never asserts HLOCK
• only big-endianness supported

Since only byte accesses are performed, the byte data to be written is copied to all four byte
positions on HWDATA during write accesses. The addressed byte is extracted from HRDATA
for read accesses. Each access type, read and write, takes one HCLK clock period to complete,
provided there are no wait states on the AMBA AHB bus. The latency and the jitter is
compensated by means of input buffers in the interfacing modules. The arbiter and the AHB
master can under optimal conditions sustain full utilisation of the bus without idle clock periods.
The VCB can act as the default AHB master generating idle accesses when required.

The memory address described in section 5.2.3.2 is mapped on to the HADDR bus as shown in
table 46. The HAMAX constant is defined in the AMBA VHDL package AD12.

5.2.3.5 Configuration example

An example of how the memory mapping is achieved for a PTME design with seven Virtual
Channel and a Turbo encoder is shown in table 47 and table 41. The example design has a an
overall memory of 512 kBytes, divided into 16 areas with 32678 bytes each. Each Virtual
Channel can be assigned 1, 2, or 4 areas. Frame lengths based on 223 octets are implemented.
The simplified addressing option has been selected. The actual placing of the Data Field in the
external memory buffer is shown in table 49 for Virtual Channel 2, assuming no Secondary
Header, no OPCF and no FECW. The guaranteed bandwidth allocation shown in table 50 is
proportional to the system frequency, assuming that the memory interface is used.

AHB address HAMAX-1 downto gMemoryDepth gMemoryDepth-1 downto 0
memory address all zeros 0 to gMemoryDepth-1

Table 46: AMBA AHB address mapping

Module Address range Areas Remark

Virtual Channel 0 70000h - 7EFFFh 2 reduced buffer size
Virtual Channel 1 60000h - 6FFFFh 2
Virtual Channel 2 00000h- 1FFFFh 4 increased buffer size
Virtual Channel 3 50000h- 5FFFFh 2
Virtual Channel 4 40000h- 4FFFFh 2
Virtual Channel 5 30000h- 3FFFFh 2
Virtual Channel 6 20000h- 2FFFFh 2

Turbo Encoder 7EFFFh- 7FFFFh n/a Turbo Encoder memory

Table 47: Example of memory mapping

PTME-001-01 51
Module Areas

Frame size

Remark223 446 892 1115

Number of frames in memory

Virtual Channel 0 2 240 120 60 30 reduced due to turbo encoder
Virtual Channel 1 2 256 128 64 32
Virtual Channel 2 4 512 256 128 64 increased size
Virtual Channel 3 2 256 128 64 32
Virtual Channel 4 2 256 128 64 32
Virtual Channel 5 2 256 128 64 32
Virtual Channel 6 2 256 128 64 32

Table 48: Example of stored Transfer Frames in external buffer memory

Transfer Frame length

223 446 892 1115

Data Address Data Address Data Address Data Address

Data Field 0 00000:000D8 Data Field 0 00000:001B7 Data Field 0 00000:00375 Data Field 0 00000:00454

FSFS 0 000DA:000DB FSFS 0 001B8:001B9 FSFS 0 00376:00377 FSFS 0 00456:00457

Data Field 1 00100:001D8 Data Field 1 00200:003B7 Data Field 1 00400:00775 Data Field 1 00800:00C54

FSFS 1 001DA:001DB FSFS 1 003B8:003B9 FSFS 1 00776:00777 FSFS 1 00C56:00C57

...

Data Field 511 1FF00:1FFD8 Data Field 255 1FE00:1FFB7 Data Field 127 1FC00:1FC75 Data Field 63 1F800:1FC54

FSFS 511 1FFDA:1FFDB FSFS 255 1FFB8:1FFB9 FSFS 127 1FC76:1FC77 FSFS 63 1FC56:1FC57

Table 49: Example of memory usage for Virtual Channel 2 (hexadecimal addresses)

Unit Requirement Clocks
Guaranteed

bandwidth

VCA 0 write 1 access for every 8 bits received 2 clock periods 0,4 bit per Hz
VCA 1 write
VCA 2 write
VCA 3 write
VCA 4 write
VCA 5 write
VCA 6 write

auxiliary VCA accesses overall low requirement 2 clock periods
VCM read 1 access for every 8 telemetry bits transmitted 1 clock period
Turbo read 9 accesses for every 8 telemetry bits transmitted 1 clock period
Turbo write 1 access for every 8 telemetry bits transmitted 2 clock periods

Table 50: Example of external buffer memory bandwidth allocation (fixed)

PTME-001-01 52
5.3 Reed-Solomon Encoder (RSE)

The Reed-Solomon Encoder (RSE) encodes a serial bit stream from preceding encoders
according to AD4 and the resulting symbol stream is output bit serially. The encoder generates
codeblocks by receiving information symbols from the preceding encoders which are
transmitted unmodified while calculating the corresponding check symbols which in turn are
transmitted after the information symbols. The check symbol calculation is disabled during
reception and transmission of unmodified data not related to the encoding. The calculation is
independent of any previous codeblock and is perform correctly on the reception of the first
information symbol after a reset. A functional diagram of the encoder is shown in figure 7.

Each information symbol is received serially and assembled into an 8 bit symbol. The symbol
is fed to a binary network in which parallel multiplication with the coefficients of a generator
polynomial is performed. The products are added to the values contained in the check symbol
memory and the sum is then fed back to the check symbol memory while shifted one step. This
addition is performed octet wise requiring eight clock cycles per input symbol. The most
significant check symbol is implemented in a shift register where it is serially added to the next
information symbol being received. This cycle is repeated until all information symbols have
been received. The contents of the check symbol memory are then serially output from the
encoder. The encoder is based on a bit serial architecture, except for the parallel multiplier.

The encoder can be configured at compile time to support only the E=16 (255, 223) code, only
the E=8 (255, 239) code, or both. This is done with the gRate generic. Only the selected coding
schemes are implemented. The choice between the two is performed during operation with the
Rate input port, where a logical zero corresponds to E=16 and a logical one corresponds to E=8.

The maximum number of supported interleave depths Imax is selected at compile time with the
IDepth generic, the range being 1 to 8. For a specific instantiation of the encoder, the choice of
any interleave depth ranging from 1 to the chosen Imax is supported during operation. It is
possible to skip interleave depth 3 support by means of the SkipIDepth3 generic, which is useful
for the PTME implementation. The area of the encoder is minimised, i.e. logic required for a
greater interleave depth than Imax is not unnecessarily included. It is also possible to support
uncontiguous data structures, i.e. space between the end of the check symbols and the next
ASM, by means of the gUncontiguous generic (normally not used in the PTME).

The interleave depth is chosen during operation by means of the Interleave(0:2) input port, as
listed in table 51.

The encoder also implements non-return-to-zero level encoding and pseudo-randomisation
controlled by means of the gMark and gPseudo generics, respectively. This is not used in the
PTME where there are separate modules for such encoding to provide a flexible coding chain.
The are four compile time options for the implementation of the check symbol memory in the
encoder, selected by the Style generic. The first option is based on flip-flops. The second on
latches. The third option provides an interface to an external 32 bit wide memory (not used in
the PTME). The fourth option is an equal split between flip-flops and latches.

PTME-001-01 53
One clock enable port is used for defining the bit rate. Two control signals, attached
synchronisation marker and transfer frame delimiters, are clocked through the encoder to keep
them in sync with the encoded data bit stream. The transfer frame delimiter is used for
determining the input information symbols. The attached synchronisation marker delimiter is
used for bypassing and disabling the encoder.

The reset of the encoder can either be performed synchronously or asynchronously, depending
on the gSyncReset constant in the PTME configuration package, see section 7. The data,
control, clock enable and reset input ports are assumed to be synchronised with respect to the
input clock port. All clocking is performed on the rising clock edge of the input clock port. The
encoder should be reset after a change of configuration port values.

The internal architecture of the RSE is shown in figure 8 and each sub-module is described in
the subsequent sections.

Figure 7: Functional diagram of Reed-Solomon Encoder (RSE)

InterLeave(0:2) Interleave depth
E=8, RS(255, 239) E=16, RS(255, 223)

information check information check

000b 1 239 16 223 32
001b 2 478 32 446 64
010b 3 717 48 669 96
011b 4 956 64 892 128
100b 5 1195 80 1115 160
101b 6 1434 96 1338 192
110b 7 1673 112 1561 224
111b 8 1912 128 1784 256

Table 51: Interleave depth alternatives for Reed-Solomon Encoder (RSE)

SerialIn

SerialOut

Enable

EnableInput

EnableMemory

EnableProduct

BitAddress

0 1 2 29 30

InterAddress
Check Symbol Memory

Parallel Multiplier

Adder

Parallel Hold Serial Shift Register

8*(Imax-1) bits

8 bits

7 bits

31-by-8*Imax

8 bits

3 bits

3 bits

8 bits

8 : 18: 18: 1

g0 g1 g2

g29 = g3 g30 = g2
g31 = g1

FeedBack

PTME-001-01 54
5.3.1 Adder

The adder performs a bit wise exclusive or operation between the outputs of the check symbol
memory and the multiplier. The operators stemming from the memory can be suppressed to
logical zero by means of a control signal. The operators stemming from the multiplier can be
suppressed to logical zero by means of a second control signal. Data from the memory or the
multiplier must only be enabled when containing data related to the ongoing codeword.

5.3.2 Check symbol memory

The check symbol memory holds Imax*8-by-31 bits. It is not reset, instead the feedback from it
can be suppressed in the adder when zero data is expected, as during the reception of the first
information symbol of each interleave depth.

5.3.3 Parallel multiplier

The multiplier performs parallel multiplication directly in the dual basis representation. The
individual bits of the 32 symbols produced are selected by means of a bit address provided by
the control block.

5.3.4 Serial shift and parallel hold registers

The serial shift register contains the most significant check symbol, performing the addition
between it and the incoming information symbols on the input. The resulting symbol is fed back
to the multiplier by means of a parallel holding register. The addition only takes operands
related to the ongoing codeword generation, else the operand values are suppressed to logical
zero by means of control signals. The data input is suppressed during read out of check symbols.

5.3.5 Control

The control logic implements all required control signals and two address buses. It also
performs the selection of source for the data output: the input data stream or the check symbol
memory contents.

Figure 8: Block diagram of the bit serial Reed-Solomon Encoder (RSE)

Check Symbol Memory

Adder

Parallel

Control

Parallel
Multiplier

Serial
Shift

Register

SerialIn
Frame
SyncMark

InterLeave0

SerialOut
FrameOut

SerialClk

InterLeave1
InterLeave2

Hold

SyncMarkOut
Symbol

PTME-001-01 55
5.4 Turbo Encoder (TE)

The Turbo Encoder (TE) encodes a serial bit stream from preceding encoders according to AD4
and the resulting symbol stream is output bit serially. The input data corresponding to the
telemetry transfer frame are encoded. The encoder replaces the nominal Attached
Synchronisation Marker (ASM) with a specific ASM defined for each coding rate as specified
in AD4 and repeated in table 14. It is possible to disable the encoder with the Turbo input port,
but the uncoded bit stream should be passed by the encoder. Only the switching of the internal
control signal is disabled.

One clock enable port is used for defining the input bit rate and another clock enable port is used
for defining the output bit rate. The encoder should increase the output bit rate with a factor
depending on the coding rate. It is the responsibility of the user to ensure that the correct ratio
is maintained between the two frequencies of the input and output clock enable ports. The
encoding is done in the bit rate domain clocked by the BitClk clock input port. Two control
signals, attached synchronisation marker and transfer frame delimiters, are clocked through the
encoder to keep them in sync with the encoded data bit stream. Three additional input ports are
used for the control of the encoder.

The encoder supports the recommended information block lengths specified in AD4 and listed
in table 11. The selection between the information block lengths is performed with the
FrameLen(0:2) input port as listed in table 52. The encoder does not support the information
block length of 16384 bits that is mentioned as under investigation in AD4.

The encoder supports the code rates specified in AD4 and listed in table 12. The selection
between the code rates is performed with the TurboRate(0:1) input port as listed in table 53.

The encoder uses an external buffer memory to temporarily store the information block during
the encoding procedure. The external buffer memory is organised in two areas, the first is used
for the code information block that is being received and the second is used for the information

FrameLength(0:2)

000b 223 octets supported
001b 446 octets
010b 892 octets
011b 1115 octets
100b 239 octets unsupported
101b 478 octets
110b 956 octets
111b 1195 octets

Table 52: Information block length selection for Turbo Encoder (TE)

TurboRate(0:1)

00b rate 1/2
01b rate 1/3
10b rate 1/4
11b rate 1/6

Table 53: Code rate selection for Turbo Encoder (TE)

PTME-001-01 56
block that is being coded and transmitted. The interpretation of the two memory areas is shifted
between frames to avoid data copying.

The memory interfacing is performed over the PTME Internal Bus (PIB), see section 6.3 for
details. The encoder both writes and reads data over this bus. The word format is always eight
bits and 4096 words are required, 2048 for each of the two areas. The PIB is implemented in the
system clock domain clocked by the Clk input port.

The PIB interface supports two implementation possibilities, either based on logical pointers or
on physical addresses. This is selected at compile time by the gPhysicalAddress constant in the
PTME configuration package, see section 7. The difference for the TE implementation is not
that significant. The twelve address bits used by the encoder are byte oriented, with the left most
bit being used to distinguish between the two memory areas used for the received and
transmitted information block. Physical addressing is not commissioned. Note that the TE does
not implement the PIB interface addressing in detail, it only provides a twelve bit address. The
base address and the base area pointers are created in the Virtual Channel Buffer (VCB), see
section 5.2.3.

A low latency option can be selected at compile time by the gTurboLatency constant the PTME
configuration package, see section 7. The implementation of the encoder will then include two
separate read and write buffers, configurable with gTurboLengthRd and gTurboLengthWr.

No output is generated by the encoder while the first information block is received, and the
corresponding frame and attached synchronisation marker delimiters are not asserted during
this time period. Each information block will be delayed by the time corresponding to the
transmission of one information block. This will cause a corresponding static timing offset for
the time strobe generated by the Telemetry Encoder (TME).

The reset of the encoder can either be performed synchronously or asynchronously, depending
on the gSyncReset constant in the PTME configuration package, see section 7. The data,
control, clock enable and reset input ports are assumed to be synchronised with respect to the
input clock port. All clocking is performed on the rising clock edge of the input clock ports. The
encoder should be reset after a change of configuration port values.

The internal architecture of the Turbo Encoder (TE) is shown in figure 9 and each sub-module
is described in the subsequent sections.

Figure 9: Turbo Encoder (TE) block diagram

PTME Internal Bus (PIB)

Memory I/F

Encoder I/F

Synchronisation

ASM Table

Constituent
Encoders

Interleaver

data in data out

Control

Turbo Encoder

PTME-001-01 57
5.4.1 Interleaver

The interleaver (or permuter) implements the address generation that is required to fetch the
correct bit from the buffered information block. The address generation unique for each
information block length. The generation is controlled by the controller, it can be reset or
stepped forward by means of control signals. A sequential address is produced together with a
pseudo-random address on the output ports of the Interleaver. The addresses are 14 bits wide to
cover the maximum information block length in bits.

The interleaver is not designed straight after the algorithmic specification in AD4 since
inefficient to implement on silicon. The corresponding pseudo-random address sequence is
preformed by means of simpler operators and counters. The two sequences are however
identical. The interleaver module is in the system clock domain, Clk.

5.4.2 Constituent encoders

The constituent encoders (or component codes) in the TE are simple recursive convolutional
encoders shown in figure 6 and are implemented as a single module in the TE. The constituent
encoders are controlled by the controller. It is possible to reset the encoders, to shift the
encoders, to enable the feed back path of the encoders, and to step through the output
multiplexing sequence.

The encoders take two bit serial streams as input, one sequential and one pseudo-random
stream. A single multiplexed serial output stream is produced, with the appropriate code rate
increase. The constituent encoder module is in the bit rate clock domain, BitClk.

