
Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 1 / 50

DELTA

“Development of SpaceWire and CAN SystemC
Transaction Level Models for ESA IP cores”

SpaceWire TLM User Manual

FINAL

PUBLIC

Date: 25 November, 2010

Prepared by:

Qualtek Sprl.
36 Avenue Gabriel Emile Lebon, B-1160, Brussels, Belgium

For:

ESA-ESTEC
Keplerlaan 1, Postbus 299, 2200 AG Noordwijk, The Netherlands

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 2 / 50

Page intentionally blank

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 3 / 50

TITLE

SpaceWire TLM User Manual

DELTA

“Development of SpaceWire and CAN SystemC Transaction Level Models for
ESA IP cores”

COPYRIGHT

Copyright © 2010 Qualtek Sprl., Brussels, Belgium

CONFIDENTIALITY

DISTRIBUTION

Public X ESA-ESTEC

Qualtek Sprl. Government Confidential

Military Confidential

REVISION HISTORY

Version Date Author Status

1.0 2 June, 2010 Nikos Mouratidis PRE-FINAL

1.1 15 June, 2010 Nikos Mouratidis PRE-FINAL

1.2 21 June, 2010 Dimitris Tsaimos PRE-FINAL

1.3 30 June, 2010 Nikos Mouratidis PRE-FINAL

1.4 28 September, 2010 Dimitris Tsaimos FINAL

1.5 25 November, 2010 Dimitris Tsaimos FINAL

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 4 / 50

List of Changes

Index Change Description Revision Date

1

2

3

4

5

Minor editing/corrections

Addition of Section 5, minor additions to other sections

References to intermediate code version removed

Description adapted to the changes in the implementation

Modifications suggested at the Final Review

1.1

1.2

1.3

1.4

1.5

15-06-10

21-06-10

30-06-10

28-09-10

25-11-10

DOCUMENT APPROVED BY:

PROJECT
MANAGER

QUALITY
MANAGER

MANAGING
DIRECTOR

CUSTOMER’S

REPRESENTATIVE

Date:

Name:

Dr. N. Mouratidis

Signature:

Date:

Name:

Signature:

Date:

Name:

Signature:

Date:

Name:

Signature:

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 5 / 50

Table Of Contents
Paragraph Page

 SCOPE .. 8
1.1 IDENTIFICATION... 8
1.2 OVERVIEW ... 8
1.3 DEFINITIONS ... 9
1.4 DOCUMENT OVERVIEW ... 9

 APPLICABLE DOCUMENTS .. 10
2.1 ORDER OF PRECEDENCE ... 10

 DEFINITIONS .. 11
3.1 TERMS AND DEFINITIONS .. 11
3.2 C++ CODE TERMS AND DEFINITIONS .. 11

 CONFIGURATION MANAGEMENT ... 12
4.1 DIRECTORY STRUCTURE .. 12
4.2 MODEL CONFIGURATION ... 14

 SPACEWIRE CODEC TLM MODEL TIMING .. 15
5.1 SPACEWIRE TLM TRANSACTION DELAYS .. 15
5.2 IMPACT OF RTL MODEL CONFIGURATION OPTIONS ON DELAYS .. 16

 FUNCTIONAL OVERVIEW ... 17
6.1 SYSTEM OVERVIEW .. 17
6.2 FUNCTIONS ... 17
6.3 CONFIGURATION OVERVIEW ... 18

 MODEL ABSTRACTION LEVELS .. 19

 BUILDING THE MODEL ... 20
8.1 NATIVE COMPILATION .. 20
8.2 MODELSIM COMPILATION .. 21
8.3 MODELSIM TEST-BENCH OUTPUT ... 22

 MODEL DEPLOYMENT .. 25
9.1 SPACEWIRE TLM MODEL CONFIGURATION ... 25
9.2 SPACEWIRE TLM MODEL INSTANTIATION .. 29

 TLM MODEL HOST-SIDE TRANSACTIONS .. 32
10.1 TLM-2.0 TRANSACTION EXECUTION FLOW ... 32
10.2 TLM-2.0 CODING STYLES SUPPORT .. 33
10.3 TLM-2.0 DEBUG INTERFACE .. 34
10.4 STATUS REGISTER ... 34
10.5 CONTROL REGISTER ... 36
10.6 TRANSMITTER FIFO .. 37
10.7 RECEIVER BUFFER .. 37
10.8 READING/WRITING TIMECODES FROM/TO THE SPACEWIRE CODEC TLM .. 38

 TLM MODEL NETWORK-SIDE TRANSACTIONS .. 39
11.1 SPACEWIRE TRANSACTION EXECUTION FLOW ... 39
11.2 NETWORK-SIDE TRANSACTIONS CODING STYLES SUPPORT ... 40

 CONCLUSIONS .. 43

APPENDIX A.- DELTA SYSTEMC-ONLY TEST-BENCH DESCRIPTION ... 44
A.1. TEST-BENCH ARXCHITECTURE ... 44
A.2. DATA GENERATION AND VERIFICATION ... 44
A.3. HOST SYSTEM CONFIGURATION ... 45
A.4. PACKET ERROR INJECTION MECHANISM .. 46

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 6 / 50

A.5. TEST-BENCH OPERATION .. 46
A.6. TEST-BENCH TERMINATION ... 47
A.7. DELTA TEST-BENCH SYSTEMC PROCESSES .. 48

LIST OF ACRONYMS .. 49

REFERENCES ... 50

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 7 / 50

List of Tables
Table Page

Table 1: Overall code structure of SpaceWire TLM .. 13

Table 2: Overall structure of the RTL test-bench .. 13

Table 3: SpaceWire TLM Tx delay types ... 15

Table 4: SpaceWire TLM Rx delay types ... 16

Table 5: SpaceWire CODEC TLM configuration parameters (CDeltaSpacewConfig) 28

Table 6: CODEC TLM observation points compiler directives .. 29

Table 7: SpaceWire CODEC TLM-2.0 targets .. 33

Table 8: CODEC TLM status register fields ... 35

Table 9: CODEC TLM control register fields .. 36

Table 10: Host emulator configuration class parameters .. 45

Table 11: Host emulator observation points ... 46

List of Figures
Figure Page

Figure 1: SpaceWire CODEC TLM directory structure ... 12

Figure 2: SpaceWire CODEC TLM block diagram ... 17

Figure 3: Delta transactor block diagram ... 18

Figure 4: Example of configuration class instantiation .. 31

Figure 5: Example of model instantiation ... 31

Figure 6: CODEC TLM-2.0 transaction execution flow ... 32

Figure 7: CODEC TLM-2.0 AT transaction timing diagram ... 33

Figure 8: Status register read example .. 35

Figure 9: Control register write example .. 37

Figure 10: Transmitter FIFO write example .. 37

Figure 11: Time code write example .. 38

Figure 12: SpaceWire network-side transaction execution ... 40

Figure 13: SpaceWire network-side transactions timing diagram ... 41

Figure 14: SpaceWire transaction execution flow ... 42

Figure 15: SystemC-only testbench topology ... 44

Figure 16: CHostEmulator processes and relating logic ... 47

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 8 / 50

 SCOPE

1.1 IDENTIFICATION

This document presents the usage of the SpaceWire TLM 2.0 core delivered by DELTA. It aims at
providing the details necessary for a core user to utilise the model within a system-wide model.

1.2 OVERVIEW

The DELTA project has delivered a TLM 2.0 model of the SpaceWire IP that was already in
existence in the form of a RTL core written in VHDL. The objective of the current project has been to
provide leverage for the attainment of simulation models that execute faster and natively (i.e.
without the need for a separate simulator application) on a host platform. The present document
describes how the establishment of a system-wide model making use of the SpaceWire core is
possible, using the developed core.

Although the core was, as stated before, targeting the instantiation of a standalone simulation
environment, where the simulation kernel constitutes part of the model itself, it was agreed as part
of the project related validation, that the TLM core would be assessed against the existing RTL IP.
As such, the necessary infrastructure was put in place to allow the mixed simulation of a TLM
(SystemC) core and a VHDL testbench. Since this infrastructure was created, utilisation of the
developed TLM within it is also discussed in this document.

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 9 / 50

1.3 DEFINITIONS

Shall

Identifies the mandatory requirements on the item or items. Statements which include the shall
statement are to be considered as the only requirements to be tested or otherwise validated.

Should

Suggests an approach that is to be assumed as the approach to be taken and is a reflection of the
current status at the time of document issue. Terms such as 'may' or 'can' also fall into this advisory
but not mandatory category.

Will

Indicates factors that are imposed on the scope of this specification from outside and is to be
regarded as a definition of factors that are mandatory by implication.

1.4 DOCUMENT OVERVIEW

This document is identified as follows:

Document type - User Manual

Document identifier - 0310-01-004-01

Revision - 1.5

Issue Date - 25 November, 2010

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 10 / 50

 APPLICABLE DOCUMENTS

The following documents of the exact issue shown form a part of this specification to the extent
specified herein.

RFQ/3-12785/09/NL/JK/al The Request For Quotation provides details on the expected form of
the delivered model in terms of use cases, as well as compatibility with
or dependency on simulation tools.

Revision. -, November 10, 2009

OSCI TLM-2.0 LANGUAGE
REFERENCE MANUAL

The LRM defines the classification, nomenclature, and details of the
applicable coding style with reference to the model use cases.

Revision. JA32, July, 2009

SpaceWire CODEC IP -
User Manual

The User Manual of the RTL IP core provides grounds for the utilisation
of the TLM together with the developed transactor in simulations,
replacing the RTL IP

Revision. 2.4, March 27, 2009

2.1 ORDER OF PRECEDENCE

In the event of a conflict between the text of this specification and the references cited herein,
except references to higher-level program-unique specifications for this program, the text of
this specification takes precedence. Nothing in this specification however, supersedes applicable
laws and regulations, unless a specific exemption has been obtained.

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 11 / 50

 DEFINITIONS

3.1 TERMS AND DEFINITIONS

Bit rate Number of bits transmitted/received every second

byte Eight bits of information

DDR Double data rate. Two bits of data transmitted for each transmit clock period.

FCT Flow control token. Transmitter sends one FCT when room in receive buffer for eight
more N-chars.

N-char Data character, EOP or EEP.

Null Control code transmitted by SpaceWire link to keep connection with other end.

SDR Single data rate. One bit of data transmitted for each transmit clock period.

3.2 C++ CODE TERMS AND DEFINITIONS

The term ".h file" is used in this document to refer to the public interface file because of the long-
standing Unix/C practice of using a ".h" extension to the file name, although other operating systems
and compilers may require a different extension. The term ".cpp file" is used in this document to
refer to an implementation file for similar historical reasons.

The interface file provides a single point of declaration of the data entities and functions provided by
a particular module. The interface is #included in all modules which refer to or make use of the data
entities and functions provided. Sections of the interface file are not copied into other modules.

The contents of the interface file are surrounded by #ifdef/#endif pre-processor directives in order to
avoid problems of multiple inclusion.

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 12 / 50

 CONFIGURATION MANAGEMENT

4.1 DIRECTORY STRUCTURE

The directory structure of the SpaceWire CODEC TLM is shown in the following diagram:

root

SystemcSources

CControlReg

CDeltaSpacewTract

CDeltaTestbench

CHostEmulator

cmake_modules

CRxDecode

CSpacewireTop

CSpacewLinkTop

CSpwTarget

CSpwInitiator

CStatusReg

CTlmTarget

CTxEncode

CUntimedFifo

DeltaReporting

DeltaScMain

DeltaSpacewHeaders

ScEnumTrace

SpacewSerial

RtlTestbench

GenTb

TbPkg

Top

UutTb

verif

cmd

SpwrTb

Figure 1: SpaceWire CODEC TLM directory structure

The SpaceWire CODEC sources, as well as the transactor sources are located under the
SystemcSources directory, whereas the VHDL sources of the RTL test-bench along with the
command files and scripts necessary to build the mixed SystemC-VHDL design and run the
simulations are located under the RtlTestbench directory.

