

Project : contract n° 20041/06/NL/CP Europeanisation of Mil-STD-1553B Data Bus Products Task 1 – Digital Remote Terminal ASIC

RT53eur IP Core Data Sheet

	Name and Function	Date	Signature	
Prepared by	Arnaud Wagner 1553B Expert	2009/12/02	annj	
Verified by	Marc Souyri ASIC expert	2009/12/02	AJugnes	
Authorized by	Nicolas BEHOT 1553 product Manager	2009/12/02		

Document type	N° WBS	Key words :

SUMMARY

This document is written in the frame of ESA R&D AO/1-5052/06/NL/CP Europeanisation of "MIL STD 1553B Data Bus".

It is part of task 1 related to the development of the RT53eur IP

This document is the data sheet of RT53eur IP that is a MIL STD 1553B Remote Terminal

DOCUMENT CHANGE LOG

Issue/ Revision	Date	Modified pages	Observations
00/00	2009/09/04		preliminary version
01/00	2009/11/02		First issue
01/01	2009/12/02	42,43	detail Buslevel selection

PAGE ISSUE RECORD

Issue of this document comprises the following pages at the issue shown

Page	lssue/ Rev.										
All	01.00										

TABLE OF CONTENTS

TAE	BLE OF CONTENTS	4
1.	INTRODUCTION	6
2.	DOCUMENTS, ACRONYMS AND CONVENTIONS	7
2.	1 Applicable documents	7
2.		
2.		
2.	4 CONVENTIONS	10
	2.4.1 BIT numbering	10
	2.4.2 DATA entity	
	2.4.3 BIT definition	10
	2.4.4 Word numbering in the 1553 frame	10
3.	DESCRIPTION OF RT53EUR IP IN ITS ENVIRONMENT	. 11
4.	GENERAL FUNCTIONAL DESCRIPTION	. 13
4.	1 Operating modes	13
4.	2 CONFIGURATION AT POWER UP	15
4.	3 CONFIGURATION BY REGISTERS	16
	4.3.1 Configuration register management	16
	4.3.2 Configuration Register description	17
5.	1553B PROTOCOL MANAGEMENT DESCRIPTION	. 19
5.	1 COMPLIANCE TO THE STANDARD	19
5.	2 Initialization	19
5.	3 Command Format	19
5.	4 INTERNAL REGISTERS RELATED TO 1553B PROTOCOL	19
	5.4.1 The 1553 Status word register	20
	5.4.1.1 1553 Command Word Register	21
	5.4.1.2 1553 Built-In-Test (BIT) word register	21
	5.4.1.3 1553B State registers updating	22
5.	5 MODE COMMANDS MANAGEMENT	22
5.	6 NO RESPONSE TIME-OUT MANAGEMENT	23
5.		
5.		
	5.8.1 Loop test	
	5.8.2 Transmission time-out	
	5.8.3 "Data wrap around Test" and "Self test"	24
6.	THE APPLICATION INTERFACE DESCRIPTION	.25
6.	1 ILLEGALIZATION MECHANISM	25
6.	2 THE MEMORY MANAGEMENT	28

6.2.1	EDAC protection	
6.2.2	Direct addressing	
6.2.3	Indirect addressing	
6.2.4	Indirect Stacked mode	
6.2.4.	1 Memory mapping	
6.2.4.	2 Stack mechanism	
6.2.4.	3 Circular Buffer mechanism	
6.2.5	Data Block Descriptor	
6.2.6	Subaddress busy management	
6.2.7	Processing	
6.3 R	TC MANAGEMENT	
6.4 TI	HE INTERRUPT MANAGEMENT	
7. INTE	RFACE DESCRIPTION	
7.1 R	EGISTER MAPPING AND ACCESS	
7.2 15	553B TRANSCEIVER INTERFACE	
7.3 A	PPLICATION INTERFACE DESCRIPTION	
7.3.1	WaitStates and CSREADYN mechanism	
7.3.2	Arbitration mechanism	
7.3.3	Errors management	
8. SIGNA	AL CHARACTERISTICS	
8.1 D	DESCRIPTION AND STATE AT RESET	46
9. ELEC	TRICAL REQUIREMENTS	
9.1 A	C CHARACTERISTICS	
9.1.1	Clock characteristics	
9.1.2	Typical timings given as an example	53
10. IP F	PORT MAP	

1. INTRODUCTION

This document is written in the frame of ESA R&D AO/1-5052/06/NL/CP Europeanization of "MIL STD 1553B Data Bus". It is part of task 1 related to the development of a Digital RT IP performing a 1553B Remote Terminal. This document is the data sheet of the IP core.