5.4.3 Table

The Attached Synchronisation Marker (ASM) differs for the various code rates as specified in
AD4. The Table implements the different ASMs as a combinatorial look up table that has been
coded to optimise the implementation for area. The similarities between the four ASMs have
been utilised in the optimisation of the design. The data is addressed with the coding rate choice
input and an address input pointing to the addressed bit in the ASM.

5.4.4 Control

The Control module of the TE implements the overall control of the encoder and the PIB
interface. The module is divided in two clock domains, one for the PIB interface which also
interfaces the Interleaver, and one for the bit encoding which interfaces constituent encoders and
the attached synchronisation marker table. Synchronisation between the BitClk and Clk clock
domains is performed in the Control module if the gCommonClock constant is not set in the
PTME configuration package, see section 7.

PTME-001-01 58
5.5 Pseudo-Randomiser (PSR)

The Pseudo-Randomiser (PSR) generates a bit sequence according to AD3 and AD4 which is
xor-ed with the incoming serial bit stream from preceding encoders. The resulting bit stream is
output serially. It is not possible to disable the encoder, the uncoded bit stream should instead
be passed by the encoder.

One clock enable port is used for defining the bit rate. Two control signals, attached
synchronisation marker and transfer frame delimiters, are clocked through the encoder to keep
them in sync with the encoded data bit stream. The attached synchronisation marker delimiter
is also used for defining what data are not to be encoded, initialising the encoder LFSR to all
ones while being asserted.

The reset of the encoder can be either performed synchronously or asynchronously, depending
on the gSyncReset constant in the PTME configuration package, see section 7. The the data,
control, clock enable and reset input ports are assumed to be synchronised with respect to the
input clock port. All clocking is performed on the rising clock edge of the input clock port.

Figure 10: Pseudo-Randomiser (PSR) functional block diagram

5.6 Non-Return-to-Zero Mark encoder (NRZ)

The Non-Return-to-Zero Mark encoder (NRZ) encodes differentially a bit stream from
preceding encoders according to AD5 and the resulting bit stream is output serially. All input
data are encoded. It is not possible to disable the encoder, the uncoded bit stream should instead
be passed by the encoder, which is by default non-return-to-zero level encoded. The output
waveform is shown in figure 11.

One clock enable port is used for defining the bit rate. Two control signals, attached
synchronisation marker and transfer frame delimiters, are clocked through the encoder to keep
them in sync with the encoded data bit stream. The control signals are not used for any other
purpose inside the encoder.

The reset of the encoder can be either performed synchronously or asynchronously, depending
on the gSyncReset constant in the PTME configuration package, see section 7. The the data,
control, clock enable and reset input ports are assumed to be synchronised with respect to the
input clock port. All clocking is performed on the rising clock edge of the input clock port.

Figure 11: Non-Return-to-Zero - Level and Non-Return-to-Zero - Mark waveforms

x8 x7 x6 x5 x4 x3 x2 x1

data in data out

initialise to all zero

Symbol:

NRZ-L

NRZ-M

1 1 1 10 0 0 0

PTME-001-01 59
5.7 Convolutional Encoder (CE)

The Convolutional Encoder (CE) encodes a serial bit stream from preceding encoders according
to AD4 and the resulting symbol stream is output both bit serially and two-bit in parallel. All
input data are encoded. It is not possible to disable the encoder, the uncoded bit stream should
instead be passed by the encoder.

One clock enable port is used for defining the input bit rate and another clock enable port is used
for defining the output bit rate. The encoder should increase the output bit rate with a factor
depending on the coding rate. It is the responsibility of the user to ensure that the correct ratio
is maintained between the two frequencies of the input and output clock enable ports.

The results of the two connection vectors are multiplexed on the bit serial output port as per
AD4. For the rate 1/2 coding, the results of the two connection vectors G1 and G2 are also
output in parallel for each input bit on the corresponding output ports, with symbol inversion on
G2 when specified. The latter can be used to implement an external multiplexer and puncture
logic, without the need for an code rate increase in the encoder, i.e. the input and output clock
enable ports are tied together outside the encoder. This is supported in the PTME.

The encoder can be configured to support only basic unpunctured encoding, see figure 12, only
punctured encoding, see figure 13, or both coding schemes. This is done with the gConvolute
generic. Only the selected coding schemes are implemented. The different code rates are chosen
with the Rate(0:2) input port, as shown in table 54. Note that the rate 1/2 code without symbol
inversion is not specified in AD4. Only six bit registers are implemented for the constraint
length seven code, since the first input delay is not necessary to generate the specified
convolutional code correctly.

Figure 12: Basic convolutional encoder functional block diagram

Rate(0:2)

00-b rate 1/2, with symbol inversion
01-b rate 1/2, no symbol inversion
100b rate 2/3, punctured
101b rate 3/4, punctured
110b rate 5/6, punctured
111b rate 7/8, punctured

Table 54: Code rate alternatives for Convolutional Encoder (CE)

x6 x5 x4 x3 x2 x1data in data out

1

2

G1

G2

data out G1

data out G2

PTME-001-01 60
The reset of the encoder can be either performed synchronously or asynchronously, depending
on the gSyncReset constant in the PTME configuration package, see section 7. The the data,
clock enable and reset input ports are assumed to be synchronised with respect to the input clock
port. All clocking is performed on the rising clock edge of the input clock port. The encoder
should be reset after a change of configuration port values.

Figure 13: Punctured convolutional encoder functional block diagram

5.8 Split-Phase Level modulator (SP)

The Split-Phase Level modulator (SP) modulates a serial bit stream from preceding encoders
according to AD5 and the resulting bit stream is output serially. All input data are modulated. It
is not possible to disable the modulator, the unmodulated bit stream should instead be passed by
the encoder. The output waveform is shown in figure 14.

One clock enable port is used for defining the input bit rate and another clock enable port is used
for defining the output bit rate. The modulator should increase the output bit rate with a factor
of two. It is the responsibility of the user to ensure that this ratio is maintained between the two
frequencies of the input and output clock enable ports. The reset of the modulator can be either
performed synchronously or asynchronously, depending on the gSyncReset constant in the
PTME configuration package, see section 7. The the data, clock enable and reset input ports are
assumed to be synchronised with respect to the input clock port. All clocking is performed on
the rising clock edge of the input clock port.

Figure 14: Split-Phase - Level waveform

x6 x5 x4 x3 x2 x1data in data out

G1

G2

Puncture

data out G1

data out G2

Symbol:

SP-L

1 1 1 10 0 0 0

PTME-001-01 61
5.9 Clock Divider (CD)

Packet Telemetry Encoder (PTME) has a clocking scheme that is partitioned in multiple clock
domains. The two main domains are the system clock domain and the bit clock domain. The
system clock domain is predominantly associated with all functions that communicate with the
external buffer memory. The bit clock domain is associated with all function directly associated
with the telemetry and channel coding chain. There are several encoders that are part of both the
system clock domain and the bit clock domain. There are also several local clock domains
associated with the different input interfaces, which are kept local to each input. Every such
input interface is also part of the system clock domain.

Since all telemetry and channel coding is performed in the bit clock domain, using the same
PTME input clock, it is necessary to generate clock enable signals to cope with bit rate
differences between the channel encoders. Each encoder has therefore at least one clock enable
input. Those encoders or modulators that increase the bit rate have two clock enable inputs, one
for the input bit rate and one for the output bit rate. The clock enable inputs are also used for
regulating the overall bit rate as will be described later.

The BitClk clock input is used for the bit clock domain. This is an input separated from the Clk
clock input used for the system clock domain. The PTME can be configured either to operate
with two separate and independent clock frequencies for the system clock domain and the bit
clock domain, or to assume that the two clock inputs are always tied to the same external clock
source without any clock skew difference, using the gCommonClock parameter, see section 7.
This is configured at compile time. The former option allows the two clock inputs to be either
generated from independent sources or to be tied together, since synchronisation logic between
the two clock domains will be permanently generated at compile time. The latter option will not
produce any synchronisation logic and the two inputs will be considered as a common clock.

The bit clock input BitClk can be used either for defining the input clock rate of the encoders,
or for defining the output clock rate of the encoders. This is configured at compile time using
the gClockStyle parameter, see section 7. The former option is only useful for encoders that do
not increase the bit rate on their outputs. This includes the Telemetry Encoder (TME), the Reed-
Solomon Encoder (RSE), the Pseudo-Randomiser (PSR) and the Non-Return-to-Zero Mark
encoder (NRZ). It also includes the Convolutional Encoder (CE) when used with the basic
convolutional code which features two dedicated unmultiplexed outputs that need to be
multiplexed outside the PTME. The latter option can be used with all encoders, additionally
including the Convolutional Encoder (CE) with both basic and punctured convolutional coding,
the Turbo Encoder (TE) and the Split-Phase Level modulator (SP). Note that the output clock
rate is that of the output of the last encoder or modulator in a coding chain.

The main task of the Clock Divider (CD) is to generate the different clock enable signals that
are used by the different encoders and modulators. To support an arbitrary choice of encoders
and modulators in an encoding scheme, the CD generates four different enable signals in the
PTME. The first one is used for the basic telemetry bit rate and is used by the TME and the RSE.
The second one is used by the CE for the output frequency and can have one of the following
ratios with respect to the first enable signal frequency 2, 3/2, 4/3, 6/5 and 8/7. The third one is
used by the TE for the output frequency and can have one of the following ratios with respect
to the first enable signal frequency: 2, 3/2, 4/3, 6/5 and 8/7. The fourth one is only used by the
SP for the output frequency and is twice the frequency of the modulator input. The PSR and

PTME-001-01 62
NRZ can either use the third one or the first one, depending on whether TE is engaged or not.
The enable signal used for the SP input frequency can be the second one if CE is engaged, or
the third one if TE is engaged, or else the first one is used. Support is only provided in a given
configuration for those encoders that are implemented in the PTME, see section 7.

The CD is also able to divide the bit rate clock frequency by means of the different clock enable
signals. The clock divider can be sized at compile time to accommodate different degrees of
division. The divider can be configured during operation to divide the bit rate clock frequency
from 1/1 to 1/2n, where n is the width of the clock divider, using the gClockDepth parameter,
see section 7. An example of clock division is shown in table 55, where the clock rate selection
is made with the OutputBitRate input. The resulting frequency is used as the output bit rate of
the last encoder or modulator in the encoding chain. Note that the bit rate clock is not divided
as such, only the different clock enable signal frequencies are divided.

The bit rate relationship between the encoders and modulators in the PTME is shown in table 56.
The output symbol rate, fo, can be obtained by dividing the BitClk input, actually generating
clock enable pulses. Since bit rate generation is based on the output symbol rate, fo, of the last
encoder or modulator used in the encoding chain, the telemetry bit rate, ftme, can vary for the
same fo frequency depending on the used encoding scheme as shown in table 56.

There are two ways of implementing a designing that has to operate on different frequencies:
either to use a common clock and to distribute separate enable signals; or to use separate clock
signals with different frequencies derived from a common clock. The former approach is easier
to manage since only a single clock is required in the design but it can limit the overall
performance of the system. It is also more power consuming than the latter approach.

The latter approach will give a faster implementation if the slowest part of the design also
happens to be the one with the critical timing path. However, the latter approach requires
accurate clock tree design and balancing in order to work properly. The PTME VHDL model
has been based on the former approach to simplify its use, especially in Field Programmable
Gate Array (FPGA) devices.

OutputBitRate(0:7)

00h 1/1
01h 1/2
... ...

FEh 1/255
FFh 1/256

Table 55: Example of bit rate clock division for an n=8 bit wide divider

PTME-001-01 63
As it can be seen from table 56, there will be multicycle paths in some of the modules, due to
the use of clock enable signals, when not operated at the maximum possible frequency. It is
rather simple to define multicycle paths for a module since each module has one or two clock
enable signals. By analysing the clock enable periodicity with respect to the clock frequency one
can set a single multicycle path constraint for each module. However, the multicycle paths will
only be valid for some of the possible encoder and modulator combinations. For example, if the
TME is operated at the maximum bit rate there will not be any multicycle paths in that module
as a result of the code rate differences with respect to other encoders such as the CE, and there
will be no multicycle paths due to output bit rate regulation as done by the CD. As a conclusion,
the multicycle paths can only be optimised for in implementations where it is known at compile
time that a particular encoder or modulator will not be operated at the highest possible bit rate.

For advanced user there is always the possibility to modify the PTME hierarchy and build a new
clocking scheme based on separate clock signals for the different encoders and modulators. This
approach will most certainly be required for ASIC designs in order to produce an optimal result.

When an AMBA AHB interface is implemented in the Telemetry Encoder (TME), the clock
domain of this interface will be the same as the system clock domain and will use the Clk clock
input. There is thus no dedicated AMBA AHB clock and reset interface in the PTME.

The CD synchronises the external asynchronous reset input towards the system clock domain
and the bit clock domain. The AMBA APB input interfaces are reset by a separate reset signal
that is assumed to be synchronous with corresponding interface clock. The CD should be reset
whenever a configuration input value is changed. The reset of the two clock enable generators
and clock divider can be either performed synchronously or asynchronously, depending on the
gSyncReset constant in the PTME configuration package, see section 7. All clocking is
performed on the rising clock edge of the clock ports.

The PTME supports a any clock frequency ration between BitClk and Clk, provided that the
BitClk frequency is never larger than twice the Clk frequency.

TME

RSE TE

CE CE 1/2 1/3 1/4 1/6

SP SP SP SP SP SP SP SP

TME, ftme fo fo/2 fo/2 fo/4 fo fo/2 fo/2 fo/4 fo/2 fo/4 fo/3 fo/6 fo/4 fo/8 fo/6 fo/12
RSE, frse - - - - fo fo/2 fo/4 - - - - - - - -
TE, fte - - - - - - - - fo fo/2 fo fo/2 fo fo/2 fo fo/2
PSR, fte fo fo/2 fo/2 fo/4 fo fo/2 fo/2 fo/4 fo fo/2 fo fo/2 fo fo/2 fo fo/2
NRZ, fnrz fo fo/2 fo/2 fo/4 fo fo/2 fo/2 fo/4 fo fo/2 fo fo/2 fo fo/2 fo fo/2
CE, fce - - fo fo/2 - - fo fo/2 - - - - - - - -
SP, fsp - fo - fo - fo - fo - fo - fo - fo - fo

Table 56: Bit rates for different encoders based on an obtained output frequency

PTME-001-01 64
5.10 Packet Telemetry Encoder (PTME)

The Packet Telemetry Encoder (PTME) module instantiates all encoder and modulator modules
previously described. The PTME module propagates all interface signals to the relevant
embedded modules, with few signal modifications, allowing a high degree of control and
observability of the embedded encoders and modulators. The PTME module combines the
internal unidirectional data buses of the memory interface to a single bidirectional data bus
interface. This is also done for the Bandwidth Allocation Table (BAT) interface data bus.

5.10.1 Connectivity

The PTME module provides the interconnection between the different encoders and supports all
permissible coding chains. The symbol output of the last encoder in the coding chain is routed
to the output interface of the PTME for which a re-synchronisation of the signal is performed to
avoid glitch generation. It facilitates an external telemetry test interface, although not
commissioned, to allow telemetry insertion to the Reed-Solomon Encoder (RSE) and Turbo
Encoder (TE) while bypassing the Telemetry Encoder (TME). The PTME module distributes
the four clock enable signals from the Clock Divider (CD) to the encoders and modulators to
obtain the desired bit rate and the correct bit rate increase. It implements the connectivity
between the enclosed encoders and modulators as described hereafter.