A description of the SpaceWire CODEC SystemC sources directory is presented in Table 1:

Directory Description of contents

CControlReg SpaceWire CODEC SystemC model control register

CDeltaSpacewTract The SpaceWire CODEC transactor class

CDeltaTestbench The class implementing the SpaceWire CODEC SystemC-only test-
bench

CHostEmulator Traffic generator for the SystemC-only test-bench

CRxDecode Receiver and decoding logic

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 13 / 50

Directory Description of contents

CSpacewireTop Top level module of SpaceWire CODEC TLM

CSpacewLinkTop Top level module of SpaceWire CODEC network i/f, encapsulating the
CODEC transmitter and receiver

CSpwInitiator SpaceWire TLM protocol initiator class, implementing the SpaceWire
initiator i/f towards the SpaceWire link

CSpwTarget SpaceWire TLM protocol target class, implementing the SpaceWire
target i/f to the SpaceWire link

CStatusReg The SpaceWire CODEC status register

CTlmTarget TLM-2.0 Target class implementing the TLM-2.0 target i/f towards the
host system

CTxEncode Transmitter and encoder logic

CUntimedFifo FIFO model for host interfacing option

DeltaReporting Reporting functions for the creation of logs and monitors

DeltaScMain The SystemC-only test-bench entry point, implementing the sc_main
method.

DeltaSpacewHeaders General purpose header files, including the definition of the CODEC
configuration class and classes structures used in packet level
simulations

ScEnumTrace Utility header file used to enable the waveform tracing of SystemC
enumeration values

SpacewSerial The SpaceWire custom protocol and payload implementation

Table 1: Overall code structure of SpaceWire TLM

The description of the RtlTestbench sources directory is presented in Table 2:

Directory Description of contents

GenTb RTL test-bench commands file parser and generic log messages printing
component

SpwrTb VHDL sources of the SpaceWire interface reference implementation,
sources of the components used to generate stimuli and traffic for the
reference implementation, verify data received by the reference
implementation and monitor its status

TbPkg VHDL packages for the test-bench

Top RTL test-bench top-level component, instantiates the VHDL sub-
components along with the CODEC SystemC model

UutTb VHDL sources of the components used to generate traffic and stimuli for
the SpaceWire CODEC, verify data received by the CODEC and monitor
its status

verif scripts necessary to build the mixed VHDL-SystemC testbench and run
the simulations

cmd command files for the control and monitoring components of the RTL
test-bench, used to form individual testing scenarios

Table 2: Overall structure of the RTL test-bench

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 14 / 50

4.2 MODEL CONFIGURATION

The SpaceWire TLM realises both the Loosely Timed and the Approximately Timed coding styles,
as these are defined in the TLM 2.0 Language Reference Manual [1]. In addition, the model
operates on two distinct levels of the SpW standard, namely at the exchange level, and at the
packet level, as defined in [2]. The exchange level deals with transactions where the data quantity
exchanged is the character, while in packet level, as the name suggests, a complete packet is
transferred in every transaction, thus providing a higher level of data abstraction and leading to
faster, albeit less detailed, simulations. Moreover, the user of the model is able to select any of the
four possible combinations between coding styles and data abstraction.

The selection of the coding style, as well as the specification of all other model parameters takes
place through the SpaceWire CODEC configuration class CDeltaSpacewConfig. The defined
parameters are passed to all classes affected by the respective values. Therefore, a single point of
reference and configuration exists for the entire model, and parameters are propagated throughout
the model without the need for further user action. The Spacewire CODEC TLM model is
complemented with a set of controllable observation points, realized as logging messages and VCD
trace file waveforms. The observation points are enabled/disabled via compilation directives.
Additional examples of configuration parameters include CODEC SystemC module names, initiator
and target socket names, as well as custom address assignment to memory-mapped CODEC
registers, such as the transmitter FIFO full flag and the receiver buffer empty flag. For a complete
reference on the configuration options of the SpaceWire CODEC, the reader is referred to the
SpaceWire CODEC Development Manual [6].

Finally, regarding the configuration registers of the SpaceWire CODEC, the corresponding RTL
implementation does not actually implement them; it merely places the relevant input signals on the
interface of the IP core, so that either the simulation test-bench or the surrounding logic can drive
them. The same holds true for the status information generated by the core, for which output signals
are used in the interface. The SpaceWire TLM model realises the corresponding functionality in the
form models of registers, integrated to the host interface. In this manner, the model shall be
controllable at run-time, a feature that is not directly supported by its RTL counterpart. Thus, since
no implemented reference exists, it was decided that the mapping of control and status registers
shall follow that of the SpaceWire core in the Gaisler Research GRLIB [5], and, in particular, that of
GRSPW (as opposed to GRSPW2).

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 15 / 50

 SPACEWIRE CODEC TLM MODEL TIMING

The development of the SpaceWire CODEC TLM model required the identification of the CODEC
operations relating to transactions and the measurement of the corresponding delays, in order to
achieve a timing accuracy level as close as possible to the one offered by the RTL CODEC model.
Towards this end, the RTL CODEC model delays of interest were identified, measured from the RTL
test-benches and assessed against the VHDL code of the RTL IP core.

5.1 SPACEWIRE TLM TRANSACTION DELAYS

Delays extracted from the RTL model are relating to both the transmitter and receiver blocks of the
SpaceWire CODEC RTL model. Specifically, for the transmitter block the following timing
measurements were performed

 start-up sequence delay of the SpaceWire CODEC transmitter,

 delay between a time code being written to the CODEC transmitter block and the transmitter
identifying the time code request from the host system,

 SpaceWire characters transmission delay,

 transmission FIFO write delay,

 recovery controller timing.

The semantics of each delay type are summarized in the table below.

Delay Type Description

transmitter start-up sequence delay Time interval between the transmitter being activated
and the first transition on the transmitter data and
strobe outputs.

time code request delay Time interval defined by the timing point the time
code controller writes a host time code to the
transmitter block and the timing point the transmitter
becomes aware of the time code request, thus
selecting the host time code as the next character to
transmit.

characters transmission delay Time required for the transmitter to output all bits
corresponding to a SpaceWire character to the link,
i.e. the time between the first and last character bit
transmission.

transmission FIFO write delay Time required for the host system to write a
SpaceWire character to the transmission FIFO.
depends on the timing of the actual FIFO deployed
along with the model; for the purposes of the
SpaceWire CODEC TLM model, the FIFO that comes
together with the RTL model was used to extract the
measurements.

transmitter block recovery controller timing The CODEC recovery controller is responsible for
spilling the tail of the current packet when the link is
disconnected as the result of an error. In the RTL
model, the recovery controller operation is based on
a FSM, therefore the actual delay between
successive read operations performed by the
controller during the recovery process.

Table 3: SpaceWire TLM Tx delay types

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 16 / 50

For the receiver block the timing measurements of interest are

 start-up sequence delay of the SpaceWire CODEC receiver,

 the time interval between a time code reception having been completed and the time code
being available to the host system,

 the time interval between a data character reception having been completed and the data
character storage to the receive buffer, from where it can be retrieved by the host system,

 the receive buffer error recovery delay.

The description of each delay type is included in the table below.

Delay Type Description

receiver start-up sequence delay Time interval between the first bit of the first character
being received, and the first character reception
being complete.

time code reception delay The delay between the time code reception and the
time code being available for the host system,
dictated by the time code resynchronization delay.

data character reception delay The delay between the data character reception and
the data character being available for the host
system, dictated by the data characters
resynchronization delay and the data characters
processing stages.

receiver buffer error recovery delay Time interval that elapses between an error in
SpaceWire characters reception being detected –
which causes the transition of the link FSM from the
RUN to the ERROR RESET state – and the receiver
block writing an EEP into the receiver buffer.

Table 4: SpaceWire TLM Rx delay types

The resynchronization delays of the time code and data characters reception are introduced due to
the use of different clock domains by the receiver block and the host system.

5.2 IMPACT OF RTL MODEL CONFIGURATION OPTIONS ON DELAYS

The RTL model contains a variety of configuration options for the SpaceWire CODEC. Amongst
these, the ones that affect the transaction timing are the pipelining configuration option and the
double data rate configuration option.

The pipelining option adds an extra transmitter bit clock period in the transmission of the first data
character, and an additional receiver bit clock period in the reception of the first data character. The
mechanism utilised in the RTL implementation introduces storage within long combinatorial paths,
essentially shortening the critical path, and allowing the system to operate on a higher clock
frequency. Thus, the mechanism introduces one additional clock cycle to the operation of the
respective part of the system, which is compensated for by the higher overall speed the system is
allowed to function at. As far as the TLM is concerned, the activation of the pipeline results in the
addition of the extra clock cycle to the annotated delays. If the clock frequency is not increased, with
respect to the system running with the pipeline disabled, the overall timing of the model shall
indicate that the pipelined version runs slower than the non-pipelined one.

On the other hand, the double data rate configuration option, results in the transmitter block
transmitting two bits every transmit bit clock period, effectively reducing the bit transmission time to
half the time required when the transmitter is not using double data rate for the same transmitter bit
clock.

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 17 / 50

 FUNCTIONAL OVERVIEW

6.1 SYSTEM OVERVIEW

A block diagram of the SpaceWire CODEC and expected usage is given in the following figure.

CTxEncode

SpacewireTop

LinkFSM

write host time codes

enable Txer,
reset Txer,
send FCT

Tx credit error,
FCT sent,
reset link FSM

CRxDecode

Spacewire
TLM

Initiator Socket

to spacewire

network

from spacewire

network

FIFO
i/f

Tx FIFO
(CUntimedFifo)

Rx buffer
(CUntimedFifo)

FIFO
i/f

FIFO
i/f

FIFO
i/f

host i/fnetwork i/f

Spacewire
TLM

Target Socket

SpW
char/packet

SpW
char/packet

Status Register
(CStatusReg)

Status
Reg

i/f

Status
Reg

i/f

Control Register
(CControlReg)

Control
Reg

i/f

Control
Reg

i/f

CSpacewLinkTop

TLM-2.0
Target Socket

tra
n
s
a
c
tio

n
 c

h
e
c
kin

g
 +

a
d

d
re

s
s
 d

e
c
o

d
in

g
 lo

g
ic

write SpW

N-chars

read SpW

N-chars

read network time codes

from

host

read status

write contol

Figure 2: SpaceWire CODEC TLM block diagram

6.2 FUNCTIONS

The transmitter block is implemented in the CTxEncode class. Its duties include reading data from
the transmit FIFO and initiating transactions utilizing the TLM-2.0 interface. In order to adhere to the
SpaceWire protocol flow control, the transmitter block maintains an internal credit counter indicating
the number of data characters it can send across the link. In case the credit counter exceeds the
maximum value defined by the SpaceWire standard – 56 characters – a credit error is identified and
indicated to the link FSM. Additionally, it performs transmitter FIFO error recovery whenever the
transmitter is disabled by the host or a request to flush the transmitter FIFO is issued.

The receiver block is implemented in the CRxDecode class. The receiver block processes incoming
transactions, extracts SpaceWire characters and stores them into the receiver buffer. Time codes
are identified and stored in a separate variable. The time code reception is indicated to the host
system via setting a particular status register byte. Once the host reads the status register value it
can acknowledge the new time code reception and read-in the time code received. The CRxDecode
class also implements the flow control requirements of the SpaceWire protocol, by keeping a record
of the number of entries the receive buffer can accept and requesting FCTs transmission from the
transmitter block. Furthermore, the receiver block implements the SpaceWire link FSM, writes the
status register bytes when necessary, and reads in the control register value whenever its contents
are modified. Both the transmitter and receiver blocks are encapsulated in the CSpacewLinkTop
class, whereas the complete TLM of the SpaceWire CODEC, including the transmitter FIFO,
receiver buffer, status and control registers is enclosed in the CSpacewireTop class

In order to enable the instantiation of the CODEC TLM model in the RTL test-bench of the RTL
SpaceWire CODEC, a VHDL-to-SystemC and SystemC-to-VHDL translation component was
realized, commonly reffered to as transactor.

The transactor functionality is implemented in the CDeltaSpacewTract class. It is responsible for
translating VHDL signals to transactions for interfacing with the TLM model, and vice versa. The
existence of the transactor allows the utilisation of both the RTL test-bench developed for the IP
core, and provides the capability to the user to arbitrarily utilise the SystemC model within a HDL
simulation, provided the deployed simulator is compliant to this mode of operation. The
CSpacewireTop class, which embodies the complete TLM of the SpaceWire CODEC, along with the

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 18 / 50

transactor functionality are encapsulated in the DeltaTransactor class, which constitutes the top
level module instantiated in the VHDL test-bench. As such, the model shall be usable in exactly the
same fashion as its RTL counterpart; in the latter case, the SpaceWire CODEC IP User Manual [3]
shall be applicable to a great extent to guide the utilisation of the model/transactor composite. A
block diagram of the DeltaTransactor component is provided in the figure below.