The output from the Telemetry Encoder (TME) can be connected to:
• Reed-Solomon encoder
• Pseudo-Randomiser
• Non-Return-to-Zero Mark encoder
• Convolutional encoder
• Split-Phase Level modulator

The input to the Reed-Solomon Encoder (TME) can be connected to:
• Telemetry encoder

The output from the Reed-Solomon Encoder (TME) can be connected to:
• Pseudo-Randomiser
• Non-Return-to-Zero Mark modulator
• Convolutional encoder
• Split-Phase Level modulator

The input to the Turbo Encoder (TE) can be connected to:
• Telemetry encoder

The output from the Turbo Encoder (TE) can be connected to:
• Pseud-Randomiser
• Split-Phase Level modulator

The input to the Pseudo-Randomiser (PSR) can be connected to:
• Telemetry encoder
• Reed-Solomon encoder

PTME-001-01 65
The output from the Pseud-Randomiser (PSR) can be connected to:
• Non-Return-to-Zero Mark modulator
• Convolutional encoder
• Split-Phase Level modulator

The input to the Non-Return-to-Zero Mark encoder (NRZ) can be connected to:
• Telemetry encoder
• Reed-Solomon encoder
• Pseudo-Randomiser

The output from the Non-Return-to-Zero Mark encoder (NRZ) can be connected to:
• Convolutional encoder
• Split-Phase Level modulator

The input to the Convolutional Encoder (CE) can be connected to:
• Telemetry encoder
• Reed-Solomon encoder
• Pseudo-Randomiser
• Non-Return-to-Zero Mark encoder

The output from the Convolutional Encoder (CE) can be connected to:
• Split-Phase Level modulator

The input to the Split-Phase Level modulator (SP) can be connected to:
• Telemetry encoder
• Reed-Solomon encoder
• Pseudo-Randomiser
• Non-Return-to-Zero Mark encoder

Due to the flexibility of the coding chain, it is possible to enable illegal encoder combinations.
It is the responsibility of the user not to enable the illegal combinations as listed hereafter:
• TE and CE
• TE and NRZ
• TE and RSE

5.10.2 Limitations

The PTME limits to some extent the capabilities of the encoders and modulators included in the
module, which can be understood from the preceding module descriptions. The implemented
clocking scheme in the PTME also limits the overall telemetry bit rate performance of the design
since all encoder and modulators are clocked by the same bit rate clock. In the worst case the
telemetry encoder needs to be clocked up to twelve times faster than required for the telemetry
rate in order to be compatible with the turbo encoder and the split-phase modulator. This
limitation can be overcome if the TME, the TE and SP are all clocked on different clocks
derived from the same source maintaining clock edge synchronisation, which is however not
implemented in the PTME. This issue is discussed in detail in section 5.9.

PTME-001-01 66
6 MODULE INTERFACES

The Packet Telemetry Encoder (PTME) is based on internal interface structures for which the
use outside the PTME is not considered. The interfaces are therefore described only briefly.

6.1 Multiple input interfaces

The PTME module implements four different type of input interfaces for packet and data
transfer to the Virtual Channels via the Virtual Channel Interface (VCI) defined in section 6.2.
Since it is possible to select any type interface for up to eight possible Virtual Channels, each
interface type has therefore been copied up to eight times in the PTME port declaration. It
should be noted that only some of these interfaces will be used, which is configured at compile
time as per section 7.

6.2 Virtual Channel Interface (VCI) definition

The Virtual Channel Interface (VCI) resides between each Virtual Channel Assembler (VCA)
and its input interface modules. The actual user input interfaces are placed outside the VCA
since there can be several different types of interfaces and protocols to be implemented. The
VCI is designed to provide all the information required by the VCA for proper data insertion
into Transfer Frames. The VCI is synchronous and independent of the preceding input interface
implementation.

The VCI provides the VCA with the following information:
• Packet start detected
• Packet in progress
• Packet end detected
• Packet to be held
• Packet to be aborted
• Data word available
• Data word (octet)

The VCI provides the input interface module with the following information:
• Interface is busy processing the input data
• Space available in external buffer memory for a packet (or segment)

The VCI is only capable of processing one data word at a time. There is no other buffering
capability on the VCI. Buffering can either be made in the input interface module or in the VCA
internal input buffer.

PTME-001-01 67
6.3 PTME Internal Bus (PIB or PI-bus) definition

The communication between Virtual Channel Buffer (VCB) and the different clients: Virtual
Channel Assembler (VCA), Virtual Channel Multiplexer (VCM) and Turbo Encoder (TE); is
done over the PTME Internal Bus (PIB or PI-bus).

Each client requests an access to the external buffer memory by asserting a request signal to the
VCB. The VCB will acknowledge the request by a grant signal after which the request from the
client can be released. The request input from the client just granted access will be masked in
the next clock period to allow the client to remove its request not to interpret a single request as
two. At the moment the client asserts its request signal it also drives the corresponding frame
and octet pointers to inform the VCB of where in the external buffer memory the relevant data
resides, and whether it is a read or a write access. Note that the VCA can only make write
accesses and the VCM can only make read accesses. These frame and octet pointer values are
allowed to change after the request has been granted by the VCB, allowing the client to generate
a new request immediately after the previous one has been granted. The VCB will assert a ready
signal when the data transfer has been completed. At the moment the VCB asserts its ready
signal it will also drive the data read from the external buffer memory on the PIB, provided that
it is a read access. The write frame and octet pointers are used by the VCB to form the absolute
memory address or AHB address.

The VCA has two PBI interfaces, one for nominal write accesses and one for auxiliary accesses
for Frame Data Field Status storage or Idle Source Packet insertion. Nominal and auxiliary
access requests can be made in parallel. The VCM can only make read accesses. The TE can
only make a write or a read access at a time.

The PIB can also be implemented with a base address and offset address pair, called physical
addressing, but this is a non-commissioned compile time option.

6.4 Virtual Channel Request (VCR) definition

The communication between the VCAs and the VCM is done over the Virtual Channel Request
(VCR) interface. Each VCA informs the VCM when there is enough data in the external buffer
memory to fill the complete Data Field of the Transfer Frame. This is done by a request signal
to the VCM which will acknowledge the request by a grant signal after which the request from
the VCA can be released. At the moment the VCA asserts its request signal it also drives the
corresponding frame pointer value to inform the VCM of where in its external buffer memory
the relevant data resides. This frame pointer value is allowed to change after the request has
been granted by the VCM, allowing the VCA to generate a new request immediately after the
previous one has been granted.

The VCM will assert a ready signal when the data contents for a frame has been read out from
the memory after which the VCA is allowed to write over the memory location with new
incoming data. The VCM asserts a poll signal each time a VCA is checked for available data,
which can be used for initiating Idle Source Packet insertion in the Virtual Channel, see
section 4.2.5.3.

PTME-001-01 68
7 PTME DESIGN OPTIONS

The Packet Telemetry Encoder (PTME) VHDL model is largely configurable at compile time
by constants defined in a configuration package, PTME_Configuration, allowing the number of
supported Virtual Channels to be selected, allocation of memory space, enabling or disabling of
encoders etc. The constants from the package are then either propagated to the generics of the
sub-modules or used directly in the sub-modules as constants.

The PTME model supports a variety of configuration options which will produce a design
tailored to user’s needs. The options listed in table 57 and table 58 can be configured before
synthesis or compilation of the model.

Parameter Type Interpretation Description

Constants related to the Virtual Channels of the Telemetry Encoder (TME)
gNumberOfVCs Natural range 1 to 8 Number of VCs
gIdleFrameVC Natural range 0 to 7 Identification of VC to use for Idle Transfer Frames
gFlexVCId Natural range 0 to 1 Flexible VC Id allocation
Constants related to the memory size and partitioning
gMemoryDepth Positive 2^n memory bytes Amount of memory to be shared by all VCs
gAreaDepth Positive 2^n memory areas Number of areas into which memory is partitioned
gGroupDepth Positive 2^n areas grouped Maximum number of memory areas allowed for any VC
gGroupInterface Natural range 0 to 1 automatic / manual external memory area assignment
Bandwidth Allocation Table configuration
gBatDepth Positive 2^n entire Number of BAT entries
Configuration of PTME capabilities
gFrameLength Natural range 0 to 2 223 based, 239 based, both
gAltASM Natural range 0 to 1 Alternate Attached Synchronisation Marker support
gTime Natural range 0 to 1 Time Strobe support
gSecHeader Natural range 0 to 1 Secondary Header support
gOPCF Natural range 0 to 1 OPCF/CLCW support
gOPCFLength Natural range 0 to 2 CLCW data transfer length 16, 32 or both
gOPCFInterface Natural range 0 to 1 TTC-B-01 / synchronous-parallel
gFECW Natural range 0 to 1 FECW/CRC support
gBatInterface Natural range 0 to 2 no interface / asynchronous / synchronous-parallel
gPreLength Natural +1 default Virtual Channel Multiplexer internal prefetch buffer size
gReedSolomon Natural range 0 to 1 Reed-Solomon encoder support
gRSStyle Natural range 0 to 3 flip-flops, latches, external memory, 50/50
gUnContiguous Natural range 0 to 1 Uncontiguous CADU support
gTurbo Natural range 0 to 1 Turbo encoder support
gTurboLengthRd Natural Turbo buffer size
gTurboLengthWr Natural Turbo buffer size
gTurboLatency Natural range 0 to 1 Turbo latency optimisation

Table 57: PTME configuration parameters

PTME-001-01 69
gPseudo Natural range 0 to 1 Pseudo-random support
gMark Natural range 0 to 1 NRZ-Mark support
gConvolute Natural range 0 to 3 no support, basic, punctured, both basic and punctured
gSplit Natural range 0 to 1 Split Phase support
Clock divider and clocking style configuration
gClockDepth Positive 2^n divider Clock divider width
gCommonClock Natural range 0 to 1 Separate / Common - BitClk and Clk
gClockStyle Natural range 0 to 1 Input BitClk / Output BitClk
gClkFrequency Natural Clock frequency (Hz) for PacketAsynchronous module
gSyncReset Natural range 0 to 1 Asynchronous reset / Synchronous reset
gOPCFBitClock Natural range 0 to 1 OPCF using CLCWClk, OPCF using BitClk
Memory addressing style
gPhysicalAddress Natural range 0 to 1 Logical pointer support / Physical address support
gPhysicalDepth Positive Physical address width
gMemoryInterface Natural range 0 to 1 AMBA AHB interface, asynchronous memory interface
gWaitStates Natural range 0 to 1 Wait State support
gWaitStateDepth Positive 2^n -1 wait states Maximum number of wait states
gEdacSupport Natural range 0 to 3 no / sequential / parallel implementation / both
gEdacType Natural range 0 to 1 Hamming Code / Cyclic Code
gMemoryTest Natural range 0 to 1 Memory test support
Design optimisation and simplification
gFPGA Natural range 0 to 1 FPGA targeted
gSlowVCAExtra Natural range 0 to 1 Slow access support for VCA auxiliary write
gSlowVCAWrite Natural range 0 to 1 Slow access support for VCA write
gAcknowledgeVCB Natural range 0 to 1 Acknowledge support in VCB
gFrameCheck Natural range 0 to 1 Check frame status in VCM

Parameter Type Interpretation Description

Constants related to the individual Virtual Channels of the Telemetry Encoder (TME)
gPacket Natural range 0 to 1 Packet support
gIdle Natural range 0 to 1 Idle Source Packet generation support
gReady Natural range 0 to 1 Ready-for-segment signalling support
gEmpty Natural range 0 to 1 Buffer empty signalling support
gAbort Natural range 0 to 1 Abort packet insertion support
gLength Natural +1 default Internal input buffer size for Virtual Channel Assembler
gInterface Natural range 0 to 4 PacketWire, PacketAsynchronous, PacketParallel,

AMBA APB (PAPB), no internal interface module
gPAPBDataSize Natural range 1 to 4 8 bits, 16 bits, 24 bits, 32 bits
gGroupSize Natural 2^n memory areas allocated to Virtual Channel

Table 58: PTME configuration parameters (for individual Virtual Channels)

Parameter Type Interpretation Description

Table 57: PTME configuration parameters

PTME-001-01 70
8 PTME INTERFACES

The Packet Telemetry Encoder (PTME) VHDL model interfaces are listed in table 59 and
described in the subsequent sections.

Name Type Mode Description Remark

System interface
Reset_N Std_ULogic in Asynchronous reset
Clk Std_ULogic in System clock
Bit rate clock interface
BitClk Std_ULogic in Bit clock
Memory allocation interface (non-commissioned)
MaxOctetPtrs OctetPtrMatrixType in Max number of octets
MaxFramePtrs FramePtrMatrixType in Max number of frames
BaseAreaPtrs AreaPtrMatrixType in Base area pointers
BaseAddresses PhysicAddrMatrixType in Base addresses
TurboBase PhysicAddrType in Turbo base address
TurboFill TurboOffSetType in Turbo logical fill
General configuration interface
AltASM Std_ULogic in Enable alternate ASM
TimeMode Std_Logic_Vector(0 to 3) in Selects time rate
FrameLen Std_Logic_Vector(0 to 2) in Selects frame length
SCId Std_Logic_Vector(0 to 9) in Spacecraft Id
IdleFlexVCId VCPtrType in VC Id separate Idle

Transfer
Frame
channel

IdleSecHeader Std_ULogic in Secondary Header
IdleSegmentLen Std_Logic_Vector(0 to 1) in Segment Length Id
OPCF Std_ULogic in OPCF/CLCW when '1'
FECW Std_ULogic in FECW/CRC when '1'
ReedSolomon Std_ULogic in Reed-Solomon coding
Turbo Std_ULogic in Turbo coding
TurboRate Std_Logic_Vector(0 to 1) in Turbo code rate
Pseudo Std_ULogic in Pseudo-random coding
Mark Std_ULogic in NRZ-M coding
Convolute Std_ULogic in Convolutional coding
ConvoluteRate Std_Logic_Vector(0 to 2) in Convolutional rate
Split Std_ULogic in Split Phase-L coding
EdacEnable Std_ULogic in Enables EDAC
EdacParallel Std_ULogic in Select parallel EDAC
WaitStateRd WaitStateType in Read wait states
WaitStateWr WaitStateType in Write wait states
OutputBitRate ClockPtrType in Output bit rate

Table 59: PTME interfaces

PTME-001-01 71
Virtual Channel Assembler configuration interfaces
FlexVCId VCPtrMatrixType in Flexible VC Id
PollThreshold ThreeMatrixType in Poll count threshold
RdyThreshold TwoMatrixType in VC ready threshold
DynamicFHP OneMatrixType in Enable FHP insertion
SecHeader OneMatrixType in Secondary Header
Sync OneMatrixType in Packets / bit stream
PktOrder OneMatrixType in Packet order flag
SegmentLen TwoMatrixType in Segment Length Id
PktVersion OneMatrixType in Idle Packet Version
BaudRate TwoMatrixType in Baud rate selector
IgnorParity OneMatrixType in Ignore parity bit
TwoStopBits OneMatrixType in Two stop bits
Virtual Channel Interface (VCI) (non-commissioned)
VCIBegin OneMatrixType in Packet start detect
VCIActive OneMatrixType in Packet in progress
VCIComplete OneMatrixType in Packet end detect
VCIHold OneMatrixType in Packet to be held
VCIAbort OneMatrixType in Packet aborted
VCIAvailable OneMatrixType in Data available
VCIData OctetMatrixType in Data input
VCIBusy OneMatrixType out Not ready for octet
VCIRdy OneMatrixType out Ready for paket
VCIEmpty OneMatrixType out No packet in buffer
PacketWire input interface
PWValid OneMatrixType in Packet delimiter
PWClk OneMatrixType in Bit clock
PWData OneMatrixType in Data
PWAbort OneMatrixType in Abort packet
PWBusy_N OneMatrixType out Not ready for octet
PWRdy OneMatrixType out Ready for paket
PWEmpty OneMatrixType out No packet in buffer
PacketAsynchronous input interface
PAValid_N OneMatrixType in Packet delimiter
PAData OneMatrixType in Asynchronous bit
PAAbort OneMatrixType in Abort packet
PABusy_N OneMatrixType out Not ready for octet
PARdy OneMatrixType out Ready for paket
PAEmpty OneMatrixType out No packet in buffer