CSpacewireTop

DeltaTransactor

host
time codes

C
D

e
lt

a
S

p
a

c
e

w
T

ra
c

t

to SpW

network

from SpW

network

host
spacewire

chars

network
spacewire

chars

network
time codes

host i/fSpW link i/f

TLM-2.0
Target i/f

SpW
Initiator

i/f

SpW
Target

i/f

status/
control

host
time codes

RTL tb i/f

Tx FIFO
write i/f

time code
write i/f

time code
read i/f

Rx buffer
read i/f

status
read i/f

control
write i/f

C
D

e
lt

a
S

p
a

c
e

w
T

ra
c

t

DOUT

SOUT

DIN

SIN

Figure 3: Delta transactor block diagram

6.3 CONFIGURATION OVERVIEW

In accordance to its RTL counterpart, the SpaceWire TLM can be configured to suit the applications
of the users as follows:

 Pipelined or non-pipelined.

 DDR outputs or SDR outputs depending the on required data rate and the users selected
technology.

 Transmission clock configuration options to allow an independent transmit clock and default
reference clock therefore greatly increasing the achievable data rate and decoupling the
transmit logic from the system clock logic.

 Capability to discard empty packets - i.e. EOP followed by EOP/EEP and EEP followed by
EOP/EEP.

 Ability to reserve host time codes for transmission even when the link is not running.

 Configurable receive buffer/transmit FIFO size.

Furthermore, a number of user-configurable parameters specific to the TLM implementation have
been introduced. These include the names and IDs of model components, storage width and depth,
etc.

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 19 / 50

 MODEL ABSTRACTION LEVELS

The SpaceWire CODEC model operates at two abstraction levels, the packet and the exchange
level. The abstraction levels are differentiated by the data transfer unit utilized in network-side
transactions. As its name suggests, at the packet level model entire SpaceWire packets are carried
in each transaction between the SpaceWire link ends. Specifically, in the packet level mode of
operation while the interface to the host system remains the same as in the exchange level, meanly
each Tx FIFO/Rx buffer write/read transaction carries a single Spacewire character, a transaction
on the network side is only performed when an entire packet is available in the Tx FIFO. To realize
this approach, the Tx FIFO not empty flag is only asserted when the host system has stored an
entire packet for transmission.

At the exchange level, single SpaceWire characters are carried in both host-side and network-side
transactions. The SpaceWire characters are stored to the transmitter FIFO, mapped by the
transmitter block logic to the custom SpaceWire payload fields and transferred to the other end of
the link via TLM transactions. The other end of the link is expected to extract the SpaceWire
character from the transaction and store it to the receiver buffer if necessary. An in-depth
description of the custom SpaceWire payload, as well as of the data structures used at the packet
level model can be found in [6], whereas example code for writing/reading SpaceWire packets or
characters to/from the transmitter FIFO/receiver buffer, can be found in the class emulating the host
system – CHostEmulator.cpp – instantiated in the example SystemC-only test-bench that comes
along with the model.

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 20 / 50

 BUILDING THE MODEL

8.1 NATIVE COMPILATION

The SpaceWire TLM is developed with the purpose of being deployed in system-level simulation
models, fully comprised of SystemC TLM building blocks. As such, it is a SystemC implementation,
relying on the existence of the SystemC simulation kernel and the TLM library, in order to be
compiled with the use of a C++ compiler. In order to make the compilation of the model files easier,
the build structure is based on the CMake system, and the GNU gcc compiler. The SpaceWire TLM
has been developed using the OSCI SystemC-2.2.0 library, the OSCI TLM-2.0.1 library, and the
Greensocket-4.1.0 library, whereas it has been successfully compiled using gcc-4.4.3.

The organisation of the model encompasses a set of CMakeLists.txt files which describe the
structure of the code and its distribution in files and folders. During the build process, the
CMakeLists.txt file included in every sub-folder instructs the creation of a static library from the *.cpp
files located in the src sub-folder. If the creation of the static library requires header files from other
sub-folders, cmake find_package directives are used to locate the header files necessary.

The SystemC, TLM and Greensockets packages required for the TLM model to be built, are
searched for in the top level CmakeLists.txt so that they become available for all sub-modules. The
SystemC package contains both header files and the SystemC static library while the other two
packages contain only header files. Two alternatives are provided for locating the packages
necessary. The first solution demands the user to manually define the SystemC, TLM, and
Greensocs libraries installation directories during the cmake command-line invocation as follows:

 -DSYSTEMC_INSTALL:string={path to systemc static lib folder, include folder is assumed to
be reachable by appending ../include},

 -DTLM_INSTALL:string={path to TLM installation, include folder is reached by appending
include/tlm},

 -DGREENSOCKS_INSTALL:string={path to Greensockets installation, include folder is
reached by appending greensocket}.

The second option assumes that updatedb has been executed after the installation of the above
packages. The updatedb command may be executed with a local scope (i.e. updatedb --
localpaths='<path to files of interest>'), only to insert to the filesystem database the files of interest.
For each package XXX, a FindXXX.cmake script exists in the cmake-modules subfolder of the
source code tree. The FindXXX.cmake script uses locate to find potential folders containing the
appropriate header files and/or static libraries. In both cases the header/library files in the candidate
folders are checked against the versions used during model development; if the verification
succeeds, the header/library location is assigned to the XXX_INCLUDE_DIRS and/or
XXX_LIBRARIES variables, where XXX is the library name. The SystemC library is considered valid
if version 2.2.0 is reported, whereas the TLM library is considered valid if version “TLM 2.0.1 ---
2009-07-15” is reported. The libraries verification procedure requires compilation and execution of
testing code included in the FindXXX.cmake scripts. The dirline.sh script in the root folder is used by
the FindXXX.cmake scripts.

In order for the code to be fully compiled, the user needs to generate a build folder at the top-level
of the file hierarchy. Using a command console, and once in the aforementioned “build” folder, the
user issues the command:

 cmake ../

or the command

 cmake -DSYSTEMC_INSTALL:string={pathto} -DGREENSOCKS_INSTALL:string={pathto}
 -DTLM_INSTALL:string={pathto} ../

depending on the method used to locate the SystemC, TLM and Greensockets libraries. The cmake
invocation generates the appropriate makefiles, therefore once its execution is completed, the
command

make

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 21 / 50

should be issued, in order to build the complete model. As mentioned earlier, during the model build
process, in the root folder of the project a sub-folder named cmake_modules is created. This folder
is appended to the default cmake path that is used for locating FindXXX.cmake modules that aid the
discovery of packages containing header files and/or static libraries necessary for building the
CODEC TLM model. The final executable DeltaTestbench is created inside the DeltaScMain sub-
folder of the Build directory.

Users of the model may study the source code of the testbench (CDeltaTestbench.cpp) to gain
insight on the instantiation of the model within a virtual platform; they may also use the test-bench
as a template for the creation of such a platform, by adding instantiation of other models or
components.

8.2 MODELSIM COMPILATION

The TLM model produced in DELTA is distributed in two basic folder structures: the former contains
the model files, together with the files utilised by the CMake system; the latter contains VHDL test-
benches and associated command files, as well as Modelsim command files, used for the
compilation of the SystemC and VHDL file, and the loading of the simulation model. The following
text describes the process necessary to compile and instantiate the model within Modelsim.

The provided DeltaRunVerif.tcl file, located in the RtlTestbench/verif sub-folder, is the script that
contains the commands required to build the mixed SystemC-VHDL simulation and load the
simulation scenario the model user wishes to be executed. The DeltaRunVerif.tcl file is in essence a
modification of the run_verif.tcl script used to simulate the RTL CODEC model, including commands
and invocation of scripts to compile the CODEC TLM model. As such, its invocation is identical to
the run_verif.tcl script of the RTL model. Specifically, the script file is run from the Modelsim shell by
issuing the following command when in the RtlTestbench/verif sub-folder

#do DeltaRunVerif.tcl <args>

Script arguments <args> are

-help Prints a help message on how to run the script.

-logwlf Log all signals to wlf files using “add log -r /*” before run -all.

-config <id> Run configuration <id> where <id> can be 1, 2, etc. or can be all
to run the full suite of test configurations. Valid configuration IDs
are in the range 1 – 83.

-config_range <low> <high> Run a range of configurations from low to high inclusive. There are
a total of 83 configurations.

In order for a simulation run to be performed, a specific model configuration or a configuration range
must be specified with the -config <id> or the -config_range <low> <high> arguments.

The DeltaRunVerif.tcl script invokes the DeltaModelComp.tcl file to compile the SpaceWire CODEC
TLM sources. In order for the SystemC sources to be compiled, the following paths must be set-up
inside the DeltaModelComp.tcl script, prior to running the DeltaRunVerif.tcl.

1. SPACEW_SRC_DIR - points to the root of the SystemC sources,

2. SYSTEMC_SRC_DIR – points to the Modelsim SystemC libraries, required by the Modelsim
SystemC compiler, sccom,

3. TLM_SRC_DIR – points to the OSCI TLM library sources,

4. GREEN_SOCKET_DIR – points to the root of the Greensocket library sources.

The DeltaModelComp.tcl script also creates a header file – DeltaMsim.h – inside the
SPACEW_SRC_DIR/DeltaSpacewHeaders/include sub-folder. The particular header file contains
the definitions of SpaceWire CODEC TLM and transactor parameters which are necessary for
compiling the SystemC sources and can not be assigned at run time - specifically the CODEC
transmission FIFO and receiver buffer depths - as well as the width in bits of configurable transactor
input ports.

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 22 / 50

It should be noted that only the AT, exchange level model of the SpaceWire CODEC can be
deployed in the Modelsim simulation, as the packet level model is too abstract for the RTL test-
bench, whereas the LT, exchange level model does not provide the timing accuracy necessary to
execute the RTL model test suite. Additionally, the definition of the kind of log messages the user
wishes the TLM model to print, should be defined in the DeltaModelComp.tcl script by setting the
relating compilation directives to be used when Modelsim invokes the C++ compiler. The CODEC
configuration class instantiation in the CODEC top-level component is defined in the
SPACEW_SRC_DIR/CDeltaSpacewTract/include/CDeltaSpacewTract.h file, which also contains
the instatiation of the top-level SystemC module used in the mixed language simulation, which
encapsulates the transactor and the Spacewire CODEC TLM model. One point to note here, is that
there are a number of CODEC parameters in the Modelsim simulation which are set-up during the
simulation run time and therefore the setting of the particular parameters by the model user has no
effect. The following list summarizes the CODEC TLM configuration class parameters which are
assigned during simulation run time. For each parameter, the corresponding CODEC configuration
class member variable is enclosed in parentheses:

 pipelining configuration (cfgPipeline),

 DDR configuration (cfgDdrOut),

 whether the receiver buffer read clock will be synchronous to the system clock or not
(cfgSyncRdClk),

 the system clock period duration (sysClkPeriod),

 the transmit bit clock period duration (txBitClkPeriod),

 the receive buffer read clock period duration (rdClkPeriod),

 whether time codes will be discarded when the link is not in the RUN state (cfgTickInKeep),

 whether empty packets will be discarded (cfgDiscardEmptyPkt),

 The transmission bit clock configuration (txClkCfg).

This is due to the fact that these parameters are specific to each test configuration and are decided
during the selection of the configuration to be run. In the RTL model simulation, the aforementioned
parameters are either defined via test-bench command files, or in the configuration-specific
working_spwrlink_pkg.vhd file, created by the run_verif.tcl script. In the TLM model, they are
realized as parameter values, assigned to the relating configuration class members during the
transactor class construction. In particular, the DeltaRunVerif.tcl script writes the values of the
aforementioned parameters into a text file – SystemcSpwCodecConfig.txt – and the transactor
constructor reads in and assigns the values to the configuration class members.

The SpaceWire TLM model has been tested with Modelsim SE version 6.5d. It should be noted that
Modelsim comes with a gcc compiler, which is the one utterly used by sccom; the gcc version
included in Modelsim 6.5d is 4.1.2. In case the model user wishes to use another compiler, he/she
may do so by specifying the path to the compiler executable via the -cpppath option of the Modelsim
sccom compiler. The sccom command is invoked in the DeltaModelComp.tcl script.

8.3 MODELSIM TEST-BENCH OUTPUT

During the test runs, the test-bench generates console logs informing the model user about the
simulation progress. The console log messages originate either from the RTL test-bench
components, or from the SpaceWire TLM model components. RTL test-bench logs are preceded by
the current simulation time and contain the command status, as well as the actual RTL test-bench
component command in capitalized letters. For example, the log message

593500 ns: > Command Complete: UUT_DATA_CTRL TRANSMIT_PACKET T150us
AAAA 100 01

informs the model user that the UUT_DATA_CTRL RTL test bench component has completed the
transmission of a SpaceWire packet, and, in particular, it has stored the last SpaceWire character of

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 23 / 50

the packet into the transmit FIFO. For a complete reference of the RTL testbench components
commands, refer to [4].

On the other hand, SpaceWire TLM logs fall under three categories

1. Informational messages,

2. Warning messages,

3. Fatal messages.

All three message types result in log messages being output to the console, whereas fatal
messages also result in the current simulation run being terminated. Each log message consists of
two lines and has the following format: the first line contains the type of the message, the name of
the source file which contains the process that issued the message, the simulation time at which the
log message was issued and the name of the process issuing the message. For instance:

Info:/home/dimitris/Projects/Delta/spacewire/SystemcSources/Debug/CRxDecode/src/CRxDecode.c
pp: 176700 ns - ExecuteLinkFsmM

CODEC_1_RxDecode : 140 - LINK FSM IN RUN STATE

where Info is the message type, the path following the semicolon is the path to the source file,
176700ns is the simulation time at which the message was issued and ExecuteLinkFsmM is the
name of the process issuing the log message. The second line contains the actual log message,
preceded by the SpaceWire CODEC module ID. In the particular case, the log message originates
from the SpaceWire CODEC link FSM - which is implemented inside the receiver block source file
CRxDecode.cpp – and informs the user that the link FSM is in the RUN state.

The exact message types generated depend on the observation points enabled by the model user.
If for example the model user has activated the host target i/f transactions logging in the CODEC
top-level module and the AT model was simulated, a TLM-2.0 transaction log messages sequence
would be the following – the path to the source file has been deliberately trimmed for a better
understanding of the log messages:

Info: /CTlmTargetTop.cpp: 115490 ns - nb_transport_fw

 CODEC_1 : 100 TRANSACTION MOVED TO SEND-RESPONSE PEQ. RETURNING
UPDATED (GP, END_REQ, 0 s) TO FORWARD NB CALL.

Info: /CTlmTargetTop.cpp: 115530 ns - BeginResponseM

 CODEC_1 : 100 STARTING BEGIN RESPONSE METHOD. PERFORMING READ
OPERATION.

Info: /CTlmTargetTop.cpp: 115530 ns - BeginResponseM

 CODEC_1 : 100 CALLING nb_transport_bw(GP, BEGIN_RESP, 0 s).

Info: /CTlmTargetTop.cpp: 115530 ns - BeginResponseM

 CODEC_1 : 100 nb_transport_bw RETURNED COMPLETED (GP, END_RESP, 0 s)

The log message sequence above informs the model user that the SpaceWire top-level module
received a non-blocking forward call at 115290 ns, and placed the relating transaction object into
the payload event queue of the begin response method. Forty nanoseconds later at time 115530ns,
i.e. after one receiver buffer clock cycle has elapsed, the transaction is retrieved from the PEQ and
the Begin Response method is executed. The method performs the command included in the
transaction payload – a TLM_READ command in the particular case – and calls the backward non-
blocking method with a phase equal to BEGIN_RESP and a delay annotation equal to 0ns.
Thereafter, the transaction is completed, since the non-blocking call returned an updated phase
equal to END_RESP.

Upon successful completion of a test scenario, the mixed-language test-bench prints the following
message:

** Failure: Testbench finished (all commands completed)

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 24 / 50

The AT, exchange level model CODEC TLM has successfully passed the entire suite of the RTL
tests – all test scenarios from 1-83, whereas the LT, exchange level model fails on the execution of
the tests, as it does not incorporate the timing accuracy necessary. Specifically, the LT model fails
the majority of the RTL tests due to the timing inaccuracy introduced by the substitution of the
SystemC process used to set the time code transmission request flag with a plain function call. This
has the side effect of not scheduling the setting of the flag indicating the host request for the
transmission of a time code after the delay interval extracted from the RTL model, but setting the
relating flag immediately. During simulation, the CODEC TLM is first instructed to transmit a time
code, and then the Spacewire link FSM is immediately disabled, in order for the time code to not be
transmitted. In the AT model, the delay between the time code transmission request and the
assertion of the time code transmission request flag, ensures that the link is disabled prior to the
assertion of the request flag and therefore the time code is not transmitted. In the LT model
however this delay is not accounted for, therefore the time code transmission request flag is
asserted prior to the link being disabled. Due to the fact that the configuration parameter that
permits a time code request to be reserved even if the link is not in the RUN state is set, the time
code request flag remains asserted until the link enters the RUN state again, and the time code is
transmitted though it should not. The test-bench then fails issuing the following message:

Testbench failed in TB_SPWR_STATUS TICKOUT VAL_ALWAYS_EQUALS T50us T1ns 0

In addition, the RTL test-bench tests scenarios require mechanisms provided by the exchange level
model to be performed, such as flow control and parity checking. Hence, they are not applicable to
the packet-level model implementation of the TLM. For example, the RTL test-bench examines the
detection of various errors by the unit under test, transmitting SpaceWire character sequences
causing such errors. For instance, a receiver credit error is induced to the unit under test via
transmitting more characters than the unit under test has requested, a transmitter credit error is
induced via the transmission of a series of FCTs in order to cause the transmitter of the unit under
test to exceed its maximum credit, or an escape sequence error is generated by transmitting
successive ESC characters. As the packet-level model, in addition to adhering to more relaxed
timekeeping as compared to the exchange-level, cannot by definition support such mechanisms, it
cannot be subjected to the RTL test-bench verification process either.

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 25 / 50

 MODEL DEPLOYMENT

The present chapter provides details on the deployment of the SpaceWire TLM, targeting a
SystemC simulation model. Details on the configuration of the model are provided, and its interface
towards other components for the development of a system-wide model is discussed.

9.1 SPACEWIRE TLM MODEL CONFIGURATION

The SpaceWire TLM model components can be configured via the CODEC configuration class,
which defines a number of public member variables; each variable holds a model configuration
option. The configuration class, namely CDeltaSpacewConfig (CDeltaSpacewConfig.cpp), provides
a centralized configuration point for the entire model, where component-specific parameters are
defined, along with parameters that dictate the system-wide behaviour, extracted from the RTL
model. The SpaceWire CODEC TLM accepts a pointer to the configuration structure as a
constructor argument, thus granting access to the configuration options for the components it
encapsulates. In general, the configuration options fall under the following categories

 simulation type,

 time codes transmission options,

 RTL model extracted options,

 clock period configuration,

 address configuration,

 naming and identification assignment,

 CODEC buffering.

Simulation type options are relating to the CODEC abstraction level used in a simulation, i.e. packet
or exchange, as well as the coding style to be used, LT or AT. Additionally, for packet level
simulations, the model can be configured to ignore errors injected in packets. Time codes
transmission options enable the CODEC to transmit time codes, whereas they also provide a back-
door to circumvent the Spacewire standard requirement that a single node must transmit time codes
in a Spacewire network. However, the particular option allowing a Spacewire CODEC to both
transmit and receive time codes is provided for functional test purposes only, and should not be set
in a realistic simulation scenario.

Options extracted from the RTL model define behavioural and timing aspects of the TLM.
Specifically, the model can be instructed to take into account the timing implications induced by the
use of pipeline and/or double data rate outputs. Additionally, thresholds can be set for the model
programmable empty flag – i.e. the number of SpaceWire N-char entries the receiver buffer should
contain for the flag to be unset; this feature could be used for the incorporation of a DMA controller
in the SoC, which would handle the transfer of N-chars/packets from the receiver buffer to host
system memory. Thresholds can be also set for the maximum number of outstanding N-chars the
CODEC receiver should expect, and consequently the number of FCTs that should be transmitted
by the CODEC. Under normal operating conditions this should be set to the receiver buffer depth,
however smaller values are permitted. It should be noted though that if the value configured
exceeds the buffer storage capability, it is ignored and the buffer depth is used as the outstanding
N-chars limit. Furthermore the maximum transmitter credit allowed – the number of SpaceWire N-
chars the transmitter can send – can be set. The transmitter credit is incremented every time a FCT
is received, and if the credit available exceeds the value configured, a transmitter credit error
occurs. In order to be compliant with the SpaceWire protocol, the maximum transmitter credit should
be set to 56. Finally, the CODEC TLM can be instructed to reserve time codes received from the
host system when the link is not running until the link enters the RUN state, whereas the empty
packets handling behaviour, i.e. whether empty packets are discarded or not, can be set as well.
One point to note here regarding time codes handling, is that the RTL CODEC does not utilize a
buffer to store all time code requests from the host. Therefore, in spite of the system being
configured to reserve time codes, a time code shall be overwritten by the next one. Therefore only
the most recently received time code will be transmitted once the link enters the RUN state.

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 26 / 50

The RTL CODEC model includes a plethora of clock configuration options, the majority of which are
concerned with the way the clocks are physically generated. Since the clocking options have a
direct impact on the deployment of resynchronization flip-flops which are added to the SpaceWire
characters/time codes data path and in certain cases affect the data path timing, they are
incorporated as a configuration parameter. Additionally, for the purposes of the TLM the clock
period durations also affect the timing of data-related operations. Hence, the SystemC CODEC
model system clock, transmission clock and receiver buffer read clock periods can be defined. The
system clock period is used in calculating the delay relating to transmission FIFO operations –
reading the fifo full flag, writing SpaceWire N-chars to the FIFO, reading from and writing to the
status and control register respectively, writing the host time code to the transmitter block and
reading the time code received from the receiver block. The transmission clock affects the
characters transmission timing, as it defines the bit clock period and therefore the time interval
required for a character transmission to be complete. Finally, the read receiver buffer clock affects
the delay of the receiver buffer empty flag and SpaceWire N-chars read operations.

The CODEC address configuration options define the addresses of the CODEC model memory-
mapped locations, in particular the transmission FIFO and receiver buffer along with the relating
full/empty flags addresses, as well as the transmitter block host time code register and receiver
block network time code addresses. Most of the aforementioned locations do not correspond to RTL
model registers, with the obvious example being the FIFO/buffer full/empty flags, but have been
modelled as such in the TLM. Last but not least, the memory map of the CODEC status and control
register was based on the GRSPW SpaceWire core of the GRLIB, thus these addresses are hard-
coded in the codec configuration class as static const variables.

The naming and identification assignment options enable the model user to assign meaningful IDs
and names to the model building blocks, in order to gain observability of the events logged (e.g. to
identify easily which components produced what events in the log). CODEC buffering options allow
for the selection of the transmitter FIFO and receiver buffer depths and widths. However, the width
values should not be set arbitrarily; the selection of the actual buffer width values depends on the
simulation level used – packet or exchange. The overall configuration parameters are summarized
in the following table, in the order they are declared in the CODEC configuration class.

 Parameter Type Description

Simulation Type Options

tlmCodingStyle enum
TTlmCodingStyle

TLM coding style to be used – LT or AT

spwAbstractLevel enum
TSpwAbstractLevel

Simulation abstraction level – packet or
exchange

ignoreErrorInjection bool Ignore errors injected into SpW packets – valid
only for packet level simulations

tcodesSendEnable bool Enables the CODEC TLM to send time-codes. If
set to false, the CODEC will not transmit time
codes received from the host system.

multipleTcodeMasters bool Enables the CODEC TLM to both send and
receive time-codes when set to true, thus
bypassing the Spacewire standard requirement
that a single node in a Spacewire network must
transmit time codes.