Name Type Mode Description Remark

Table 59: PTME interfaces

PTME-001-01 72
PacketParallel input interface
PPValid_N OneMatrixType in Packet delimiter
PPWr_N OneMatrixType in Octet write strobe
PPData OctetMatrixType in Octet data
PPAbort OneMatrixType in Abort packet
PPBusy_N OneMatrixType out Not ready for octet
PPRdy OneMatrixType out Ready for paket
PPEmpty OneMatrixType out No packet in buffer
PacketAPB input interface
PCLK Std_ULogic in Interface clock
PRESETn Std_ULogic in Synchronised reset
PAPBIn APB_Slv_In_Vector(7 downto 0) in Interface input
PAPBOut APB_Slv_Out_Vector(7 downto 0) out Interface output
PAPBBusy_N OneMatrixType out Not ready for octet
PAPBRdy OneMatrixType out Ready for paket
PAPBEmpty OneMatrixType out No packet in buffer
Memory test interface (non-commissioned)
TestReq Std_ULogic in Request
TestRead Std_ULogic in Read access
TestWrite Std_ULogic in Write access
TestGnt Std_ULogic out Access granted
TestRdy Std_ULogic out Access completed
TestAddr StdAddrType in Address
TestRdData Octet out Data output
TestWrData Octet in Data input
TestBaseAddr PhysicAddrType in Base address
TestOffset PhysicAddrType in Offset address
Memory interface
CS_N Std_ULogic out Chip select
Rd_N Std_ULogic out Enable data read
Wr_N Std_ULogic out Enable data write
Address StdAddrType out Address
Data Octet inout Data
EDAC interface
Edac Octet inout Check bits
EdacErr Std_Logic_Vector(0 to 1) out Error code
AMBA AHB Master interface
AHBMasterIn AHB_Mst_In_Type in
AHBMasterOut AHB_Mst_Out_Type out
Telemetry test interface (non-commissioned)
Test Std_ULogic in test enable

Name Type Mode Description Remark

Table 59: PTME interfaces

PTME-001-01 73
TestIn Std_ULogic in telemetry data
TestSyncIn Std_ULogic in ASM delimiter
TestFrameIn Std_ULogic in Frame delimiter
TestTurboSync Std_ULogic in Turbo delimiter
TestTurboFrame Std_ULogic in Turbo delimiter
TestTurboTerm Std_ULogic in Turbo delimiter
TestOut Std_ULogic out telemetry data
TestSyncOut Std_ULogic out ASM delimiter
TestFrameOut Std_ULogic out Frame delimiter
TestBitTick Std_ULogic out bit delimiter
Channel Access Data Unit output interface
TimeStrobe Std_ULogic out Time strobe
CADUSyncMark Std_ULogic out ASM delimiter
CADUFrameMark Std_ULogic out Frame delimiter
CADUOddFrame Std_ULogic out Odd numbered frame
CADUClk Std_ULogic out CADU clock
CADUOut Std_ULogic out CADU data
CADUG1Out Std_ULogic out Convoluted CADU data
CADUG2Out Std_ULogic out Convoluted CADU data
Bandwidth Allocation Table interface
BatPriority Std_ULogic in Priority VC select
BatRegister BatFileType in Register file
BatWrite Std_ULogic out Allowed to write
BatCS_N Std_ULogic in Chip select
BatRW_N Std_ULogic in Read/write
BatA BatAddressType in Address
BatD BatDataType inout Data input
Operation Control Field / CLCW / TTC-B-01 interface
CLCWLength Std_ULogic in CLCW length select
CLCWData Std_Logic_Vector(0 to 31) in CLCW parallel data
CLCWWrite Std_ULogic out Allowed to write
CLCWOverWrite Std_ULogic in Overwrite bit 16 and 17
CLCWNoRFAvail Std_ULogic in Bit 16
CLCWNoBitLock Std_ULogic in Bit 17
TCId0 Std_Logic_Vector(0 to 5) in TC VC Id no. 0
TCId1 Std_Logic_Vector(0 to 5) in TC VC Id no. 1
CLCWClk Std_ULogic in CLCW clock
CLCWSel Std_ULogic in Selects TTCD0/TTCD1
TTCSample Std_ULogic out TTC-B-01 sample
TTCClk Std_ULogic out TTC-B-01 clock
TTCD0 Std_ULogic in TTC-B-01 input no. 0
TTCD1 Std_ULogic in TTC-B-01 input no. 1

Name Type Mode Description Remark

Table 59: PTME interfaces

PTME-001-01 74
8.1 System interface

8.1.1 Reset_N: Synchronised reset: Std_ULogic (I)

This active low input signal asynchronously resets the PTME VHDL model. The signal is
assumed to be asynchronous.

8.1.2 Clk: System clock: Std_ULogic (I)

This input signal is the system clock signal for the PTME VHDL model. Most registers are
clocked on the rising Clk edge.

8.2 Bit rate interface

8.2.1 BitClk: Bit clock: Std_ULogic (I)

This is the bit clock used by the various encoders in the PTME. All registers are clocked on the
rising edge.

8.3 Memory allocation interface

Non-commissioned interface.

8.4 General configuration interface

8.4.1 AltASM: Enable alternate ASM: Std_ULogic (I)

Enables the output of the alternative ASM. Not effective with Turbo Encoding. The PTME
should be reset after each change.

8.4.2 TimeMode: Time rate selection: Std_Logic_Vector(0 to 3) (I)

Selects the rate of the time strobe periodicity as per table 24. The PTME should be reset after
each change.

8.4.3 FrameLen: Transfer Frame length selection: Std_Logic_Vector(0 to 2) (I)

Selects the Transfer Frame length as per table 20. The PTME should be reset after each change.

8.4.4 SCId: Spacecraft Identifier: Std_Logic_Vector(0 to 9) (I)

Sets the Spacecraft Identifier. The PTME should be reset after each change.

8.4.5 IdleFlexVCId: Flexible VC Id for Idle Transfer Frames: VCPTRType (I)

Sets the VC Id for Idle Transfer Frames when output on a separate Virtual Channel and in
configuration flexible allocation is implemented. The PTME should be reset after each change.

8.4.6 IdleSecHeader: Secondary Header for Idle Transfer Frames: Std_ULogic (I)

Enables Secondary Header generation for Idle Transfer Frames when output on a separate
Virtual Channel. The PTME should be reset after each change.

PTME-001-01 75
8.4.7 IdleSegmentLen: Segment Length Identifier for Idle Transfer Frames:
Std_Logic_Vector(0 to 1) (I)

Data bits in Frame Data Field Status of Idle Transfer Frames when output on a separate Virtual
Channel. The PTME should be reset after each change.

8.4.8 OPCF: Operational Control Field enable: Std_ULogic (I)

Enables OPCF generation when asserted. The PTME should be reset after each change.

8.4.9 FECW: Frame Error Control Word enable: Std_ULogic (I)

Enables FECW generation when asserted. The PTME should be reset after each change.

8.4.10 ReedSolomon: Reed-Solomon coding enable: Std_ULogic (I)

Enables Reed-Solomon encoding when asserted. The PTME should be reset after each change.

8.4.11 Turbo: Turbo coding enable: Std_ULogic (I)

Enables Turbo encoding when asserted. The PTME should be reset after each change.

8.4.12 TurboRate: Reed-Solomon coding rate: Std_Logic_Vector(0 to 1) (I)

Selects Turbo code rate as per table 53. The PTME should be reset after each change.

8.4.13 Pseudo: Pseudo-Randomiser enable: Std_ULogic (I)

Enables Pseudo-Randomisation when asserted. The PTME should be reset after each change.

8.4.14 Mark: Non-Return-to-Zero - Mark enable: Std_ULogic (I)

Enables non-return-to-zero - mark encoding when asserted. The PTME should be reset after
each change.

8.4.15 Convolute: Convolutional encoding enable: Std_ULogic (I)

Enables Convolutional encoding when asserted. The PTME should be reset after each change.

8.4.16 ConvoluteRate: Convolutional coding rate: Std_Logic_Vector(0 to 1) (I)

Selects Convolutional code rate as per table 54. The PTME should be reset after each change.

8.4.17 Split: Split-Phase - Level enable: Std_ULogic (I)

Enables split-phase - level modulation when asserted. The PTME should be reset after each
change.

8.4.18 EdacEnable: EDAC enable: Std_ULogic (I)

Enables EDAC protection of memory when asserted. Only effective when memory interface
and EDAC are implemented. The PTME should be reset after each change.

PTME-001-01 76
8.4.19 EdacParallel: Parallel EDAC selection: Std_ULogic (I)

Selects parallel EDAC operation when asserted, else sequential EDAC operation is selected.
Only effective when memory interface and EDAC with both parallel and sequential operation
are implemented. The PTME should be reset after each change.

8.4.20 WaitStateRd: Wait states for read access: WaitStateType (I)

Sets the number of wait states for a read access. Only effective when memory interface is
implemented with wait state support. The PTME should be reset after each change.

8.4.21 WaitStateWr: Wait states for write access: WaitStateType (I)

Sets the number of wait states for a write access. Only effective when memory interface is
implemented with wait state support. The PTME should be reset after each change.

8.4.22 OutputBitRate: Output bit rate selection: ClockPtrType (I)

Sets the bit rate derived from the system clock for the encoding chain. Only effective when the
system clock is enabled for symbol rate generation. The PTME should be reset after each
change.

8.5 Virtual Channel Assembler configuration interfaces

The different Virtual Channels Assemblers are individually configured via this interface. An
input array of entire is provided for each parameters, being indexed by the Virtual Channel
number. The description hereafter is based on the type of the array entries rather than the array
itself.

8.5.1 FlexVCId: Virtual Channel Identifier selection: VCPtrMatrixType (I)

Sets the Virtual Channel Identifier in configuration flexible allocation is implemented. The
PTME should be reset after each change.

8.5.2 PollThreshold: Poll count threshold: Std_Logic_Vector(0 to 2) (I)

Sets the poll threshold for Idle Source Packet insertion, as per table 27. The PTME should be
reset after each change.

8.5.3 RdyThreshold: Memory availability threshold: Std_Logic_Vector(0 to 1) (I)

Sets the external buffer memory availability threshold, as per table 26. The PTME should be
reset after each change.

8.5.4 DynamicFHP: Dynamic FHP enable: Std_ULogic (I)

Enables dynamic calculation of First Header Pointer when asserted. The PTME should be reset
after each change.

PTME-001-01 77
8.5.5 SecHeader: Secondary Header Flag: Std_ULogic (I)

Enables Secondary Header generation when asserted. The PTME should be reset after each
change.

8.5.6 Sync: Data Field Synchronisation Flag: Std_ULogic (I)

Indicates whether packets are synchronously inserted, when 0b, or asynchronously inserted,
when 1b. Acts as a qualifier for Idle Source Packet generation. The PTME should be reset after
each change.

8.5.7 PktOrder: Packet Order Flag: Std_ULogic (I)

Data bit in Frame Data Field Status. The PTME should be reset after each change.

8.5.8 SegmentLen: Segment Length Identifier: Std_Logic_Vector(0 to 1) (I)

Data bits in Frame Data Field Status. The PTME should be reset after each change.

8.5.9 PktVersion: Packet Order Flag: Std_ULogic (I)

Data bit in Idle Source Packet, corresponding to bit 0 of the Version Number. The PTME should
be reset after each change.

8.5.10 BaudRate: Baud rate selection: Std_Logic_Vector(0 to 1) (I)

Sets the baud rate for the PA interface, as per table 30. The PTME should be reset after each
change.

8.5.11 IgnorParity: Ignore parity bit: Std_ULogic (I)

When asserted, a parity is included in the received data on the PA interface and should be
ignored. The PTME should be reset after each change.

8.5.12 TwoStopBits: Two stop bits: Std_ULogic (I)

When asserted, two stop bits received on the PA interface and should be checked for validity.
The PTME should be reset after each change.

8.6 Virtual Channel Interface (VCI)

Non-commissioned interface.

PTME-001-01 78
8.7 PacketWire (PW) input interface

The different interfaces are individually interfaced via this interface. An array of entire is
provided for each port, being indexed by the Virtual Channel number. The description hereafter
is based on the type of the array entries rather than the array itself. Note that only some of the
entries in the array might actually be used in a design.

8.7.1 PWValid: Packet delimiter: Std_ULogic (I)

This input signal is the packet delimiter for the interface. It should be de-asserted between
packets.

8.7.2 PWClk: Bit clock: Std_ULogic (I)

This input signal is the PackeWire bit clock. The receiver registers are clocked on the rising
PWClk edge.

8.7.3 PWData: Data: Std_ULogic (I)

This input signal is the serial data input for the interface. Data are sampled on the rising PWClk
edge when PWValid is asserted.

8.7.4 PWRdy: Ready for paket: Std_ULogic (O)

This signal indicates whether the Virtual Channel is ready to receive one segment. The output
is clocked out on the rising Clk edge.

8.7.5 PWBusy_N: Not ready for data: Std_ULogic (O)

This signal indicates whether the Virtual Channel is ready to receive one octet. The output is
clocked out on the rising Clk edge.

8.7.6 PWAbort: Abort paket: Std_ULogic (I)

This signal indicates that a packet should be aborted.

8.7.7 PWEmpty: No packet in buffer: Std_ULogic (O)

This signal indicates whether the Virtual Channel does not contain any user packet data. It can
however contain idle packet data. The output is clocked out on the rising Clk edge.

PTME-001-01 79
8.8 PacketAsynchronous (PA) input interface

The different interfaces are individually interfaced via this interface. An array of entire is
provided for each port, being indexed by the Virtual Channel number. The description hereafter
is based on the type of the array entries rather than the array itself. Note that only some of the
entries in the array might actually be used in a design.

8.8.1 PAValid_N: Packet delimiter: Std_ULogic (I)

This input signal is the packet delimiter for the interface. It should be de-asserted between
packets. It can also be tied to logic zero if non-packet data is to be transferred.

8.8.2 PAData: Data: Std_ULogic (I)

This input signal is the bit serial asynchronous data input for the interface.

8.8.3 PARdy: Ready for paket: Std_ULogic (O)

This signal indicates whether the Virtual Channel is ready to receive one segment. The output
is clocked out on the rising Clk edge.

8.8.4 PABusy_N: Not ready for data: Std_ULogic (O)

This signal indicates whether the Virtual Channel is ready to receive one octet. The output is
clocked out on the rising Clk edge.

8.8.5 PAAbort: Abort paket: Std_ULogic (I)

This signal indicates that a packet should be aborted.

8.8.6 PAEmpty: No packet in buffer: Std_ULogic (O)

This signal indicates whether the Virtual Channel does not contain any user packet data. It can
however contain idle packet data. The output is clocked out on the rising Clk edge.

8.9 PacketParallel (PP) input interface

The different interfaces are individually interfaced via this interface. An array of entire is
provided for each port, being indexed by the Virtual Channel number. The description hereafter
is based on the type of the array entries rather than the array itself. Note that only some of the
entries in the array might actually be used in a design.

8.9.1 PPValid_N: Packet delimiter: Std_ULogic (I)

This input signal is the packet delimiter for the interface. It should be de-asserted between
packets. It can also be tied to logic zero if non-packet data is to be transferred.

8.9.2 PPData: Data: Octet (I)

This input signal is the 8 bit parallel data input for the interface. It is sampled on the rising
PPWr_N edge.

PTME-001-01 80
8.9.3 PPWr_N: Octet write strobe: Std_ULogic (I)

This input signal is the octet write strobe. The data is sampled on the rising PPWr_N edge.

8.9.4 PPRdy: Ready for paket: Std_ULogic (O)

This signal indicates whether the Virtual Channel is ready to receive one segment. The output
is clocked out on the rising Clk edge.

8.9.5 PPBusy_N: Not ready for data: Std_ULogic (O)

This signal indicates whether the Virtual Channel is ready to receive one octet. The output is
clocked out on the rising Clk edge.