RTL model-Extracted Options

spacewMaxCredit unsigned char Maximum transmitter credit allowed – should be
set to 56 for SpW protocol compliance

cfgRxBufProgVal unsigned char Receiver buffer programmable empty flag
threshold. The flag is set to true if the number of
buffer entries <= threshold

cfgDdrOut bool use DDR outputs

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 27 / 50

 Parameter Type Description

cfgPipeline bool Use pipeline in the transmitter and receiver
blocks

cfgTickInKeep bool Keep host time codes when the link is not in the
RUN state

cfgDiscardEmptyPkt bool Discard empty packets – EOP followed by
EOP/EEP, EEP followed by EOP/EEP

cfgMaxCredit unsigned char Maximum N-chars expected – should be set
equal to the receiver buffer depth

txClkCfg enum
TTxClockCfg

Transmission bit clock configuration options, as
defined in [3]

cfgSyncRdClk const bool Indicates whether the receiver buffer read clock
is synchronous to the system clock or not

Clock Period Configuration Options

systemClkPeriod sc_time System clock period

txerBitClkPeriod sc_time Transmission bit clock period

rdClkPeriod sc_time Receiver buffer read clock period

Address Configuration Options

netTcodeAddr unsigned int Time code received register address

hostTcodeAddr unsigned int Time code to transmit register address

rxBufferAddr unsigned int Receiver buffer address

rxBufEmptyFlagAddr unsigned int Receiver buffer empty flag address

rxBufProgFlagAddr unsigned int Receiver buffer programmable flag address

txFifoAddr unsigned int Transmission FIFO address

txFifoFullFlagAddr unsigned int Transmission FIFO full flag address

Component-specific Naming, Identification, Debugging Options

Status Register Options

statusRegId unsigned int Status register ID

Control Register Options

controlRegId unsigned int Control register ID

SpaceWire Top Options

spacewTopId unsigned int SpaceWire top module ID

spacewTopModuleName char* SpaceWire top module name

spwTopTlmTargetSockName char* SpaceWire top TLM-2.0 target socket name

spwTopSerialTargetSockName char* SpaceWire top SpaceWire target socket name

spwTopSerialInitSockName char* SpaceWire top SpaceWire initiator socket name

spacewLinkTopModuleName char* SpaceWire link top module name

Transmitter Options

txId unsigned int Transmitter block ID

txEncodeName char* Transmitter block name

Receiver Options

rxId unsigned int Receiver block ID

rxDecodeName char* Receiver block module name

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 28 / 50

 Parameter Type Description

Receiver Buffer Options

rxBufDepth unsigned int Receiver buffer depth in entries

rxBufWidth unsigned int Receiver buffer width in bytes – should be set to
2 for exchange level and to sizeof(void*) for
packet level

Transmitter FIFO Options

txFifoDepth unsigned int Transmitter FIFO depth in entries

txFifoWidth unsigned int Transmitter FIFO width in bytes – should be set
to 2 for exchange level and to sizeof(void*) for
packet level simulations

Table 5: SpaceWire CODEC TLM configuration parameters (CDeltaSpacewConfig)

As mentioned earlier, the model also caters for configurable debugging options, via a selection of
configurable observation points of the CODEC model operations, as well as the creation of VCD
trace files with waveforms for particular CODEC components. In order to increase simulation speed
by compiling out code relating to the insertion of observation points when necessary, all debugging
options are enabled/disabled via compilation directives instead of configuration class variables. The
actual compilation directives required to enable the corresponding observation points are
summarized in the table below.

Compilation Directive Impact

Status Register Directives

STATUS_REG_LOG Enable the printing of the status register value
whenever it is written

STATUS_REG_LOG_WAVE Enable the creation of a VCD trace file with status
register values

Control Register Directives

CONTROL_REG_LOG_WAVE Enable the creation of a VCD trace file with control
register values

SpacewireTop Directives

TLM_TARGET_TRANS_LOG Enable log messages coming from the implemetation
of the TLM-2.0 target i/f methods, which relate to
TLM-2.0 transactions

SPW_INITIATOR_TRANS_LOG Enable log messages coming from the
implementation of the SpaceWire initiator i/f methods

SPW_TARGET_TRANS_LOG Enable log messages coming from the implemetation
of the SpaceWire target i/f methods

Transmitter Directives

TX_LOG_TRACE Enable the printing of all log messages coming from
the transmitter block

TX_LOG_TCODES Enable the printing of log messages relating to time
codes

TX_LOG_DATA Enable the printing of log messages relating to N-
chars

TX_LOG_FCTS Enable the printing of log messages relating to FCTs
– FCTs that are part of the NULL sequence are not
logged

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 29 / 50

TX_LOG_NULLS Enable the printing of log messages relating to the
transmission of NULLs

TX_LOG_RECOVERY Enable the printing of log messages relating to the
Recovery Controller operation

TX_LOG_WAVE Enable the creation of a VCD trace file for the
transmitter block

Receiver Directives

RX_LOG_TRACE Enable the printing of all log messages coming from
the receiver block

RX_LOG_TCODES Enable the printing of log messages relating to time
codes reception

RX_LOG_DATA Enable the printing of log messages relating to N-
chars reception

RX_LOG_FCTS Enable the printing of log messages relating to FCTs
reception – FCTs that are part of the NULL sequence
are not logged

RX_LOG_NULLS Enable the printing of log messages relating to the
reception of NULLs

RX_LOG_CONTROL_REG Enable the printing of the value of the control register
whenever it is read

RX_LOG_FSM Enable the printing of log messages from the link
FSM

RX_LOG_WAVE Enable VCD trace of the receive block, including the
link state variables of the link FSM

Rx Buffer directives

RX_BUFFER_LOG_WAVE Create VCD trace file with receiver buffer values.
Currently up to 256 bytes may be traced.

Tx FIFO directives

TX_FIFO_LOG_WAVE Create VCD trace file with transmitter FIFO values.
Currently up to 256 bytes may be traced.

Table 6: CODEC TLM observation points compiler directives

9.2 SPACEWIRE TLM MODEL INSTANTIATION

The SpaceWire TLM possesses three distinct interfaces:

a. One SpaceWire initiator type interface for the network side

b. One SpaceWire target type interface for the network side,

c. One TLM-2.0 target type interface for the host side,

All three interface types are connected to the SpaceWire top-level module, which acts as the
communication wrapper for the CODEC TLM. For network side transactions, the Tx logic of the
model prepares transactions, i.e. fills in the custom SpaceWire payload fields and utilizes the top-
level module callback to perform the network-side blocking/non-blocking call. Similarly, the Rx logic
provides a callback used by the top-level module to pass down network-side transactions for further
processing. On the host side, the SpaceWire top-level component performs address decoding on
incoming transactions, and uses the relating component callback to perform the actual transaction,
whether that is targeting the CODEC FIFOs, configuration or status register.

Instantiation of the model in a larger scale simulation or a virtual platform shall end up being as
simple as declaring a constructor of the following form:

SpacewireTop (sc_module_name moduleName, CDeltaSpacewConfig* configStruct)

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 30 / 50

provided the configuration class has been properly instantiated and parameterized in accordance to
the user requirements.

The shows a code snippet that carries out the configuration of the model, by assigning values to
the variable members of the configuration class. Having configured the model, its instantiation, as
well as the instantiation of any component that shall be connected to it, needs to be realised.
Finally, the interconnection between the components shall be defined. The code snippet in Figure 5
presents an example where an instance of the SpaceWire TLM and an instance of a host emulator
are instantiated and interconnected.

 CDeltaSpacewConfig c_uutCodecConfig1 (

 //========== system-wide configuration =================

 TlmCodStyleApproxTimed, //codec TLM coding style

 SpwAbstrXchangeLevel, //model Abstraction level

 false, //ignore error injection

 true, //enable the TLM to send time codes

 true, //if set to true, the TLM may both send

 //and rx time codes without issuing an

 //error

 56, //Spacewire Protocol max credit allowed

 //========== RTL-relating configuration ================

 16, //CODEC programmable empty flag threshold

 false, //DDR outputs

 true, //pipelined Tx + Rx blocks

 false, //Keep time codes when link not running?

 false, //Discard empty packets?

 32, //max number of outstanding Nchars expected

 TxClockCfgSysSlowclkDiv,//Tx bit clock configuration

 false, //Is the read rx buf clock synchronous

 //to the system clock?

 //=========== clock periods set-up ======================

 sc_core::sc_time(5, SC_NS), //system clock period

 sc_core::sc_time(5, SC_NS), //tx clock period

 sc_core::sc_time(20, SC_NS), //read clock for the rx buffer

 //========== CODEC address space configuration ===============

 HostNetTcodeAddress, //network time code register address

 TxTimeCodeRegAddress, //host time code Register Address the host

 //system writes time codes to

 RxBufferAddr, //rx buffer address

 RxBufEmptyFlagAddr, //rx buffer empty flag address

 RxBufProgFlagAddr, //rx buffer programmable flag address

 TxFifoAddr, //tx FIFO address

 TxFifoFullFlagAddr, //tx FIFO full flag address

 //============== status register configuration options ====================

 210, //status register ID

 false, //print log message whenever status register is written

 //============== control register configuration options ===================

 220, //control register ID

 //============== CSpacewireTop module configuration options ===================

 200, //CSpacewireTop module Id

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 31 / 50

 "UUT_CODEC_1", //CSpacewireTop module name

 "UUT_CODEC_1_TlmTargSock", //CSpacewireTop TLM-2.0 target socket name

 "UUT_CODEC_1_SpwTargSock", //CSpacewireTop serial target socket name

 "UUT_CODEC_1_SpwInitSock", //CSpacewireTop serial initiator socket name

 "UUT_CODEC_1_LinkTop", //SpacewireLinkTop module name

 //========= CSpacewireTop module transaction debugging messages options =========

 false, //enable log msgs from TLM target i/f

 //implementations to debug TLM-2.0

 //transactions

 false, //enable log msgs from network initiator

 //i/f to debug SpW Initiator transactions

 false, //enable log msgs from network target

 //i/f to debug SpW Target transactions

 //============== Tx Block configuration options ===========================

 230, //TxEncode ID, used for logging

 "UUT_CODEC_1_TxEncode", //TxEncode module name used by SystemC

 //============== Rx Block configuration options ===========================

 240, //RxDecode ID, used for logging

 "UUT_CODEC_1_RxDecode", //RxDecode module name used by SystemC

 //simulation kernel

 //============== Rx Buffer configuration options ===========================

 32,

 2,

 //============== Tx FIFO configuration options ===========================

 32,

 2

);

Figure 4: Example of configuration class instantiation

Figure 5: Example of model instantiation

CHostEmulator c_hostEmulator1 (c_hostEmCfg1->moduleName, c_hostEmCfg1, c_spwCfg1);

CHostEmulator c_hostEmulator2 (c_hostEmCfg2->moduleName, c_hostEmCfg2, c_spwCfg2);

CSpacewireTop c_spacewireTop1 (c_spwCfg1->spacewTopModuleName, c_spwCfg1);

CSpacewireTop c_spacewireTop2 (c_spwCfg2->spacewTopModuleName, c_spwCfg2);

 //bind TLM-2.0 sockets

 c_hostEmulator1.m_initSocket(c_spacewireTop1.m_targetSocket);

 c_hostEmulator2.m_initSocket(c_spacewireTop2.m_targetSocket);

 //bind SpW sockets

 c_spacewireTop1.m_spwInitSock(c_spacewireTop2.m_spwTargetSock);

 c_spacewireTop2.m_spwInitSock(c_spacewireTop1.m_spwTargetSock);

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 32 / 50

 TLM MODEL HOST-SIDE TRANSACTIONS

The SpaceWire CODEC TLM model implements a TLM-2.0 target interface towards the host
system, through which access to the model control and status registers, the receiver buffer and
transmitter FIFO is granted. Additionally, the host system may retrieve time codes received from the
SpaceWire link – stored in the receiver block – and write time codes to be transmitted – in the
transmitter block. In order for the LT and AT coding styles to be supported by the CODEC TLM,
both the blocking and the non-blocking interface are implemented.

10.1 TLM-2.0 TRANSACTION EXECUTION FLOW

Once the SpaceWire CODEC TLM receives an incoming transaction – either in the LT or AT
modelling style – an initial check on the transaction attributes is performed. The CODEC TLM does
not support transactions with the byte enable pointer set, or transactions having a streaming width
less than the transaction length, since streaming transfers to the CODEC are not required.
Thereafter, the transaction address is decoded. If the transaction is a TLM_WRITE to a read-only
target or a TLM_READ to a write-only target, an ADDRESS_ERROR_RESPONSE is sent back to
the initiator and the transaction is not performed. If the transaction streaming width is less than the
transaction length specified for a particular address, the transaction is not performed and a
TLM_BURST_ERROR_RESPONSE is sent back to the initiator. In case all of the above conditions
are satisfied, the command is executed. A summary of the transaction verification process is
provided in the following figure.

execute
TLM cmd

byte enable
ptr set?

stream width <
data length?

return error response
(TLM_BYTE_ENABLE_ERROR_RESPONSE)

return error response
(TLM_BURST_ERROR_RESPONSE)

read cmd to wo target/
write cmd to ro target?

return error response
(TLM_ADDRESS_ERROR_RESPONSE)

stream width <
data length for

target specified?

return error response
(TLM_BURST_ERROR_RESPONSE)

yes

yes

yes

yes

no

no

no

no

Figure 6: CODEC TLM-2.0 transaction execution flow

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 33 / 50

10.2 TLM-2.0 CODING STYLES SUPPORT

The SpaceWire CODEC TLM supports both the AT and LT coding styles, i.e. it implements both the
blocking and non-blocking interface of the TLM-2.0 standard. The LT model performs the command
requested – after the previously mentioned transaction validity checks have been passed – and
increments the transaction delay argument by the internal delay of the operation requested.
Therefore, the use of temporal decoupling is allowed on the host-side interface, as the
implementation of the b_transport does not call the wait() method. An exception to this approach is
the write operation of the control register: whenever a write is performed on the control register, the
wait() method is called with a delay argument equal to the one included in the transaction; once the
wait interval has expired, the control register is written. This approach is due to the fact that the
writing of the control register may trigger an entire sequence of events – i.e. writing the bit that
enables the transition of the link FSM state from READY to STARTED - that will lead to increased
timing inaccuracy, unacceptable even for the LT model.