8.9.6 PPAbort: Abort paket: Std_ULogic (I)

This signal indicates that a packet should be aborted.

8.9.7 PPEmpty: No packet in buffer: Std_ULogic (O)

This signal indicates whether the Virtual Channel does not contain any user packet data. It can
however contain idle packet data. The output is clocked out on the rising Clk edge.

8.10 PacketAPB (PAPB) input interface

The different interfaces are individually interfaced via this interface. An array of entire is
provided for each port, being indexed by the Virtual Channel number. Note that only some of
the entries in the array might actually be used in a design. The description hereafter is based on
the type of the array entries rather than the array itself. For detailed information on the records
used for the APB interface see AD9 and AD12. The clock and reset signals are common for all
interfaces.

8.10.1 PRESETn: Synchronised reset: Std_ULogic (I)

This active low input signal asynchronously resets the AMBA APB interfaces in the PTME
VHDL core. The signal is assumed to be synchronous with the AMBA APB clock PCLK rising
edge. The input is used on registers that are all clocked on the rising PCLK edge.

8.10.2 PCLK: Interface clock: Std_ULogic (I)

This input signal is the AMBA APB clock which is the clock for the AMBA APB interfaces in
the PTME VHDL core. All registers are clocked on the rising PCLK edge.

8.10.3 PAPBIn: Interface input: APB_Slv_In_Type (I)

This signal record is the slave interface input.

8.10.3.1 PSEL: Slave select: Std_ULogic (I)

This signal indicates that the APB slave device is selected and a data transfer is required. The
input is sampled on the rising PCLK edge for write accesses.

PTME-001-01 81
8.10.3.2 PENABLE: Enable strobe: Std_ULogic (I)

This strobe signal is used to time all accesses on the peripheral bus. The enable signal is used to
indicate the second cycle of an APB transfer. The rising edge of PENABLE occurs in the middle
of the APB transfer. The input is sampled on the rising PCLK edge for write accesses.

8.10.3.3 PADDR: Address bus: Std_Logic_Vector(PAMAX-1 downto 0) (I)

This is the APB address bus can be up to 32 bits wide. The input is sampled on the rising PCLK
edge for write accesses. PAMAX is defined in the AMBA VHDL package, AD12.

8.10.3.4 PWRITE: Write strobe: Std_ULogic (I)

This signal indicates the APB transfer direction When asserted this signal indicates an APB
write access and when de-asserted a read access. The input is sampled on the rising PCLK edge.

8.10.3.5 PWDATA: Write data bus: Std_Logic_Vector(PDMAX-1 downto 0) (I)

The APB write data bus is driven by the peripheral bus master during write cycles (when
PWRITE is asserted). The data is sampled on the rising PCLK edge for write accesses. PDMAX
is defined in the AMBA VHDL package, AD12.

8.10.4 PAPBOut: Interface output: APB_Slv_Out_Type (O)

This signal record is the slave interface output.

8.10.4.1 PRDATA: Read data bus: Std_Logic_Vector(PDMAX-1 downto 0) (O)

The APB read data bus is driven by the selected slave during read cycles (when PWRITE is de-
asserted). PDMAX is defined in the AMBA VHDL package, AD12.

8.10.5 PAPBRdy: Ready for paket: Std_ULogic (O)

This signal indicates whether the Virtual Channel is ready to receive one segment. The output
is clocked out on the rising Clk edge.

8.10.6 PAPBBusy_N: Not ready for data: Std_ULogic (O)

This signal indicates whether the Virtual Channel is ready to receive one octet. The output is
clocked out on the rising Clk edge.

8.10.7 PAPBEmpty: No packet in buffer: Std_ULogic (O)

This signal indicates whether the Virtual Channel does not contain any user packet data. It can
however contain idle packet data. The output is clocked out on the rising Clk edge.

PTME-001-01 82
8.11 Memory test interface

Non-commissioned interface.

8.12 Memory interface

8.12.1 CS_N: Memory chip select: Std_ULogic (O)

This active low output is the chip select for the external memory. CS_N changes state on the
rising Clk edge.

8.12.2 Wr_N: Memory write strobe: Std_ULogic (O)

This active low output is the write strobe for the external memory. Wr_N changes state on the
falling Clk edge.

8.12.3 Rd_N: Memory read strobe: Std_ULogic (O)

This active low output is the read strobe for the external memory. Rd_N changes state on the
rising Clk edge.

8.12.4 Address Memory address: StdAddrType (O)

These outputs are the addresses generated by the PTME for reading and writing to the external
memory. They change state on the rising Clk edge.

8.12.5 Data: Memory data: Octet (I/O)

These signals are used to read and write data to the external memory. They are driven by the
PTME on the rising Clk edge and are tristated on the falling Clk edge.

8.13 EDAC interface

8.13.1 Edac: EDAC check bit data: Octet (I/O)

These signals are used to read and write EDAC check bits to the external memory. They are
driven by the PTME on the rising Clk edge and are tristated on the falling Clk edge.

8.13.2 EdacErr: EDAC error flags: Std_Logic_Vector (0 to 1) (I/O)

These signals are used signal errors detected by the EDAC. They are output on the rising Clk
edge.

PTME-001-01 83
8.14 AMBA AHB master interface

For detailed information on the records used for the AMBA AHB interface see AD10 and
AD12.

8.14.1 AHBMasterIn: Interface input: AHB_Mst_In_Type (I)

This signal record is the general AHB master interface input.

8.14.1.1 HGRANT: Bus grant: Std_ULogic (I)

This signal indicates that the AHB master device is selected and a data transfer is required. The
input is sampled on the rising HCLK edge.

8.14.1.2 HREADY: Transfer done: Std_ULogic (I)

This signal indicates to the AHB master device that an access is completed. The input is sampled
on the rising HCLK edge.

8.14.1.3 HRESP: Response type: Std_Logic_Vector(1 downto 0) (I)

This signal indicates to the AHB master device with what a result an access has been completed.
The input is sampled on the rising HCLK edge.

8.14.1.4 HRDATA: Read data bus: Std_Logic_Vector(HDMAX-1 downto 0) (I)

This signal provides the AHB master device read data at the end of the access. The input is
sampled on the rising HCLK edge. HDMAX is defined in the AMBA VHDL package, AD12.
HDMAX is assumed to be the default 32.

8.14.2 AHBMasterOut: Interface output: AHB_Mst_Out_Type (O)

This signal record is the general AHB master interface output.

8.14.2.1 HBUSREQ: Bus request: Std_ULogic (O)

This signal indicates that the AHB master device is requesting the bus. The output is clocked
out on the rising HCLK edge.

8.14.2.2 HLOCK: Lock request: Std_ULogic (O)

This signal indicates whether the AHB master device is requesting a locked access. The output
is permanently driven to logical zero.

8.14.2.3 HTRANS: Transfer type: Std_Logic_Vector(1 downto 0) (O)

This signal indicates the type of the transfer that the AHB master device is issuing. The output
is clocked out on the rising HCLK edge.

PTME-001-01 84
8.14.2.4 HADDR: Transfer type: Std_Logic_Vector(HAMAX-1 downto 0) (O)

This signal carries the address of the transfer that the AHB master device is issuing. The output
is clocked out on the rising HCLK edge. HAMAX is defined in the AMBA VHDL package,
AD12. HAMAX is assumed to be the default 32.

8.14.2.5 HWRITE: Read / Write: Std_ULogic (O)

This signal indicates whether it is a read or a write access that the AHB master device is issuing.
The output is clocked out on the rising HCLK edge.

8.14.2.6 HSIZE: Transfer size: Std_Logic_Vector(2 downto 0) (O)

This signal indicates the size of the access that the AHB master device is issuing. The output is
permanently driven to logical zeros, indicating a byte access.

8.14.2.7 HBURST: Burst type: Std_Logic_Vector(2 downto 0) (O)

This signal indicates the burst type of access that the AHB master device is issuing. The output
is permanently driven to logical zeros, indicating a single access.

8.14.2.8 HPROT: Protection control: Std_Logic_Vector(32 downto 0) (O)

This signal indicates the protection type of access that the AHB master device is issuing. The
output is permanently driven to logical zeros.

8.14.2.9 HWDATA: Write data bus: Std_Logic_Vector(HDMAX-1 downto 0) (O)

This signal carries the data of the write transfer that the AHB master device is issuing. The
output is clocked out on the rising HCLK edge. HDMAX is defined in the AMBA VHDL
package, AD12. HDMAX is assumed to be the default 32. Since only byte accesses are
performed, the byte data to be written is copied to all four byte positions on HWDATA.

PTME-001-01 85
8.15 Telemetry test interface

Non-commissioned interface.

8.16 Channel Access Data Unit output interface

8.16.1 TimeStrobe: Time strobe: Std_ULogic (O)

This signal is asserted when a time strobe is to be generated as specified for Virtual Channel 0.
The output is clocked out on the rising BitClk edge.

8.16.2 CADUSyncMark: ASM delimiter: Std_ULogic (O)

This signal is asserted when the Attached Synchronisation Marker is being output. The output
is clocked out on the rising BitClk edge.

8.16.3 CADUFrameMark: Transfer frame delimiter: Std_ULogic (O)

This signal is asserted when the Transfer Frame is being output. The output is clocked out on
the rising BitClk edge.

8.16.4 CADUClk: CADU clock: Std_ULogic (O)

This signal is the bit delimiter for the CADU output. The output is clocked out on the rising
BitClk edge.

8.16.5 CADUOut: CADU data: Std_ULogic (O)

This signal is the bit serial CADU data output. The output is clocked out on the rising BitClk
edge.

8.16.6 CADUOddFrame: Odd numbered Transfer Frame: Std_ULogic (O)

This signal is asserted when a Transfer Frame for which the Master Channel Frame Count value
is odd. The output is clocked out on the rising BitClk edge.

8.16.7 CADUG1Out: Convoluted CADU data: Std_ULogic (O)

This output carries the G1 data vector from the Convolutional encoder. The output is clocked
out on the rising BitClk edge.

8.16.8 CADUG2Out: Convoluted CADU data: Std_ULogic (O)

This output carries the G2 data vector from the Convolutional encoder. The output is clocked
out on the rising BitClk edge.

PTME-001-01 86
8.17 Bandwidth Allocation Table interface

8.17.1 BatPriority: Priority mode: Std_ULogic (I)

Enables priority mode when asserted. The PTME should be reset after each change.

8.17.2 BatRegister: Register file: BatFileType (I)

Input of the full BAT register file when the external synchronous interface option is selected.
The PTME should be reset if value changes out side the BatWrite window.

8.17.3 BatWrite: Register file write permission: Std_ULogic (O)

Indicates when the register file BatRegister can be modified without the need for a PTME reset
when the external synchronous interface option is selected.

8.17.4 BatCS_N: Chip select: Std_ULogic (I)

Active low chip select for BAT access when asynchronous interface option is selected.

8.17.5 BatRW_N: Read/Write indicator: Std_ULogic (I)

Active read/write indicator for BAT access when asynchronous interface option is selected.

8.17.6 BatA: Address: BatAddressType (I)

Address for the BAT access when asynchronous interface option is selected.

8.17.7 BatD: Data: BatDataType (I/O)

Data for BAT read and write access when asynchronous interface option is selected.

PTME-001-01 87
8.18 Operation Control Field / CLCW / TTC-B-01 interface

8.18.1 CLCWLength: CLCW data transfer length: Std_ULogic (I)

Indicates the size of the CLCW data word to be transferred. Only used when both 16 and 32 bit
CLCW data width support is implemented. The PTME should be reset after each change.

8.18.2 CLCWData: CLCW parallel data: Std_Logic_Vector(0 to 31) (I)

Synchronous parallel CLCW data input when the external synchronous interface option is
selected. Should not change out side the CLCWWrite window.

8.18.3 CLCWWrite: CLCW write permission: Std_ULogic (O)

Indicates when CLCWData can be modified when the external synchronous interface is used.

8.18.4 CLCWOverWrite: Overwrite bits 16 and 17: Std_ULogic (I)

Indicates that bit 16 and 17 should be overwritten with the contents of the two following inputs.
The PTME should be reset after each change.

8.18.5 CLCWNoRFAvail: No RF Available, bit 16: Std_ULogic (I)

8.18.6 CLCWNoBitLock: No Bit Lock, bit 17: Std_ULogic (I)

8.18.7 TCId0: Virtual Channel Identifier setting: Std_Logic_Vector(0 to 5) (I)

Virtual Channel Identifier setting for CLCW transmitted while CLCWSel is asserted.

8.18.8 TCId1: Virtual Channel Identifier setting: Std_Logic_Vector(0 to 5) (I)

Virtual Channel Identifier setting for CLCW transmitted while CLCWSel is de-asserted.

8.18.9 CLCWClk: Clock: Std_ULogic (I)

Clock input used for generation of TTC-B-01 protocol.

8.18.10 CLCWSel: CLCW selection: Std_ULogic (I)

Selection between TCId0/TTCD0 or TCId1/TTCD1 transmission as part of the CLCW.

8.18.11 TTCSample: Packet delimiter: Std_ULogic (O)

This signal is the packet delimiter for the interface.

8.18.12 TTCClk: Bit clock: Std_ULogic (O)

This signal is the bit clock for the interface. The data are sampled on the rising TTCClk edge.

8.18.13 TTCD0: Data: Std_ULogic (I)

Data sampled on the rising TTCClk edge when CLCWSel is de-asserted.

8.18.14 TTCD1: Data: Std_ULogic (I)

Data sampled on the rising TTCClk edge when CLCWSel is asserted.

PTME-001-01 88
9 PTME VHDL SOURCE CODE DESCRIPTION

The Packet Telemetry Encoder (PTME) model is written in synthesizable VHDL, currently
targeted towards the Synplify synthesis tool from Synplicity, but is also compatible with the
Synopsys Design Compiler. The PTME is an almost fully synchronous design based on a single
system clock strategy. The asynchronous part is related to the different interfaces of the core,
such as the PacketWire (PW) input interface. The model and test benches are written according
to RD4 as far as applicable. The VHDL code complies to VHDL’93, RD5.

9.1 Packages and libraries, interface port and generic types

The following VHDL packages are used in the PTME VHDL model:
• Std.Standard,
• IEEE.Std_Logic_1164, IEEE.Std_Logic_Arith
• AMBA_Lib.AMBA
• PTME_Lib.PTME_Configuration, PTME_Lib.PTME_Definition

The PTME VHDL model interfaces does not comply to the normally required Std_ULogic and
Std_Logic_Vector types, RD4, since it often uses the UnSigned array type.

The recommended target library for the PTME VHDL model is PTME_Lib. Note that the
AMBA interface can be located in another library than AMBA_Lib, but this will require a
modification of the PTME VHDL code.

There are no generics used for the top entity in the PTME VHDL model.

9.2 Compilation order

The compilation order for the PTME is as follows:
• AMBA_Lib: amba.vhd
• PTME_Lib: ptme_lib.vhd

The compilation order for the PTME test bench is as follows:
• CCSDS_Lib: ccsds_lib.vhd
• PTME_TB_Lib: ptme_tb.vhd

9.3 Simulation

A testbench is provided with the PTME VHDL model which can be used to set up verification
runs. The output from the simulation is in ASCII text format and can be processed off line to
verify the Reed-Solomon encoder, the Turbo encoder and the telemetry encoder. The testbench
is configured with the same configuration package as the PTME VHDL model. The testbench
will adapt itself to the selected PTME configuration.

PTME-001-01 89
9.4 Model hierarchy

The PTME VHDL model hierarchy is listed in table 60.