-, BEGIN_REQ, delay

TLM_UPDATED, END_REQ, 0s

Host System SpW CODEC

PEQ

-, BEGIN_RESP, 0s

TLM_UPDATED, END_RESP, delay

execute

command

delay +
operation delay

Figure 7: CODEC TLM-2.0 AT transaction timing diagram

As far as the AT model is concerned, the nb_transport_fw implementation places the transaction in
a payload event queue, from which it is retrieved when the timing point at which it should be served
has been reached. The exact timing point is dictated by the delay annotated onto the transaction
plus the delay required to perform the operation specified- e.g. the transmission FIFO write delay.
Thereafter, the command is executed and the nb_transport_bw method is used to inform the
initiator of the command execution. AT transactions are marked by 4 timing points, using the
relating methods return path. The exact message sequence is summarized in the diagram above.

The delays associated with each read/write command, were decided based on the clock period of
the clock used to read/write the actual TLM read/write target. The delay for each operation as well
as the type of operation supported for each target is provided in the following table.

TLM Target Operation
Type

Delay

time code received read-only 1 system clock cycle

time code to tx write-only 1 system clock cycle

rx buffer read-only 1 read buffer clock cycle

rx buffer empty flag read-only 1 read buffer clock cycle

rx buffer programmable
empty flag

read-only 1 read buffer clock cycle

tx FIFO write-only 1 system clock cycle

tx FIFO full flag read-only 1 system clock cycle

status register read-only 1 system clock cycle

control register write-only 1 system clock cycle

Table 7: SpaceWire CODEC TLM-2.0 targets

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 34 / 50

10.3 TLM-2.0 DEBUG INTERFACE

The SpaceWire CODEC TLM model also implements the transport debug interface of the TLM-2.0
standard. The particular interface is a non-intrusive interface, therefore the corresponding
implementation performs the read/write operation requested, without triggering any relating events
and/or advancing simulation time. Due to the fact that the CODEC TLM control register
implementation notifies an even whenever it is written so that a relating method can read its value
and trigger the link FSM if necessary, it is evident that performing a transport debug write operation
in the control register will have no side-effect on the system operation, as it will only be intercepted
the next time a “normal” write operation will be performed – and provided that the new operation will
not overwrite the control register bytes set in the debug transaction. The debug targets are also
categorized into read-only and write-only, according to the operations they support in the forward
blocking/non-blocking interface methods – see previous table.

As the TLM-2.0 standard dictates, if the entire number of bytes requested in the debug transaction
could not be read/written, the interface implementation returns the actual number of bytes
read/written.

10.4 STATUS REGISTER

The CODEC status register is an array of 19 bytes, where each byte is associated with a particular
event occurrence. The status register bytes along with the information they hold are summarized in
the following table.

Status Register
Byte No

Description

0 Time code received indication; set whenever a new time code has been received from
the SpaceWire network

1 Receiver credit error indication

2 Transmitter credit error indication

3 Escape error indication

4 Disconnection error indication, set when a disconnection error occurs, i.e. whenever the
other side of the link injects a disconnection error.

5 Parity error indication

6 Link FSM state. The state is encoded using 3 bits as per the RTL CODEC :

ERROR RESET 0x00

ERROR WAIT 0x01

READY 0x02

STARTED 0x03

CONNECTING 0x04

RUN 0x05

7 Set when the link FSM is in the RUN state

8 Receiver got NULL indication; remains asserted after the first NULL is received

9 Receiver got FCT indication; remains asserted after the first FCT is received

10 Receiver got N-chars indication; remains asserted after the first N-char is received. For
packet level simulations, this byte is set once the first packet received.

11 Receiver got time code indication; remains asserted after the first time code is received

12 Set if the transmitter has credit to send one more N-char

13 N-char sequence error indication, set if an N-char is received before the link FSM enters
the RUN state

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 35 / 50

Status Register
Byte No

Description

14 Time code sequence error, set if a time code is received before the link FSM enters the
RUN state

15 Credit error in RUN state indication; set when a receiver or transmitter credit error occurs
while the link FSM is in the RUN state

16 Escape error in RUN state indication; set when an escape error occurs while the link
FSM is in the RUN state

17 Parity error in RUN state; set when a parity error occurs while the link FSM is in the RUN
state

18 Disconnection error in RUN state; set when a disconnection error occurs while the link
FSM is in the RUN state

Table 8: CODEC TLM status register fields

The status register byte 0, the time code received flag, does not correspond to a RTL CODEC
status register bit but has been added to the status register to enable the time code reception based
on status register polling by the host system.

The SpaceWire CODEC status register is accessible via the TLM-2.0 target interface implemented
by the top-level module as a read-only target. Hence for a status register read operation to be
realized, the host system must prepare a TLM-2.0 based transaction and set the generic payload
fields accordingly. The generic payload data pointer should be set to a 19-byte wide array, which
will contain the status register fields upon returning from the forward blocking/non-blocking call. The
transaction data length, streaming width must be set to the byte array size, whereas the generic
payload address field must be equal to the one defined in the GRSPW core of the GRLIB (0x04). It
should be noted that the status register time code received byte is automatically cleared after every
read operation, to ensure that the same time code is read by the host system exactly once.
Additionally, the status register is cleared whenever the CODEC TLM is reset.

Figure 8: Status register read example

The CODEC implementation includes a constant defining the status register length in the
DeltaSpacewCodec.h header file – StatusRegFlags, and an enumeration type for the status register
fields - TStatusRegisterFields, where each enumeration member corresponds to a register byte, in
the DeltaSpacewTypes.h file. Therefore, instead of using hard-coded values for the transaction
length and streaming width, the programmer may choose to use the StatusRegFlags constant.
Additionally, he may choose to use the enumeration type to retrieve individual register bytes values
instead of using hard-coded array indexes. The status register fields enumeration type is presented
in the SpaceWire CODEC TLM Development Manual. The accompanying code snippet is taken
from the CHostEmulator class implementation, used in the CODEC SystemC-only test-bench and
summarizes the procedure necessary to read the status register, as well as the use of the
aforementioned constant and enumeration type. The m_statusRegRead variable is the 19-byte
wide array where the register contents are copied to. The m_statusRegReadEv used in the non-
blocking call is the event notified via the nb_transport_bw() method implemented by the
CHostEmulator class. The event is notified whenever the BEGIN_RESP phase is received by the
CHostEmulator class.

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 36 / 50

10.5 CONTROL REGISTER

The control register stores control information originating from the host system which affects the
CODEC operation. It is implemented as an 11-byte wide array, accessed by the host system via the
TLM-2.0 target interface of the SpaceWire top-level module for write operations – i.e. it is a write-
only target. Each byte corresponds to a specific control option. The control register address is
based on the GRLIB GRSPW SpaceWire core, therefore it is equal to 0x00.

The control register bytes along with their meaning is summarized in the following table.

Control
Register
Byte No

Description

0 Link Disable. Causes the link to be disabled when the link FSM is in the RUN state, i.e. causes a
transition from the RUN to the ERROR RESET state

1 Link Start. When set, causes the link FSM to transit from the READY to the STARTED state.

2 Auto Start. When set, the link FSM may transit from the READY to the STARTED state once it
receives a NULL – while in the READY state.

3 Flush Tx. When set causes the transmitter FIFO to be flushed. Coupled with the Recovery
Controller operation.

4 Tx Rate. Emulates the variable transmission data rate generation of the RTL CODEC model,
where the txRate is used for loading the counters present in the clock divider, or the clock enable
generator, depending on the transmit bit clock configuration. In the TLM, the tx rate value is used
to calculate the multiplier of the transmission bit clock period to generate a variable data rate.

5 System Reset. Emulates the hardware reset of the RTL CODEC model. Likewise the RTL
CODEC, it is active low.

6 Inject Disconnection Error. Used by the host system to emulate the disconnection mechanism of
the SpaceWire protocol. When set and if the TLM is configured to not ignore errors injected, the
TLM sends a disconnection error at the other side of the link, causing link re-initialization. The byte
is auto-cleared once the register is read by the CODEC model, therefore it need not be cleared by
the host system.Valid at both the exchange and packet level models.

7 Inject Parity Error. Used by the host system to emulate the parity error mechanism of the
Spacewire protocol in packet level simulations. When set and if the TLM is configured to not ignore
errors injected, the TLM sends a parity error at the other side of the link, causing link re-
initialization. The byte is auto-cleared once the register is read by the CODEC model, therefore it
need not be cleared by the host system. Valid at the packet level simulation only.

8 Inject Escape Sequence Error. Used by the host system to emulate the escape sequence error
mechanism of the Spacewire protocol in packet level simulations. When set and if the TLM is
configured to not ignore errors injected, the TLM injects an escape sequence error in the
transaction to the other side of the link, causing link re-initialization. The byte is auto-cleared once
the register is read by the CODEC model, therefore it need not be cleared by the host system.
Valid at the packet level simulation only.

9 Inject Character Sequence Error. Used by the host system to emulate the character sequence
error mechanism of the Spacewire protocol in packet level simulations. When set and if the TLM is
configured to not ignore errors injected, the TLM injects a character sequence error in the
transaction to the other side of the link, causing link re-initialization. The byte is auto-cleared once
the register is read by the CODEC model, therefore it need not be cleared by the host system.
Valid at the packet level simulation only.

10 Inject Credit Error. Used by the host system to emulate the credit error mechanism of the
Spacewire protocol in packet level simulations. When set and if the TLM is configured to not ignore
errors injected, the TLM injects a credit error in the transaction to the other side of the link, causing
link re-initialization. The byte is auto-cleared once the register is read by the CODEC model,
therefore it need not be cleared by the host system. Valid at the packet level simulation only.

Table 9: CODEC TLM control register fields

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 37 / 50

The SpaceWire CODEC control register is accessible via the TLM-2.0 target interface implemented
by the top-level module. The steps necessary to perform a control register write operation are
analogous to the ones required for the status register read operation: the generic payload data
pointer should be set to a 7-byte wide array, where the control register contents will be copied from.
The transaction data length, streaming width must be set to the byte array size, whereas the generic
payload address field must be equal to the one defined in the GRSPW core of the GRLIB.

As is the case for the status register, the control register length is also defined in the
DeltaSpacewCodec.h header file – ControlRegFlags, whereas an enumeration type for the control
register fields – TControlRegisterFields, where each enumeration member corresponds to a register
byte, is defined in the DeltaSpacewTypes.h file. Therefore, the ControlRegFlags constant may be
used to set the transaction data length and streaming width fields. Additionally, the enumeration
type may be used to individually set register bytes values instead of using hard-coded array
indexes. The control register fields enumeration type is presented in the SpaceWire CODEC TLM
Development Manual. The code snippet below is extracted from the CHostEmulator class
implementation, used in the CODEC SystemC-only test-bench and acts as an example of the
procedure necessary to write the CODEC TLM control register, as well as a demonstration of the
usage of the aforementioned control register constant. Them_controlRegWrite variable is the 7-byte
wide array where the CODEC TLM register contents are copied from, whereas the
m_controlRegWriteEv is a SystemC event variable used in the AT modelThe m_controlRegWriteEv
variable is notified via the nb_transport_bw() method implemented by the CHostEmulator class,
whenever the control register write transaction receives the BEGIN_RESP phase from the
Spacewire CODEC TLM model.

Figure 9: Control register write example

10.6 TRANSMITTER FIFO

The CODEC TLM transmitter FIFO is implemented as a byte array, the depth and width of which are
user-configurable, via the CODEC configuration class. If the TLM packet level model is used, the
FIFO depth must be set equal to the maximum Spacewire packet length size expected by the host
system. The FIFO width should be set equal to 2, as each Spacewire character is modelled using a
two-byte wide array, where byte[0] holds the character data/control flag and byte[1] holds the actual
byte value.

For the purposes of the TLM model, the host system utilizes polling to read the transmitter FIFO full
flag. Hence, the FIFO full flag is an addressable location accessible via TLM-2.0. Since both the
transmitter FIFO and the relating full flag do not correspond to addressable locations in the RTL
CODEC model, their addresses are user-configurable parameters included in the CODEC
configuration class. The transmitter FIFO is a write-only target, whereas the full flag is a read-only
target.