PTME_Configuration (package)
PTME_Definition (package)
PacketTelemetryEncoder (PTME)

VirtualChannelEncoder (VCE) Telemetry
Encoder
(TME)VirtualChannelAssembler (VCA)

VirtualChannelMultiplexer (VCM)
VirtualChannelBuffer (VCB)

PacketAsynchronous (PA)
PacketAPB (PAPB)
PacketParallel (PP)
PacketWire (PW)
TurboEncoder (TE)

Turbo_Control
Turbo_ConstituentEncoders
Turbo_Interleaver
Turbo_Table

RS_Package (package)
ReedSolomonEncoder (RSE)

RS_Adder
RS_Ctrl
RS_Multiplier
RS_SerialShift
RS_Memory

RS_MemoryBlock
RS_MemoryLatch

PseudoRandomiser (PSR)
ConvolutionalEncoder (CE)
NonReturnZero (NRZ)
SplitPhase (SP)
ClockDivider (CD)

Table 60: PTME VHDL model hierarchy

PTME-001-01 90
APPENDIX A: THEORETICAL BACKGROUND ON REED-SOLOMON CODING

This appendix is based on the textbooks RD11 and RD12, and on the ESA and CCSDS
standards AD3 and AD4, respectively.

A.1 Reference documents

RD11 Error-Control Coding for Computer Systems, T. Rao et al., Prentice-Hall International,
1989, USA

RD12 Coded-Modulation Techniques for Fading Channels, S. Jamil et al., Kluwer Academic
Publishers, 1994, USA

A.2 Reed-Solomon encoding

Cyclic codes are linear codes having the property that for a given code any cyclic shift of a
codeword is also a codeword. Cyclic codes are characterised by using a polynomial
representation for codewords and manipulation of polynomials for encoding and decoding
procedures.

An (n, k) cyclic code has the length n of which k symbols are information symbols.

A codeword polynomial of such a code can be represented as

where

Polynomial a(x) is called the information polynomial and is of degree k-1 or less corresponding
to the k information symbols ak-1, ak-2, ..., a1, a0, to be encoded.

Polynomial c(x) is called the codeword polynomial and is of degree n-1, corresponding to the
encoded information polynomial.

The variable x is a dummy variable only used for indicating the strength or the position of the
corresponding coefficients.

Polynomial g(x) is called the generator polynomial and is of degree r = n-1. The generator
polynomial has two properties: its coefficients g0 and gr are always non zero; and it divides
xn+1. Using a polynomial of degree n-k which is a factor of xn+1 we can generate an (n, k)
cyclic code.

Bose-Chaudhuri-Hocquenghem (BCH) codes are a subclass of cyclic codes, where the symbols
are chosen from a Galois field GF(q), with the generator polynomial having roots in GF(qm*),
an extension field of GF(q).

c x() a x() g x()⋅=

c x() cn 1– xn 1– cn 2– xn 2– ... c1x c0+ + + +=

a x() ak 1– xk 1– ak 2– xk 2– ... a1x a0+ + + +=

g x() grx
r gr 1– xr 1– ... g1x g0+ + + +=

PTME-001-01 91
Reed-Solomon codes are a subclass of BCH codes, where GF(q) and GF(qm*) are chosen to be
the same. The rest of the discussion will be restricted to Reed-Solomon codes with symbols
from GF(2m). More on operations in GF(2m) can be found in appendix A.3.

An (n, k) primitive Reed-Solomon code defined over GF(2m) has a code length of n = 2m-1 and
a minimum Hamming distance of n-k+1. The number of symbols is n and the number of check
symbols is n-k. The minimum Hamming distance is dmin = n-k+1. A code can correct any
combination of t errors and detect up to d errors (d ≥ t) if and only if dmin ≥ t+d+1. Each symbol
is an element of GF(2m).

The generator polynomial of a Reed-Solomon code can be constructed as the least common
multiple of the minimal polynomials of n-k consecutive powers of the primitive elements of
GF(2m), i.e. αh, αh+1, ..., αh+n-k+1, where h is an integer. This means that the generator
polynomial of a Reed-Solomon code can be written as

With different values of h, h different generator polynomials can be formed. For

with odd k, g(x) is a self-reciprocal polynomial, i.e.

A self-reciprocal generator polynomial has its coefficients satisfying the following relation

Using self-reciprocal generator polynomials will reduce the number of calculations to be
performed in a Reed-Solomon encoder.

The previous definition of the codeword polynomial calculation for an information polynomial
forms a non-systematic codeword, i.e. the information and check symbols are mixed, making it
difficult to extract the information symbols. One can however construct a codeword where the
first part contains the information symbols and the last part contains the check symbols,
according to the following transformations. It shall be noted that a codeword must contain the
generator polynomial g(x) as a factor.

Let us multiply the information polynomial a(x) with xn-k. A division of a(x)xn-k with g(x)
results in the quotient q(x) and the reminder r(x)

g x() x αh 1++()
i 0=

n k– 1–

∏ gjx
j

j 0=

n k–

∑= =

h k 1+() 2⁄=

g x() xn k– g 1
x

 =

gj gn k– j–=

a x()xn k–

g x()
---------------------- q x() r x()

g x()
----------+=

PTME-001-01 92
which can be rewritten as

and finally rewritten as

where q(x) is of degree k-1, and r(x) is per definition of one degree less than g(x) which is r-1
= n-k-1. The reminder r(x) can be represented as

The codeword of a dummy information polynomial q(x) is according to previous definitions

where c(x) is indeed a factor of g(x). It can also be seen that the first part of the codeword
contains the information symbols and the last part the check symbols

The remainder polynomial r(x) of the division a(x)/g(x) can be calculated using the Linear
Feedback Shift Register in figure 15, characterised by the equation

which with r = n-k implements the desired encoder. Note that all additions and multiplications
of symbols are made in GF(2m).

Figure 15: Codeword polynomial generator

a x()xn k– q x()g x() r x()+=

a x()xn k– r x()+ q x()g x()=

r x() a x()xn k– modg x() rix
i

i 0=

r 1–

∑ rix
i

i 0=

n k– 1–

∑= = =

c x() q x()g x() a x()xn k– r x()+= =

c x() a x()xn k– r x()+ cix
i

i n k–=

n 1–

∑ cix
i

i 0=

n k– 1–

∑+ aix
n k– i+

i 0=

k 1–

∑ rix
i

i 0=

r 1–

∑+= = =

xrmodg x() gr 1– xr 1– gr 2– xr 2– ... g1x x0+ + + +=

1 x xr-1

ss’

0
1

a(x)

c(x) = a(x)xn-k+r(x)

g0 g1 gr-1

PTME-001-01 93
A.3 Galois fields

A finite Galois field GF(2) contains two elements 0 and 1. The two operations addition and
multiplication are defined as:

The element 0 and 1 are the additive identity and the multiplicative identity elements of GF(2),
respectively. A polynomial of degree m defined over GF(2) is represented as

where fi’s are elements in GF(2), i.e., fi = 0 or 1. A polynomial f(x) of degree m with coefficients
in GF(2) is said to be irreducible if it is not divisible by any polynomial with coefficients in
GF(2) of degree less than m and greater than zero.

The finite field GF(2m) is an extension of GF(2) generated from and irreducible polynomial f(x)
of degree m over GF(2). Equivalently, GF(2) is a subfield of GF(2m), i.e., the elements of GF(2)
are also elements of GF(2m). The finite field GF(2m) also has its primitive element α which is
the (2m-1)th root of unity, that is

The finite field GF(2m) contains 2m elements: 0, 1, α, α2, ..., α(2**m-2). The irreducible
polynomial f(x) of degree m over GF(2) has no roots in GF(2) but its roots lie in some extension
field of GF(2). If f(x) has the primitive element α of GF(2m) as a root, then it is called a primitive
irreducible polynomial. In this case, αi with i ≤ m can be represented in term of 1, α, α2, ..., αm-
1, by using the fact that αi is also a root of f(x), that is

An arbitrary element β of GF(2m) can be represented as a binary m-tuple

Addition Multiplication

+ 0 1 * 0 1

0 0 1 0 0 0

1 1 0 1 0 1

f x() fix
i

i 0=

m

∑=

α 2m 1–() 1=

f αi() 0=

β βm 1– βm 2– ... β1 β0, , , ,()=

PTME-001-01 94
In this case, the zero element is represented as 0 = (0, 0,..., 0). For 0 ≤ i ≤ (m-1), the binary
components of the m-tuple representing β = αi satisfy the following relation

Let β and γ be two arbitrary elements of GF(2m) represented in terms of the primitive element
α and binary m-tuples as

Addition in GF(2m) is defined as

where

Multiplication in GF(2m) is defined as

The logical implementation of the addition is straightforward, since the bit wise + operator can
be implemented as an xor-gate. Note that subtraction is identical to addition. The logical
implementation of the multiplication is somewhat more complicated. Lets start with a look at
the polynomial representation of the multiplication

βj
1 ifj, i=

0 elsewhere,

= for j 0 1 ... m 1–(), , ,{ }=

β αi βm 1– βm 2– ... β1 β0, , , ,()= =

γ αj γm 1– γm 2– ... γ1 γ0, , , ,()= =

β γ+ θ θm 1– θm 2– ... θ1 θ0, , , ,()= =

θi βi γi+= for i 0 1 ... m 1–(), , ,{ }=

β 0⋅ 0=
β 1⋅ β=

β γ⋅ θ αi αj⋅ α i j+()mod 2m 1–()= = =

β γ⋅ θ βm 1– xm 1– ,..., β1x β0+ + +() γm 1– xm 1– ,..., γ1x γ0+ + +()⋅= =

PTME-001-01 95
The result of the expansion of this expression for degree m = 8 can be represented as a matrix

where the top row contains the coefficient of x14 being c14 = β7γ7, the next row contains the
coefficient of x13 being c13 = (β7γ6+β6γ7), and so on down to the coefficient of x0 being c0 =
β0γ0. The powers from 8 to 14 of x (i.e. m to m-1+m-1) can be expressed in powers of x ranging
from 0 to 7 (i.e. 0 to m-1) according to a mapping as defined by the field polynomial f(x) of
degree m defining the Galois field. This can be achieved by simple matrix manipulation. First
we collapse the upper part of the matrix to a vector for which each element is the sum si of the
elements in the corresponding row of the matrix

β γ⋅

β7γ7 0 0 0 0 0 0 0

β7γ6 β6γ7 0 0 0 0 0 0

β7γ5 β6γ6 β5γ7 0 0 0 0 0

β7γ4 β6γ5 β5γ6 β4γ7 0 0 0 0

β7γ3 β6γ4 β5γ5 β4γ6 β3γ7 0 0 0

β7γ2 β6γ3 β5γ4 β4γ5 β3γ6 β2γ7 0 0

β7γ1 β6γ2 β5γ3 β4γ4 β3γ5 β2γ6 β1γ7 0

β7γ0 β6γ1 β5γ2 β4γ3 β3γ4 β2γ5 β1γ6 β0γ7

0 β6γ0 β5γ1 β4γ2 β3γ3 β2γ4 β1γ5 β0γ6

0 0 β5γ0 β4γ1 β3γ2 β2γ3 β1γ4 β0γ5

0 0 0 β4γ0 β3γ1 β2γ2 β1γ3 β0γ4

0 0 0 0 β3γ0 β2γ1 β1γ2 β0γ3

0 0 0 0 0 β2γ0 β1γ1 β0γ2

0 0 0 0 0 0 β1γ0 β0γ1

0 0 0 0 0 0 0 β0γ0

⇔

β7γ7()

β7γ6 β6γ7+()

β7γ5 β6γ6 β5γ7+ +()

β7γ4 β6γ5 β5γ6 β4γ7+ + +()

β7γ3 β6γ4 β5γ5 β4γ6 β3γ7+ + + +()

β7γ2 β6γ3 β5γ4 β4γ5 β3γ6 β2γ7+ + + + +()

β7γ1 β6γ2 β5γ3 β4γ4 β3γ5 β2γ6 β1γ7+ + + + + +()

s14

s13

s12

s11

s10

s9

s8

=

PTME-001-01 96
A matrix corresponding to the coefficients of α8 to α14 (i.e. αm to α2m-2) for the field
polynomial f(x) is shown here

By multiplying the vector containing the sums si as a scalar to the corresponding row elements
of the matrix containing the coefficients α8 to α14 of the field polynomial f(x), the following
matrix is obtained

This matrix is then concatenated with the lower part of the matrix containing the expansion of
the multiplication of the two polynomials β and γ, which results in a final matrix where the sum
of each row corresponds to the coefficients (θm-1, ..., θ0) of the product between β and γ

Multiplication with a constant in a fixed Galois field is somewhat more simple and is used in
the calculation of the reminder as explained for Reed-Solomon codes. Assume that β is the
variable and γ is the constant to be multiplied with. By collapsing the matrix above and factoring
out β, the following matrix can be obtained. The vector containing β is multiplied as a scalar to

f α14() ... f α8(), ,{ }

f147
f146

f145
f144

f143
f142

f141
f140

f137
f136

f135
f134

f133
f132

f131
f130

f127
f126

f125
f124

f123
f122

f121
f120

f117
f116

f115
f114

f113
f112

f111
f110

f107
f106

f105
f104

f103
f102

f101
f100

f97
f96

f95
f94

f93
f92

f91
f90

f87
f86

f85
f84

f83
f82

f81
f80

⇔

s14

s13

s12

s11

s10

s9

s8

f147
f137

f127
f117

f107
f97

f87

f146
f136

f126
f116

f106
f96

f86

f145
f135

f125
f115

f105
f95

f85

f144
f134

f124
f114

f104
f94

f84

f143
f133

f123
f113

f103
f93

f83

f142
f132

f122
f112

f102
f92

f82

f141
f131

f121
f111

f101
f91

f81

f140
f130

f120
f110

f100
f90

f80

f147
s14 f137

s13 f127
s12 f117

s11 f107
s10 f97

s9 f87
s8

f146
s14 f136

s13 f126
s12 f116

s11 f106
s10 f96

s9 f86
s8

f145
s14 f135

s13 f125
s12 f115

s11 f105
s10 f95

s9 f85
s8

f144
s14 f134

s13 f124
s12 f114

s11 f104
s10 f94

s9 f84
s8

f143
s14 f133

s13 f123
s12 f113

s11 f103
s10 f93

s9 f83
s8

f142
s14 f132

s13 f122
s12 f112

s11 f102
s10 f92

s9 f82
s8

f141
s14 f131

s13 f121
s12 f111

s11 f101
s10 f91

s9 f81
s8

f140
s14 f130

s13 f120
s12 f110

s11 f100
s10 f90

s9 f80
s8

⇒»

f147
s14 f137

s13 f127
s12 f117

s11 f107
s10 f97

s9 f87
s8 β7γ0 β6γ1 β5γ2 β4γ3 β3γ4 β2γ5 β1γ6 β0γ7

f146
s14 f136

s13 f126
s12 f116

s11 f106
s10 f96

s9 f86
s8 0 β6γ0 β5γ1 β4γ2 β3γ3 β2γ4 β1γ5 β0γ6

f145
s14 f135

s13 f125
s12 f115

s11 f105
s10 f95

s9 f85
s8 0 0 β5γ0 β4γ1 β3γ2 β2γ3 β1γ4 β0γ5

f144
s14 f134

s13 f124
s12 f114

s11 f104
s10 f94

s9 f84
s8 0 0 0 β4γ0 β3γ1 β2γ2 β1γ3 β0γ4

f143
s14 f133

s13 f123
s12 f113

s11 f103
s10 f93

s9 f83
s8 0 0 0 0 β3γ0 β2γ1 β1γ2 β0γ3

f142
s14 f132

s13 f122
s12 f112

s11 f102
s10 f92

s9 f82
s8 0 0 0 0 0 β2γ0 β1γ1 β0γ2

f141
s14 f131

s13 f121
s12 f111

s11 f101
s10 f91

s9 f81
s8 0 0 0 0 0 0 β1γ0 β0γ1

f140
s14 f130

s13 f120
s12 f110

s11 f100
s10 f90

s9 f80
s8 0 0 0 0 0 0 0 β0γ0

θ7

θ6

θ5

θ4

θ3

θ2

θ1

θ0

⇒

PTME-001-01 97
the corresponding row elements of the matrix, which results in a final matrix where the sum of
each row corresponds to the coefficients (θm-1, ..., θ0) of the product between β and γ

β7

β6

β5

β4

β3

β2

β1

β0

f γα7()7 f γα7()6 f γα7()5 f γα7()4 f γα7()3 f γα7()2 f γα7()1 f γα7()0

f γα6()7 f γα6()6 f γα6()5 f γα6()4 f γα6()3 f γα6()2 f γα6()1 f γα6()0

f γα5()7 f γα5()6 f γα5()5 f γα5()4 f γα5()3 f γα5()2 f γα5()1 f γα5()0

f γα4()7 f γα4()6 f γα4()5 f γα4()4 f γα4()3 f γα4()2 f γα4()1 f γα4()0

f γα3()7 f γα3()6 f γα3()5 f γα3()4 f γα3()3 f γα3()2 f γα3()1 f γα3()0

f γα2()7 f γα2()6 f γα2()5 f γα2()4 f γα2()3 f γα2()2 f γα2()1 f γα2()0

f γα()7 f γα()6 f γα()5 f γα()4 f γα()3 f γα()2 f γα()1 f γα()0

f γ()7 f γ()6 f γ()5 f γ()4 f γ()3 f γ()2 f γ()1 f γ()0

θ7

θ6

θ5

θ4

θ3

θ2

θ1

θ0

⇒»

PTME-001-01 98
A.4 Derivation of ESA standard from CCSDS recommendation

Since the definition of the (255, 223) Reed-Solomon code differs between the ESA standard,
AD3, and the CCSDS recommendation, AD4, a theoretical derivation of the ESA standard from
the CCSDS recommendation is performed hereafter, showing the required equivalence.