If the model user wishes to write data to the transmitter FIFO, he/she should primarily read the FIFO
full flag, and if the FIFO is not full, write the SpaceWire character/packet structure pointer,
depending on the model abstraction level. If the user attempts to write a FIFO entry when the FIFO
is full, the write is not performed and the CODEC model returns a
TLM_COMMAND_ERROR_RESPONSE. The following code snippet summarizes the procedure
necessary to write a SpaceWire character to the transmitter FIFO. The m_spwChar variable is a 2-
byte wide array holding the Spacewire character to be written to the transmission FIFO, whereas the
m_dataWrittenEv SystemC event variable is only used in the AT model. The m_dataWrittenEv event
is notified by the nb_transport_bw() method, whenever the BEGIN_RESP phase to the FIFO write
transaction is received.

Figure 10: Transmitter FIFO write example

10.7 RECEIVER BUFFER

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 38 / 50

The TLM receiver buffer implementation follows the transmitter FIFO paradigm, i.e. it is
implemented as a byte array of configurable depth and width, with the actual depth value selection
to be dependent on the model abstraction level – exchange or packet . The host system utilizes
polling to read the receiver buffer empty flag. Likewise the transmitter FIFO, the buffer empty flag is
an addressable location accessible via TLM-2.0; both the receiver buffer empty flag and the receiver
buffer addresses are user-configurable parameters, set via the CODEC configuration class.
Furthermore, both are read-only targets.

The normal read receiver buffer procedure would be for the host system to read the empty flag and
if the receiver buffer is not empty, read the receiver buffer contents. If the host system attempts to
read a buffer entry when the buffer is entry, the read is not performed and the CODEC model
returns a TLM_COMMAND_ERROR_RESPONSE.

10.8 READING/WRITING TIMECODES FROM/TO THE SPACEWIRE CODEC TLM

The CODEC TLM stores time codes received from the SpaceWire link to a member variable of the
receiver block class CRxDecode. In the transmitter block, another member variable of the
CTxEncode class holds the value of the time code that the host system has requested to be
transmitted. Within the context of the CODEC TLM, both of these variables are accessible via TLM-
2.0 by the host system. The time code received variable is read-only, whereas the time code to be
transmitted is write-only. The length of each variable is equal to sizeof(unsigned char), as the relati
ng time code in/out ports of the RTL CODEC are 8 bits wide. Due to the fact that these variables do
not correspond to actual RTL CODEC registers, their addresses can be configured via the CODEC
configuration class.

As a result of the above, in order to read/write a time code, the model user must set the transaction
length and streaming width attributes to sizeof(unsigned char), the address to the time code
“register” address and the command type to read/write, depending on whether the model user
wishes to read a time code received, or write a time code to be transmitted. An example of writing a
time code to be transmitted is supplied below. The TcodeDataLength constant is set equal to
sizeof(unsigned char), whereas the m_tickWriteEv SystemC event varaible is used in the AT model.
The m_tickWriteEv event is notified via the nb_transport_bw() method implementation of the
CHostEmulator class, whenever the BEGIN_RESP phase to the time code write transaction is
received.

Figure 11: Time code write example

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 39 / 50

 TLM MODEL NETWORK-SIDE TRANSACTIONS

For the CODEC TLM on the SpaceWire link, a custom payload and protocol have been defined,
utilizing the Greensockets library serial payload and protocol as the basis. The SpaceWire custom
protocol defines a single phase for a link transaction for AT models, due to the fact that SpaceWire
characters transmission cannot be disassembled into multiple phases. This approach is justified by
the following arguments

 there is no acknowledgement that has to be received by the transmitter for a SpaceWire
character sent,

 SpaceWire data characters transmission is interleaved with NULLs, FCTs and time codes
transmission.

11.1 SPACEWIRE TRANSACTION EXECUTION FLOW

Likewise TLM-2.0 transactions on the host-side of the CODEC, once a transaction originating from
the other end of the link is received, an initial check on its attributes is performed. Specifically, the
parity and data control flag pointers of the SpaceWire payload are checked to examine if they are
equal to NULL; thereafter the transmitter bit clock period field – used to emulate the recovery clock
mechanism of the SpaceWire signal layer - is checked against zero. Transactions having this field
set to zero are considered invalid. Additionally, the transaction length field is checked against zero,
a zero length indicates an invalid transaction. If any of the above validity checks fails, the simulation
is terminated issuing an error message informing the model user of the condition that lead to
termination. It should be noted that there is a differentiation between the packet and exchange level
models of the CODEC. At the exchange level, the disconnection error injection flag is first checked;
if a disconnection error is injected in the transaction a SPW_ERROR_RESPONSE is sent back to
the other end of the link and no further processing takes place. This is due to the fact that
disconnection errors at the exchange level are injected using transactions that have just the
disconnection error extension set, and carry no actual payload.

Assuming that the transaction is valid, it is further processed. If the transaction causes an error at
the receiver – i.e. if an error injection flag is set at the packet level or if an error occurs at the
exchange level - an SPW_ERROR_RESPONSE is sent back to the initiator and the link re-
initialization procedure is initiated. It should be noted that in the packet level model, the packet that
contains the error is still stored in the receiver buffer, but its EOP character is replaced by an EEP
character to indicate the error to the host system. The aforementioned procedure is summarized in
the following diagram – the dashed green line refers to the processing step applicable only at the
exchange level.

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 40 / 50

parity enable
ptr == NULL?

data/control flag
ptr == NULL?

terminate simulation

txBitClk
attribute == 0?

transaction length
attribute == 0?

yes

yes

yes

yes

no

no

no

no

disconnection
error injected?

return
SPW_ERROR_RESPONSE

yes

no

transaction caused
error in the
receiver ?

return
SPW_ERROR_RESPONSE

yesno

process transaction

return
SPW_OK_RESPONSE

terminate simulation

terminate simulation

terminate simulation

Figure 12: SpaceWire network-side transaction execution

11.2 NETWORK-SIDE TRANSACTIONS CODING STYLES SUPPORT

The SpaceWire custom payload can be used for the communication between the transmitter and
the receiver through the blocking as well as the non-blocking interface. However, due to the fact that
the non-blocking call realizes what is essentially a single-phase transaction, the differentiation
between the LT and the AT coding style for network-side transactions is limited to the call of the
b_transport() or nb_transport_fw() method. The timing diagrams for both the blocking and non-
blocking calls on the forward path for the SpaceWire TLM CODEC are illustrated below.

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 41 / 50

b_transport(payload, delay = 0)

SERIAL_OK_RESPONSE, delay = 0

initiator Spw CODEC TLM

b_transport(payload, delay != 0)

SERIAL_OK_RESPONSE, delay = 0

wait(delay)

Blocking call diagram

nb_transport_fw (
payload, BEG_TRANSMISSION, delay = 0)

TLM_COMPLETED, delay = 0

initiator Spw CODEC TLM

Non-blocking call diagram

Figure 13: SpaceWire network-side transactions timing diagram

As can be seen in the diagram, non-blocking calls with a delay argument not equal to zero are
supported, but require the initiator to call the wait() method after the blocking/non-blocking call to
emulate the characters/packets transmission time. On the other hand, the implementation of the
blocking interface in the CODEC TLM calls the wait() method if a transaction with a non-zero delay
argument is received, thus disallowing temporal decoupling on the network-side. This is due to the
fact that allowing temporal decoupling on the network side could lead to significant timing
inaccuracy, well beyond the level accepted by a LT model. The issue with temporal decoupling is
threefold. On the one hand, Spacewire characters reception also affects the execution of the link
FSM. Consider the following example: if temporal decoupling is allowed and while the link is in the
CONNECTING state, the CODEC receives an FCT with a delay annotation t, and in the next
transaction annotated with delay t + 10*txBitClkPeriod the CODEC receives a transaction that
generates a character sequence error - i.e. a transaction containing a time code or a data character.
When the link FSM is executed, then while it will be in the CONNECTING state, it will find both the
got FCT and the character sequence error flags set. Since the character sequence error flag has
precedence over the got FCT, the link will go to the ERROR RESET state. However, this is not
correct as by the time the character sequence error is generated, the link would have transited to
the RUN state and the error would be ignored. On the other hand , the network-side temporal
decoupling is effectively coupled with the rx buffer empty space where Spacewire characters are
actually stored. Therefore, even if temporal decoupling was allowed, it would be limited by the
receiver buffer space. Last but not least, the receiver buffer space affects the CODEC credit
management, therefore allowing temporal decoupling would constitute the implementation of the
Spacewire credit management mechanisms inapplicable.

In order for the model user to be able to perform a transaction with the CODEC TLM over the
SpaceWire link, he/she has to declare a CTlmSpwPayload object, fill in the fields necessary,
calculate the number of bits to be transmitted in order to be able to calculate the transmission time
interval, call wait() with a delay argument equal to the transmission time interval - to emulate the
transmission process - and finally perform the forward blocking/ non-blocking call. This process is
depicted in the following figure.

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 42 / 50

declare
CTlmSpwPayload

object

fill in
transaction object

fields

calculate number
of bits to be Txd

perform fw
b/nb call with

delay = 0s

calculate bits
transmission time

call wait() with
delay = bits tx time

examine transaction

response status

move on to
next transaction

the link will break;
take actions
necessary

SPW_OK_RESPONSE SPW_ERROR_RESPONSE

Figure 14: SpaceWire transaction execution flow

Once returning from the forward call, the initiator must examine the transaction response status to
check if the transaction was successful. Upon successful completion, the response status should be
set to SPW_OK_RESPONSE. In case there was an error encountered at the other end of the link,
the response status is set to SPW_ERROR_RESPONSE. An SPW_ERROR_RESPONSE indicates
that the other side of the link will reset its link FSM, thus leading to link re-initialization and indicating
to the initiator that it should reset its link FSM as well.

For an analytical description of the custom SpaceWire payload and protocol, including the API
provided to set/get individual transaction object fields, please refer to [6]. Example code of
performing a transaction over the SpaceWire link – essentially implementing the steps described in
the figure above - can be found in the CODEC transmitter block, i.e. CTxEncode.cpp.

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 43 / 50

 CONCLUSIONS

The document constitutes the user manual of the SpaceWire TLM developed within DELTA. It
presents an overview of the core structure, its configuration characteristics, and its interfaces ,
accompanied by code snippets to serve as coding guidelines. Furthermore, the methodology for
compiling the model files, and building simulation binaries is described, both with respect to a native
execution (i.e. executable for the host platform) and to a Modelsim based simulation (i.e.
instantiation of the design within a dedicated simulator).

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 44 / 50

Appendix A.- DELTA SYSTEMC-ONLY TEST-BENCH DESCRIPTION

A.1. TEST-BENCH ARXCHITECTURE

The Delta Testbench comprises a total of four modules: a class representing the reference Host
System, - CHostEmulatorTb, a class representing the reference Spacewire CODEC –
CSpacewireTopTb which is a peripheral device of the reference host system, a class representing
the Spacewire CODEC TLM, which is the system under test, and finally a class emulating the host
system which uses the CODEC TLM as a peripheral device. Each host system is connected via a
TLM-2.0 interface to the respective Spacewire CODEC, whereas the two Spacewire CODECs are
connected back-to-back, using the custom Spacewire Serial interface developed for the purposes of
the DELTA project.

CSpacewireTop2
S

p
a

c
e

w
ire

 i/f

Tx FIFO

Rx Buffer

Status

Register

Control

Register

C
S

p
a

c
e

w
L

in
k

T
o

p

T
L

M
-2

.0
 i/

f

CHostEmulator2

T
L

M
-2

.0
 i/f

SpW characters/

packet tx logic

Tx time codes

logic

SpW characters/

packets rx logic

Status register read and

time codes rx logic

CSpacewireTop1

S
p

a
c

e
w

ire
 i/f

Tx FIFO

Rx Buffer

Status

Register

Control

Register

C
S

p
a

c
e

w
L

in
k

T
o

p

T
L

M
-2

.0
 i/

f

CHostEmulator1

T
L

M
-2

.0
 i/f

SpW characters/

packet tx logic

Tx time codes

logic

SpW characters/

packets rx logic

Status register read and

time codes rx logic

SoC1 SoC2

Figure 15: SystemC-only testbench topology

Each host system utilizes 4 SystemC processes to generate data for and receive data from the
Spacewire CODEC model:

 TxCharsTh(),

 RxCharsTh(),

 ReadStatusRegTh(),

 TxTcodesTh()
The TxCharsTh() and TxTcodesTh() are the the host system traffic generators. On the one hand,
the TxCharsTh() generates data characters or spacewire packets – depending on whether the test-
bench is configured to operate at the exchange or the packet level and feeds them to the CODEC
transmit FIFO, and on the other hand the TxTcodesTh() generates time codes and supplies them to
the CODEC. On the reception part, the RxCharsTh() polls the CODEC receive buffer to check for
data characters/spacewire packet pointers, and the ReadStatusRegTh() polls the CODEC status
register. If it finds that there is a new time code received, which is indicated by the relating status
register bit, it fetches the time code from the CODEC.