A.4.1 CCSDS standard

The field polynomial in AD4 is specified as

The generator polynomial, in the case of E=16, in AD4 is specified as

Where n = 255, k = 223 and h = 112 results in a self-reciprocal generator polynomial

By expanding the generator polynomial the following coefficients are obtained:

Coefficients of gccsds(x) Polynomial in αccsds

g0 = g32 α0

g1 = g31 α249

g2 = g30 α59

g3 = g29 = g13 = g19 α66

g4 = g28 α4

g5 = g27 α43

g6 = g26 α126

g7 = g25 α251

g8 = g24 α97

g9 = g23 α30

g10 = g22 α3

g11 = g21 α213

g12 = g20 α50

g14 = g18 α170

g15 = g17 α5

g16 α24

Table 61: Coefficients of the generator polynomial gccsds(x) as per AD4

fccsds x() x8 x7 x2 x 1+ + + +=

gccsds x() x α11j–()
i 112=

143

∏ gj xj⋅
j 0=

32

∑= =

h k 1+() 2⁄ 112⇒ 223 1+() 2⁄= =

PTME-001-01 99
The input and output data from the decoder shall be in the dual basis representation as per AD4
where ι0 is transmitted first. Note that the order has been reversed compared to the GF
representation otherwise used in this text. Note also that this new representation is the dual basis
to a basis βccsds, with the relation βccsds = αccsds

117. The following transformation matrix Tccsds
specifies the new basis

The following matrix T-1
ccsds specifies the revers transformation

A.4.2 ESA standard

The field polynomial in AD3 is specified as

The generator polynomial in AD3 is specified as

Powers of the primitive element α are roots in the ESA generator polynomial gesa(x), whereas
powers of the eleventh power of the primitive element α, i.e. α11, is used in CCSDS generator
polynomial gccsds(x). To obtain the same generator polynomial for the CCSDS and ESA
standards the relationship between the field polynomials fesa(x) and fccsds(x) should be αesa =
αccsds

11.

ι0 ι1 ι2 ι3 ι4 ι5 ι6 ι7 α7 α6 α5 α4 α3 α2 α1 α0

1 0 0 0 1 1 0 1
1 1 1 0 1 1 1 1
1 1 1 0 1 1 0 0
1 0 0 0 0 1 1 0
1 1 1 1 1 0 1 0
1 0 0 1 1 0 0 1
1 0 1 0 1 1 1 1
0 1 1 1 1 0 1 1

×=

α7 α6 α5 α4 α3 α2 α1 α0 ι0 ι1 ι2 ι3 ι4 ι5 ι6 ι7=

1 1 0 0 0 1 0 1
0 1 0 0 0 0 1 0
0 0 1 0 1 1 1 0
1 1 1 1 1 1 0 1
1 1 1 1 0 0 0 0
0 1 1 1 1 0 0 1
1 0 1 0 1 1 0 0
1 1 0 0 1 1 0 0

×

fesa x() x8 x6 x4 x3 x2 x 1+ + + + + +=

gesa x() x αi+()
i 112=

143

∏ gj xj⋅
j 0=

32

∑= =

PTME-001-01 100
It can be shown that this relation is indeed valid for the two polynomials. By assuming for a
moment that the ESA polynomial fesa(x) is unknown, the following can be deduced from the
above relation. For the powers 0 to 7 of αesa we know the corresponding 8-tuple by the
definition of a Galois field, as shown in table 62.

We also know the 8-tuples for the powers 0, 11, 22, .., 77 of αccsds since we know the field
polynomial fccsds(x). From table 62 it can be deduced that an ESA 8-tuple can be formed from
a CCSDS 8-tuple according to the equations in table 63. Since the coefficients of α8 in GF(28)
define the corresponding field polynomial, the polynomial fesa(x) can be obtained by inserting
αccsds

88 = (0, 1, 0, 0, 0, 0, 1, 0) (which corresponds to αesa
8) in to table 63 and solve the resulting

equation system, as done in the ten steps shown in table 64 and table 65.

αesa
powers of αesa

α7α6α5α4α3α2α1α0 αccsds
powers of αccsds

α7α6α5α4α3α2α1α0

α0 00000001 α0 00000001

α1 00000010 α11 10101101

α2 00000100 α22 10111110

α3 00001000 α33 00111010

α4 00010000 α44 00111100

α5 00100000 α55 11011100

α6 01000000 α66 01010110

α7 10000000 α77 11001010

Table 62: Relationship between αesa and αccsds

Polynomial in fccsds(x) Coefficients of polynomial in fesa(x)

x0 = x1+x0

x1 = x7+x6+x3+x2

x2 = x6+x5+x4+x2+x1

x3 = x7+x5+x4+x3+x2+x1

x4 = x6+x5+x4+x3+x2+x1

x5 = x4+x3+x2+x1

x6 = x7+x6+x5

x7 = x7+x5+x2+x1

Table 63: Forming an fesa(x) 8-tuple from an fccsds(x) 8-tuple

PTME-001-01 101
The resulting polynomial fitting the equations in table 63 is

which is indeed equivalent to the field polynomial fesa(x) as defined in AD3.

Polynomial in

fccsds

Coefficients of polynomial

in fesa(x)
Step 1 Step 2 Step 3 Step 4

0 = x0 x1+x0 x0=x1

1= x1 x7+x6+x3+x2 1=x5+1+x3+x0

0 = x2 x6+x5+x4+x2+x1 0=1+x5+x3

0 = x3 x7+x5+(x4+x3+x2+x1) x5=x7

0 = x4 x6+x5+x4+x3+x2 0=1+x5+x0

0 = x5 x4+x3+x2+x1 x3=x4

1 = x6 x7+x6+x5 x6 = 1

0 = x7 x7+x5+x2+x1 x0=x1=x2

Table 64: Derivation of fesa(x) by solving the equation system for fesa(α8)

Step 5 Step 6 Step 7 Step 8 Step 9 fesa(α8)

1=x5+1+x3+x0 0=x5+x3+x0 0=x5+x5+1+x5+1 x5=0 x7=0 x0=1

0=1+x5+x3 x3=x5+1 x3=1 x4=1 x1=1

0=1+x5+x0 x0=x5+1 x0=1 x1=x2=1 x2=1

x3=1

x4=1

x5=0

x6=1

x7=0

Table 65: Continued derivation of fesa(x)

f x() x8 x6 x4 x3 x2 x 1+ + + + + +=

PTME-001-01 102
By expanding the generator polynomial previously defined the following constants are obtained

Each coefficient of the generator polynomial gesa(x) is expressed in powers of αesa and also in
powers of αccsds following the relations αesa = αccsds

11. Note that the coefficients expressed in
αccsds are the same as for gccsds(x).

The input and output data from the decoder shall be in the basis representation as per AD3 where
ι0 is transmitted first. Note that the order has been reversed compared to the GF(28)
representation otherwise used in this text. The following transformation matrix Tesa specifies
the new basis

Coefficients of gesa(x) Polynomial in αesa Polynomial in αccsds

g0 = g32 α0 α0

g1 = g31 α69 α249

g2 = g30 α214 α59

g3 = g29 = g13 = g19 α6 α66

g4 = g28 α209 α4

g5 = g27 α143 α43

g6 = g26 α81 α126

g7 = g25 α46 α251

g8 = g24 α32 α97

g9 = g23 α165 α30

g10 = g22 α93 α3

g11 = g21 α228 α213

g12 = g20 α190 α50

g14 = g18 α85 α170

g15 = g17 α70 α5

g16 α234 α24

Table 66: Coefficients of the generator polynomial gesa(x) as per AD3

ι0 ι1 ι2 ι3 ι4 ι5 ι6 ι7 α7 α6 α5 α4 α3 α2 α1 α0

0 0 1 1 0 1 1 1
0 1 0 1 1 1 1 1
1 0 0 0 0 1 1 1
0 0 0 0 1 0 0 1
0 0 1 1 1 1 1 1
0 0 1 0 1 0 1 1
0 1 1 1 1 0 0 1
0 1 1 1 1 0 1 1

×=

PTME-001-01 103
The following matrix T-1
esa specifies the revers transformation

By applying all elements of GF(28) over fesa(x) to the above transformation matrix, and then do
the same for all elements of GF(28) over fccsds(x) to the previously defined transformation
matrix, one can easily observe that the two standards map input and output data to the elements
of GF(28)esa and GF(28)ccsds consistently with the αesa = αccsds

11 relation.

Finally, both standards form a generator polynomial g(x) with equivalent coefficients, both
standards map to the same input and output data. It is therefore reasonable to believe that both
standards specify the same Reed-Solomon encoder.

The specified Reed-Solomon code can correct up to 16 symbol errors (= t) and detect up to 16
errors (= d), since dmin = n-k+1, where dmin = 33, n = 255 and k = 223, and the two relations dmin
≥ t+d+1 and d ≥ t both hold.

A.5 Parallel multiplication in dual basis

The reason for employing the conversion to the dual basis as has been shown earlier is that a bit
serial multiplier which uses few discrete components can be used, as per AD4. However, this
bit serial multiplier is protected by the patent RD8 which would pose restrictions on any
implementation using it. Instead, a parallel multiplier can be developed which is suitable for
VLSI design having a modest gate count.

Based on the circuitry for generating the reminder polynomial shown in figure 15, a
straightforward implementation of a Reed-Solomon encoder can be achieved. Since the
generator polynomial is specified in the normal basis, as opposed to the dual basis in which
input and output data is represented, a transformation is necessary on the input and output of the
encoder. But observing that for all representations of GF(28) the addition operator is the same,
and that only the multiplication operator is related to the field polynomial f(x), one can perform
the multiplication and the input and output conversions in a single matrix operation. This will
be shown hereafter.

Data is input to the encoder in the dual basis representation and is transformed to normal basis
representation by multiplication with the reverse transformation matrix T-1. The resulting data
is then multiplied with a coefficient of g(x) which is constant and can be done as previously
shown in section A.3. Thereafter there are only additions performed which are independent of
GF(28) representation. The data is then fed back to the multiplier again. When the data is output,

α7 α6 α5 α4 α3 α2 α1 α0 ι0 ι1 ι2 ι3 ι4 ι5 ι6 ι7=

1 1 1 0 1 1 0 1
0 1 0 1 1 1 1 1
0 0 0 1 0 1 1 1
0 1 0 1 1 0 1 0
1 0 0 0 1 0 0 0
0 1 0 1 0 1 1 0
0 0 0 0 0 0 1 1
1 0 0 1 1 0 0 0

×

PTME-001-01 104 of 104
Copyright © 2005 Gaisler Research. This document may be used and distributed provided that this statement
is retained and that any derivative work acknowledges the origin of the information. All information is provided
as is, there is no warranty that it is correct or suitable for any purpose, neither implicit nor explicit.

it is first converted to the dual basis representation by multiplication with the transformation
matrix T. The data flow and conversions can be described as

Since all three matrixes are of size 8-by-8, and the only manipulations of the data between the
matrix operations is by addition, the three matrixes can be merged into one by regular matrix
multiplication after being transposed to take into account the different bit ordering between the
two representations

For example, the following matrix multiplications produces the matrix used for multiplication
with the constant α143 in GF(28) over fesa(x) where the variable is in dual basis representation.
The constant α143 corresponds to the coefficient g5 of gesa(x), which is also equivalent to g5 of
gccsds(x)

This matrix can now be used for multiplication with g5 as shown below, where each element of
the input vector is multiplied as a scalar to each element in the corresponding row. Each row is
then summed to form the corresponding element in the output vector.

ι0 .. ι7 T 1–× α7 .. α0

α7

..
α0

fα γα7()7 .. fα γα7()0

..
fα γ()7 .. fα γ()0

α'7
..

α'0

α'7 .. α'0 T×⇒ ⇒»⇒ ι'0 .. ι'7= =

Ttrans
1–

fα γα7()7 .. fα γα7()0

..
fα γ()7 .. fα γ()0

× Ttrans×
m77

.. m70

..
m07

.. m00

=

1 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1
0 1 0 1 0 1 1 0
1 0 0 0 1 0 0 0
0 1 0 1 1 0 1 0
0 0 0 1 0 1 1 1
0 1 0 1 1 1 1 1
1 1 1 0 1 1 0 1

0 0 1 1 0 0 0 1
1 0 1 1 0 1 1 1
1 1 1 1 0 1 0 0
0 1 1 1 1 0 1 0
0 0 1 1 1 1 0 1
1 0 1 1 0 0 0 1
1 1 1 1 0 1 1 1
1 1 0 1 0 1 0 0

1 1 1 0 1 1 0 0
1 1 1 1 1 0 1 0
1 1 1 0 0 0 0 1
1 0 0 1 0 0 0 0
1 1 1 1 1 1 0 0
1 1 0 1 0 1 0 0
1 0 0 1 1 1 1 0
1 1 0 1 1 1 1 0

××

1 1 0 0 0 0 0 1
1 0 1 0 0 0 0 1
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
1 0 0 1 0 1 0 0
0 0 0 0 1 0 1 1
1 0 0 0 0 1 0 1
1 0 0 0 0 0 1 1

=

f ι() g5⋅ f ι'()

ι7

ι6

ι5

ι4

ι3

ι2

ι1

ι0

⇔

1 1 0 0 0 0 0 1
1 0 1 0 0 0 0 1
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
1 0 0 1 0 1 0 0
0 0 0 0 1 0 1 1
1 0 0 0 0 1 0 1
1 0 0 0 0 0 1 1

ι'7
ι'6
ι'5
ι'4
ι'3
ι'2
ι'1
ι'0

⇒»=

	Packet Telemetry Encoder (PTME) VHDL Model
	Table of contents
	1 INTRODUCTION
	1.1 Scope
	1.2 Introduction
	1.3 Applicable standards and limitations
	1.4 Commissioned and non-commissioned functions
	1.5 Configuration at compile time and during operation
	1.6 Not implemented
	1.7 Applicable documents
	1.8 Applicable VHDL source code
	1.9 Reference documents
	1.10 Acronyms and abbreviations
	1.11 Reed-Solomon code patent
	1.12 Turbo code patent
	1.13 Change history

	2 CONVENTIONS
	2.1 Advanced Microcontroller Bus Architecture
	2.2 Consultative Committee for Space Data Systems
	2.3 Galois Field
	2.4 Telemetry Transfer Frame format
	2.5 Reed-Solomon encoder data format
	2.6 Turbo encoder data format
	2.7 Attached Synchronisation Marker
	2.8 Command Link Control Word
	2.9 Source Packet
	2.10 Asynchronous bit serial data format
	2.11 Waveform formats

	3 OVERVIEW
	4 MODULE SPECIFICATIONS
	4.1 Packet Telemetry Encoder (PTME)
	4.2 Telemetry Encoder (TME)
	4.2.1 Implementation options selected at compile time
	4.2.2 Transfer Frame generation
	4.2.2.1 Operational configuration
	4.2.2.2 Attached Synchronisation Marker
	4.2.2.3 Transfer Frame lengths
	4.2.2.4 Transfer Frame Primary Header
	4.2.2.4.1 Frame Identification
	4.2.2.4.2 Master Frame Counter
	4.2.2.4.3 Virtual Channel Frame Counter
	4.2.2.4.4 Frame Data Field Status

	4.2.2.5 Transfer Frame Secondary Header
	4.2.2.5.1 Secondary Header Identifier
	4.2.2.5.2 Secondary Header Data

	4.2.2.6 Transfer Frame Data Field
	4.2.2.6.1 Supported formats
	4.2.2.6.2 Data fetch
	4.2.2.6.3 Idle Transfer Frame generation

	4.2.2.7 Transfer Frame Trailer
	4.2.2.7.1 Operation Control Field
	4.2.2.7.2 Frame Error Control Word

	4.2.2.8 Coding space

	4.2.3 Bandwidth allocation and selection
	4.2.4 Time strobe
	4.2.5 Virtual Channels
	4.2.5.1 Operational configuration
	4.2.5.2 Data buffering
	4.2.5.3 Idle Source Packet generation
	4.2.5.4 Input interfaces
	4.2.5.4.1 PacketWire interface (PW)
	4.2.5.4.2 PacketParallel interface (PP)
	4.2.5.4.3 PacketAsynchronous interface (PA)
	4.2.5.4.4 PacketAPB interface (PAPB)

	4.3 Reed-Solomon Encoder (RSE)
	4.4 Turbo Encoder (TE)
	4.5 Pseudo-Randomiser (PSR)
	4.6 Non-Return-to-Zero Mark encoder (NRZ)
	4.7 Convolutional Encoder (CE)
	4.8 Split-Phase Level modulator (SP)
	4.9 Clock Divider (CD)

	5 MODULE DESCRIPTIONS
	5.1 Telemetry Encoder (TME)
	5.2 Virtual Channel Encoder (VCE)
	5.2.1 Virtual Channel Assembler (VCA)
	5.2.2 Virtual Channel Multiplexer (VCM)
	5.2.3 Virtual Channel Buffer (VCB)
	5.2.3.1 Memory bandwidth allocation
	5.2.3.2 Memory area allocation
	5.2.3.3 Memory interface
	5.2.3.3.1 Error Correction and Detection (EDAC)

	5.2.3.4 AMBA AHB master interface
	5.2.3.5 Configuration example

	5.3 Reed-Solomon Encoder (RSE)
	5.3.1 Adder
	5.3.2 Check symbol memory
	5.3.3 Parallel multiplier
	5.3.4 Serial shift and parallel hold registers
	5.3.5 Control

	5.4 Turbo Encoder (TE)
	5.4.1 Interleaver
	5.4.2 Constituent encoders
	5.4.3 Table
	5.4.4 Control

	5.5 Pseudo-Randomiser (PSR)
	5.6 Non-Return-to-Zero Mark encoder (NRZ)
	5.7 Convolutional Encoder (CE)
	5.8 Split-Phase Level modulator (SP)
	5.9 Clock Divider (CD)
	5.10 Packet Telemetry Encoder (PTME)
	5.10.1 Connectivity
	5.10.2 Limitations

	6 MODULE INTERFACES
	6.1 Multiple input interfaces
	6.2 Virtual Channel Interface (VCI) definition
	6.3 PTME Internal Bus (PIB or PI-bus) definition
	6.4 Virtual Channel Request (VCR) definition

	7 PTME DESIGN OPTIONS
	8 PTME INTERFACES
	8.1 System interface
	8.1.1 Reset_N: Synchronised reset: Std_ULogic (I)
	8.1.2 Clk: System clock: Std_ULogic (I)

	8.2 Bit rate interface
	8.2.1 BitClk: Bit clock: Std_ULogic (I)

	8.3 Memory allocation interface
	8.4 General configuration interface
	8.4.1 AltASM: Enable alternate ASM: Std_ULogic (I)
	8.4.2 TimeMode: Time rate selection: Std_Logic_Vector(0 to 3) (I)
	8.4.3 FrameLen: Transfer Frame length selection: Std_Logic_Vector(0 to 2) (I)
	8.4.4 SCId: Spacecraft Identifier: Std_Logic_Vector(0 to 9) (I)
	8.4.5 IdleFlexVCId: Flexible VC Id for Idle Transfer Frames: VCPTRType (I)
	8.4.6 IdleSecHeader: Secondary Header for Idle Transfer Frames: Std_ULogic (I)
	8.4.7 IdleSegmentLen: Segment Length Identifier for Idle Transfer Frames: Std_Logic_Vector(0 to 1...
	8.4.8 OPCF: Operational Control Field enable: Std_ULogic (I)
	8.4.9 FECW: Frame Error Control Word enable: Std_ULogic (I)
	8.4.10 ReedSolomon: Reed-Solomon coding enable: Std_ULogic (I)
	8.4.11 Turbo: Turbo coding enable: Std_ULogic (I)
	8.4.12 TurboRate: Reed-Solomon coding rate: Std_Logic_Vector(0 to 1) (I)
	8.4.13 Pseudo: Pseudo-Randomiser enable: Std_ULogic (I)
	8.4.14 Mark: Non-Return-to-Zero - Mark enable: Std_ULogic (I)
	8.4.15 Convolute: Convolutional encoding enable: Std_ULogic (I)
	8.4.16 ConvoluteRate: Convolutional coding rate: Std_Logic_Vector(0 to 1) (I)
	8.4.17 Split: Split-Phase - Level enable: Std_ULogic (I)
	8.4.18 EdacEnable: EDAC enable: Std_ULogic (I)
	8.4.19 EdacParallel: Parallel EDAC selection: Std_ULogic (I)
	8.4.20 WaitStateRd: Wait states for read access: WaitStateType (I)
	8.4.21 WaitStateWr: Wait states for write access: WaitStateType (I)
	8.4.22 OutputBitRate: Output bit rate selection: ClockPtrType (I)

	8.5 Virtual Channel Assembler configuration interfaces
	8.5.1 FlexVCId: Virtual Channel Identifier selection: VCPtrMatrixType (I)
	8.5.2 PollThreshold: Poll count threshold: Std_Logic_Vector(0 to 2) (I)
	8.5.3 RdyThreshold: Memory availability threshold: Std_Logic_Vector(0 to 1) (I)
	8.5.4 DynamicFHP: Dynamic FHP enable: Std_ULogic (I)
	8.5.5 SecHeader: Secondary Header Flag: Std_ULogic (I)
	8.5.6 Sync: Data Field Synchronisation Flag: Std_ULogic (I)
	8.5.7 PktOrder: Packet Order Flag: Std_ULogic (I)
	8.5.8 SegmentLen: Segment Length Identifier: Std_Logic_Vector(0 to 1) (I)
	8.5.9 PktVersion: Packet Order Flag: Std_ULogic (I)
	8.5.10 BaudRate: Baud rate selection: Std_Logic_Vector(0 to 1) (I)
	8.5.11 IgnorParity: Ignore parity bit: Std_ULogic (I)
	8.5.12 TwoStopBits: Two stop bits: Std_ULogic (I)

	8.6 Virtual Channel Interface (VCI)
	8.7 PacketWire (PW) input interface
	8.7.1 PWValid: Packet delimiter: Std_ULogic (I)
	8.7.2 PWClk: Bit clock: Std_ULogic (I)
	8.7.3 PWData: Data: Std_ULogic (I)
	8.7.4 PWRdy: Ready for paket: Std_ULogic (O)
	8.7.5 PWBusy_N: Not ready for data: Std_ULogic (O)
	8.7.6 PWAbort: Abort paket: Std_ULogic (I)
	8.7.7 PWEmpty: No packet in buffer: Std_ULogic (O)

	8.8 PacketAsynchronous (PA) input interface
	8.8.1 PAValid_N: Packet delimiter: Std_ULogic (I)
	8.8.2 PAData: Data: Std_ULogic (I)
	8.8.3 PARdy: Ready for paket: Std_ULogic (O)
	8.8.4 PABusy_N: Not ready for data: Std_ULogic (O)
	8.8.5 PAAbort: Abort paket: Std_ULogic (I)
	8.8.6 PAEmpty: No packet in buffer: Std_ULogic (O)

	8.9 PacketParallel (PP) input interface
	8.9.1 PPValid_N: Packet delimiter: Std_ULogic (I)
	8.9.2 PPData: Data: Octet (I)
	8.9.3 PPWr_N: Octet write strobe: Std_ULogic (I)
	8.9.4 PPRdy: Ready for paket: Std_ULogic (O)
	8.9.5 PPBusy_N: Not ready for data: Std_ULogic (O)
	8.9.6 PPAbort: Abort paket: Std_ULogic (I)
	8.9.7 PPEmpty: No packet in buffer: Std_ULogic (O)

	8.10 PacketAPB (PAPB) input interface
	8.10.1 PRESETn: Synchronised reset: Std_ULogic (I)
	8.10.2 PCLK: Interface clock: Std_ULogic (I)
	8.10.3 PAPBIn: Interface input: APB_Slv_In_Type (I)
	8.10.3.1 PSEL: Slave select: Std_ULogic (I)
	8.10.3.2 PENABLE: Enable strobe: Std_ULogic (I)
	8.10.3.3 PADDR: Address bus: Std_Logic_Vector(PAMAX-1 downto 0) (I)
	8.10.3.4 PWRITE: Write strobe: Std_ULogic (I)
	8.10.3.5 PWDATA: Write data bus: Std_Logic_Vector(PDMAX-1 downto 0) (I)

	8.10.4 PAPBOut: Interface output: APB_Slv_Out_Type (O)
	8.10.4.1 PRDATA: Read data bus: Std_Logic_Vector(PDMAX-1 downto 0) (O)

	8.10.5 PAPBRdy: Ready for paket: Std_ULogic (O)
	8.10.6 PAPBBusy_N: Not ready for data: Std_ULogic (O)
	8.10.7 PAPBEmpty: No packet in buffer: Std_ULogic (O)

	8.11 Memory test interface
	8.12 Memory interface
	8.12.1 CS_N: Memory chip select: Std_ULogic (O)
	8.12.2 Wr_N: Memory write strobe: Std_ULogic (O)
	8.12.3 Rd_N: Memory read strobe: Std_ULogic (O)
	8.12.4 Address Memory address: StdAddrType (O)
	8.12.5 Data: Memory data: Octet (I/O)

	8.13 EDAC interface
	8.13.1 Edac: EDAC check bit data: Octet (I/O)
	8.13.2 EdacErr: EDAC error flags: Std_Logic_Vector (0 to 1) (I/O)

	8.14 AMBA AHB master interface
	8.14.1 AHBMasterIn: Interface input: AHB_Mst_In_Type (I)
	8.14.1.1 HGRANT: Bus grant: Std_ULogic (I)
	8.14.1.2 HREADY: Transfer done: Std_ULogic (I)
	8.14.1.3 HRESP: Response type: Std_Logic_Vector(1 downto 0) (I)
	8.14.1.4 HRDATA: Read data bus: Std_Logic_Vector(HDMAX-1 downto 0) (I)

	8.14.2 AHBMasterOut: Interface output: AHB_Mst_Out_Type (O)
	8.14.2.1 HBUSREQ: Bus request: Std_ULogic (O)
	8.14.2.2 HLOCK: Lock request: Std_ULogic (O)
	8.14.2.3 HTRANS: Transfer type: Std_Logic_Vector(1 downto 0) (O)
	8.14.2.4 HADDR: Transfer type: Std_Logic_Vector(HAMAX-1 downto 0) (O)
	8.14.2.5 HWRITE: Read / Write: Std_ULogic (O)
	8.14.2.6 HSIZE: Transfer size: Std_Logic_Vector(2 downto 0) (O)
	8.14.2.7 HBURST: Burst type: Std_Logic_Vector(2 downto 0) (O)
	8.14.2.8 HPROT: Protection control: Std_Logic_Vector(32 downto 0) (O)
	8.14.2.9 HWDATA: Write data bus: Std_Logic_Vector(HDMAX-1 downto 0) (O)

	8.15 Telemetry test interface
	8.16 Channel Access Data Unit output interface
	8.16.1 TimeStrobe: Time strobe: Std_ULogic (O)
	8.16.2 CADUSyncMark: ASM delimiter: Std_ULogic (O)
	8.16.3 CADUFrameMark: Transfer frame delimiter: Std_ULogic (O)
	8.16.4 CADUClk: CADU clock: Std_ULogic (O)
	8.16.5 CADUOut: CADU data: Std_ULogic (O)
	8.16.6 CADUOddFrame: Odd numbered Transfer Frame: Std_ULogic (O)
	8.16.7 CADUG1Out: Convoluted CADU data: Std_ULogic (O)
	8.16.8 CADUG2Out: Convoluted CADU data: Std_ULogic (O)

	8.17 Bandwidth Allocation Table interface
	8.17.1 BatPriority: Priority mode: Std_ULogic (I)
	8.17.2 BatRegister: Register file: BatFileType (I)
	8.17.3 BatWrite: Register file write permission: Std_ULogic (O)
	8.17.4 BatCS_N: Chip select: Std_ULogic (I)
	8.17.5 BatRW_N: Read/Write indicator: Std_ULogic (I)
	8.17.6 BatA: Address: BatAddressType (I)
	8.17.7 BatD: Data: BatDataType (I/O)

	8.18 Operation Control Field / CLCW / TTC-B-01 interface
	8.18.1 CLCWLength: CLCW data transfer length: Std_ULogic (I)
	8.18.2 CLCWData: CLCW parallel data: Std_Logic_Vector(0 to 31) (I)
	8.18.3 CLCWWrite: CLCW write permission: Std_ULogic (O)
	8.18.4 CLCWOverWrite: Overwrite bits 16 and 17: Std_ULogic (I)
	8.18.5 CLCWNoRFAvail: No RF Available, bit 16: Std_ULogic (I)
	8.18.6 CLCWNoBitLock: No Bit Lock, bit 17: Std_ULogic (I)
	8.18.7 TCId0: Virtual Channel Identifier setting: Std_Logic_Vector(0 to 5) (I)
	8.18.8 TCId1: Virtual Channel Identifier setting: Std_Logic_Vector(0 to 5) (I)
	8.18.9 CLCWClk: Clock: Std_ULogic (I)
	8.18.10 CLCWSel: CLCW selection: Std_ULogic (I)
	8.18.11 TTCSample: Packet delimiter: Std_ULogic (O)
	8.18.12 TTCClk: Bit clock: Std_ULogic (O)
	8.18.13 TTCD0: Data: Std_ULogic (I)
	8.18.14 TTCD1: Data: Std_ULogic (I)

	9 PTME VHDL SOURCE CODE DESCRIPTION
	9.1 Packages and libraries, interface port and generic types
	9.2 Compilation order
	9.3 Simulation
	9.4 Model hierarchy

	APPENDIX A: THEORETICAL BACKGROUND ON REED-SOLOMON CODING
	A.1 Reference documents
	A.2 Reed-Solomon encoding
	A.3 Galois fields
	A.4 Derivation of ESA standard from CCSDS recommendation
	A.4.1 CCSDS standard
	A.4.2 ESA standard

	A.5 Parallel multiplication in dual basis