A.2. DATA GENERATION AND VERIFICATION

The host system traffic generator facility creates Spacewire packets of random length, based on a
maximum packet length value configured by the test-bench user. The packet contents are created
using a counter, where each Spacewire character is equal to the previous plus one. Due to the fact
that Spacewire characters are modeled using two bytes, the first byte contains the data flag and is
always equal to zero whereas the second byte is a number between 0 and 255 – unsigned chars
are used to store the Spacewire character. The EOP character representation is identical to the one
used at the RTL model, i.e. byte 0 equals to one and byte 1 equals to 0.

On the receive side, the data received is verified by using the data generation counter property.
Specifically, the first character of a new packet is set as the base value of the packet characters
received, and all characters that follow until the EOP character are expected to be equal to the
previous character plus one. In case a Spacewire character received does not match the one
expected, an informational message is issued and the test-bench is terminated.

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 45 / 50

A.3. HOST SYSTEM CONFIGURATION

The test-bench is configurable by means of the CODEC configuration structure
CDeltaSpacewConfig, which defines operational parameters of each CODEC instance, and the host
system configuration structure CHostEmulatorConfig, which define data generation and reception
parameters for each host system emulator instance. The host system configuration parameters are
summarized in the following table.

Parameter Name Parameter Type Parameter Purpose

ID unsigned int host system ID, used when printing log
messages

module name const char* host module name

initiator socket name const char* name of the host system TLM initiator socket

status register polling interval sc_time defines the time interval between two
successive status register read operations

tx FIFO polling interval sc_time defines the time interval between two
successive CODEC Tx FIFO full flag read
operations

rx buffer polling interval sc_time defines the time interval between two
successive CODEC Rx buffer fifo empty flag
read operations

tx packets number unsigned int the number of Spacewire packets the host
system should transmit to the CODEC FIFO

tx timecodes number unsigned int the number of time codes the host system
should transmit to the CODEC

tx timecode interval sc_time time interval between the transmission of two
successive time codes to the CODEC

packet error injection interval unsigned int instructs the host to insert one error for every
packet error injection interval packets
transmitted. i.e. if this is set to k, then every k

th

packet an error shall be injected to the packet.
This parameter is valid for the packet level
only.

maximum packet size unsigned int the maximum Spacewire packet length allowed
when generating Spacewire packets

rx packets number unsigned int number of packets the host system should
receive. Used as a test-bench termination
condition and should be set equal to the
number of packets the 2

nd
 host system will

transmit.

rx timecodes number unsigned int number of time codes the host system should
receive. Used as a test-bench termination
condition and should be set equal to the
number of packets the 2

nd
 host system will

transmit.

Table 10: Host emulator configuration class parameters

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 46 / 50

Additionally, configurable observation points can be defined for the host emulator classes, relating
to transactions and/or data processing functionality. The observation points may be defined via
compilation directives, summarized in the table below.

Compilation Directive Impact

Reference Host Emulator

TB_HOST_EMULATOR_DATA_DEBUG enables the print out of host system log messages
relating to the transmit and receive operations

TB_HOST_EMULATOR_TRANS_DEBUG enables the print out of host system log messages
relating to the TLM transactions – messages
originating from the b_transport, nb_transport_fw, and
nb_transport_bw calls.

Host Emulator Under Test

HOST_EMULATOR_DATA_DEBUG enables the print out of host system log messages
relating to the transmit and receive operations

HOST_EMULATOR_TRANS_DEBUG enables the print out of host system log messages
relating to the TLM transactions – messages
originating from the b_transport, nb_transport_fw, and
nb_transport_bw calls.

Table 11: Host emulator observation points

A.4. PACKET ERROR INJECTION MECHANISM

When the test-bench operates at the packet level, the test-bench user has the capability to define if
he/she wishes to inject errors in the packets transmitted, as well as the frequency of the packets
containing an error, via the packet error injection interval parameter. If the user wishes to not use
packet error injection, this parameter should be set to zero, otherwise if set to k it forces the injection
of a random error type in every kth packet. The error type is selected between the 5 available error
types of the packet level - credit error, parity error, character sequence error, escape sequence
error and disconnection error. The random error type selection is ensured by calling the rand()
method and performing a modulo 5 operation on the rand() return value.

A.5. TEST-BENCH OPERATION

Upon start-up the Spacewire data generation SystemC process – TxCharsTh – writes the control
register, setting the RESET and LINK_START bits. The RESET bit is set to one to emulate the
active low reset deassertion and allow for normal CODEC TLM operation, whereas the
LINK_START bit enables the FSM to move in the STARTED state once it enters the READY state.
Thereafter the process waits for the link to enter the RUN state. The ReadStatusReg() SystemC
process polls the CODEC status registers, and once the relating byte is set, it notifies an event that
enables both the time code generation process and the data generation process to start sending
traffic to the Spacewire CODEC. On the host system transmit side to the CODEC, the TxCharsTh()
polls the Tx FIFO full flag according to the time interval set by the test-bench user, reading its value
using the TLM interface; if the FIFO is not full, it writes a Spacewire character/Spacewire packet
pointer, utilizing the TLM forward blocking/non-blocking interface. The actual interface to be used, is
indicated to the host system by the CODEC configuration structure, i.e. if the CODEC is configured
to use the AT model, the host system will use the non-blocking forward interface. Similarly, the time
codes generation process waits for the time interval configured by the user, and then sends a time
code to the CODEC.

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 47 / 50

set reset and link enable

control reg bytes

wait for link FSM to

enter RUN state

wait for status register

polling interval configured

Tx FIFO full?

wait for time equal to

Tx FIFO polling interval transmit SpW char/

packet

noyes

All Spw packets

txed?

no

read status register

link in RUN?
yes

event

notification

time code

Rxed?

read time code,

time codes rxd++

yes

no

time code rx time
out && not

all time codes rxed?

notify all time codes

rxd event

yes

all time codes

Rxd?

yes

no

no

read Rx Buffer emtpy

flag

Rx Buffer

empty?

read SpW char/

packet

no

yes

all Spw packets

rxed?

no

notify event

yes

no

increment packets

rxd counter if packet
EOP rxed

renew packet rx

time out

yes

renew time codes rxd

time out

packet Rxd time

out expired?

wait for time equal to

Rx buffer polling interval

yes

process terminated

wait for link FSM to

enter RUN state

all time codes

Txed?

process terminated

wait for time equal to

time code tx interval

noyes

Tx time code

time codes Txd++

TxCharsTh()
TxTcodesTh()

RxCharsTh()ReadstatusRegTh()

Figure 16: CHostEmulator processes and relating logic

On the host system receive side, the RxCharsTh() polls the receive buffer empty flag, reading its
value using the TLM-2.0 interface. If the buffer is not empty, it fetches the Spacewire
character/packet pointer structure from the buffer and verifies the packet contents. Additionally, the
process polling the status register reads in the status register value according to the polling interval
set by the test-bench user. In case the flag that indicates the reception of a new time code is set,
the process also reads in the time code value.

A.6. TEST-BENCH TERMINATION

The test-bench termination is based on the packet numbers expected by the host system, which are
configured by the test-bench user. Specifically, the CDeltaTestbench module which instantiates the
host system emulation and the Spacewire CODEC objects, also registers a SystemC process which
is triggered by events generated by the host system instances; one event is generated by the host
system once it has received all packets it expects to receive. The test-bench SystemC process then
examines the number of packets both host systems have received and if it matched the number of
packets each host system expects, it terminates the simulation by calling sc_stop().

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 48 / 50

However, there are cases where all packets and time codes expected will not be received. Such
cases are very likely to occur at the packet level: if the maximum packet size configured by the test-
bench user is very large or the transmit clock period is too slow, the CODEC data transmission
thread will have long wait() intervals. This, combined with a small time code transmission interval
from the host side, will result in time code losses, as the 2nd time code shall be written to the
CODEC before the 1st one has been transmitted. Furthermore, errors injected at the packet level
cause the CODEC link FSMs to be reset and the link establishment process to be reinitialized.
Therefore if the CODEC data transmission thread had called wait() to account for a packet
transmission time and the link FSM is reset, this packet is discarded by the CODEC, thus emulating
the disconnection error that would occur in the RTL level model.

In order to ensure the test-bench termination in such cases, conditionally compiled code has been
included in the data generation processes of the host emulator classes, which forces the data
generation processes to keep sending packets, even if they have completed the transmission of the
number of Spacewire packets requested by the model user via the host configuration class.
Specifically, if the model user plans to execute a simulation using the test-bench supplied in which
erros are expected to be injected, he/she should compile the model with the

PACKET_LEVEL_WITH_ERRORS_SIM

compiler directive. The aforementioned directive enables the modification of the data generation
process in the host emulator classes, so that they keep sending Spacewire packets to the CODEC
TLM transmission FIFO, even if they have completed the transmission of the Spacewire packets
requested.

A.7. DELTA TEST-BENCH SYSTEMC PROCESSES

The CDeltaTestbench class registers two process with the SystemC simulation kernel, the TestbM()
and the TbProgressM() methods. The former is the one waiting the event notifications originating
from the host system classes that indicate the completion of the reception or the expiration of the
relating time outs. Once all four event are notified, the process signals the simulation termination by
calling sc_stop().

The latter is a reporting utility which in effect denotes the test-bench progress by printing a log
message that states for each host the number of time codes/Spacewire packets expected and the
number of those actually received. The reporting period is currently set to 10us.

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 49 / 50

LIST OF ACRONYMS

API Application Programming Interface

AT Approximately-Timed

ASIC Application-Specific Integrated Circuit

CA Cycle-Accurate

CODEC CODer DECoder

EDA Electronic Design Automation

FCT Flow Control Token

FPGA Field Programmable Gate Array

HDL Hardware Description Language

IDE Integrated Development Environment

IP Intellectual Property

LRM Language Reference Manual

LT Loosely-Timed

OSCI Open SystemC Initiative

RTL Register Transfer Level

SCV SystemC Verification Library

SoC System on Chip

TLM Transaction Level Modelling

Public

WP3100A: SpaceWire TLM User Manual 0310-01-004-01, Rev. 1.5 Page 50 / 50

REFERENCES

[1] OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL, Software version: TLM 2.0.1 Document
version: JA32, July 2009

[2] Space engineering, SpaceWire – Links, nodes, routers and networks,

ECSS-E-ST-50-12C_31July2008

[3] SpaceWire CODEC IP - User Manual, Revision. 2.4, March 27, 2009

[4] SpaceWire CODEC IP VHDL Verification, Revision 2.4, April 1, 2009

[5] GRLIB IP Core User’s Manual, Version 1.0.22, April 2010

[6] SpaceWire CODEC TLM – Development Manual

	SCOPE
	IDENTIFICATION
	OVERVIEW
	Definitions
	DOCUMENT OVERVIEW

	APPLICABLE DOCUMENTS
	Order of precedence

	Definitions
	Terms and definitions
	C++ Code Terms and Definitions

	Configuration Management
	Directory structure
	Model configuration

	SpaceWire CODEC TLM Model Timing
	SpaceWire Tlm Transaction Delays
	Impact of RTL Model Configuration Options On Delays

	Functional Overview
	System Overview
	Functions
	Configuration Overview

	MODEL ABSTRACTION LEVELS
	Building the model
	Native compilation
	Modelsim compilation
	Modelsim Test-bench Output

	Model Deployment
	SpaceWire TLM model configuration
	SpaceWire TLM model instantiation

	TLM MODEL HOST-SIDE TRANSACTIONS
	Tlm-2.0 Transaction Execution flow
	Tlm-2.0 Coding Styles Support
	Tlm-2.0 Debug Interface
	Status Register
	Control Register
	Transmitter FIFO
	Receiver Buffer
	Reading/Writing Timecodes From/To the SpaceWire Codec Tlm

	TLM MODEL NETWORK-SIDE TRANSACTIONS
	SpaceWire Transaction Execution Flow
	Network-side Transactions Coding Styles Support

	Conclusions
	DELTA SYSTEMC-ONLY TEST-BENCH DESCRIPTION
	Test-bench Arxchitecture
	Data Generation and Verification
	Host System Configuration
	Packet Error Injection Mechanism
	Test-bench Operation
	Test-bench Termination
	Delta Test-bench SystemC Processes

	List of acronyms
	References