The IP is called RT53eur.

- RT stands for Remote Terminal
- 53 is a reminder for 1553B Data Bus
- EUR reminds that the IP has been developed within the "Europeanisation of Mil-STD-1553B Data Bus Products". Moreover the IP core includes some of the new features defined within the ECSS 5013 "MIL STD 1553 B extension" working group.

2. DOCUMENTS, ACRONYMS AND CONVENTIONS

2.1 APPLICABLE DOCUMENTS

AD-2:	ECSS Q60-02: Final Draft ASIC/FPGA Development Standard, http://www.estec.esa.nl/microelectronics/asic/Final-Draft-ECSS-Q-60-02.pdf			
AD-6	MIL-STD-1553B, Notice 1-4, 15 January 1996 "Digital Time Division Command/Response Multiplex Data Bus".			
AD-7	MIL-HDBK-1553A, "Multiplex applications Handbook", 1 Nov 1988 http://ams.aeroflex.com/ProductFiles/AppNotes/milhbk1553a.pdf			
AD-8	SAE AS4112, January 1989 "Production Test Plan For the Digital Time Division Command/Response Multiplex Data Bus Remote Terminals			
AD-9:	SAE AS4111, Issue 1998-10 "Validation Test Plan For the Digital Time Division Command/Response Multiplex Data Bus Remote Terminals			
AD-11	AO/1-5052/06/NL/CP - Europeanisation of MIL-STD-155B Data Bus Products – Statement of Work			
AD-12	Plan d'Assurance Qualité ASIC - CDSQ.BA.058.INF – Issue 03 rev.00.			
AD-14	ASP54 Transceiver ASIC Specification - Astrium – R&D.E53.NT.00461.V.ASTR issue 1.04			

2.2 ACRONYMS

AD	Applicable Document	PDF	Portable Document Format
ASIC	Application Specific Integrated Circuit	PDR	Preliminary Design Review
ASSP	Application Specific Standard Product	PID	Process Identification Document
CDR	Critical Design Review	PRT	Packet Remote Terminal
CPPA	Central Part Procurement Agency	RD	Reference Document
CPU	Central Processor Unit	RT	1533 Remote Terminal
DDR	Detailed Design Review	SCC	Space Components Co-ordination group
DFF	D-Type Flip Flop	SCoC	Spacecraft Controller on a Chip
DRC	Design Rule Check		Single Event Effect
DSP	Digital Signal Processor	SEE	(or SEP Single Event Phenomena)
EDAC	Error Detection And Correction	SEL	Single Event Latch up
ESA	European Space Agency	SEP	see SEE
	European Space Research and	SET	Single Event Transient
ESTEC	Technology Centre	SEU	Single Event Upset
	Failure Detection Isolation and	SOC	System-On-a-Chip
FDIR	Recovery	SRAM	Static Random Access Memory
FPGA	Field Programmable Gate Array		Specification Requirement Review =
GEO	Geosynchronous Equatorial Orbit	SRR	Initial Design Review
I/O	Input/Output	SRT	Simple Remote Terminal
ID	Identification	ТС	TeleCommand
IDD	Initial Design Review =	TID	Total Integrated Dose
IDR	Specification Requirement Review	TM	TeleMetry
TEEE	Institute of Electrical and	TRP	Technological Research Programme
IEEE	Electronics Engineers		VHSIC Hardware Description Language,
IP	Intellectual Property	VHDL	IEEE standard 1076
ITT	Invitation To Tender	VLSI	Very Large Scale Integration (component)
	Joint Test Action Group		Validation Test Plan
JTAG	(refer to IEEE std 1149.1)	VTP	(Standard 1553B Test Plan for Remote
LEO	Low Earth Orbit		Terminal)
LET	Linear Energy Transfer	WP	Work Package
LVS	Layout Versus Schematic	WWW	World Wide Web
PCB	Printed Circuit Board		

2.3 DEFINITION OF TERMS

Bus Controller (BC)	The Bus Controller's task is to initiate and control all data transfer on the Mil Std 1553B Data Bus. It is the sole device allowed to transmit Command Words.		
Remote terminal (RT)	The Remote Terminal is used to interface the subsystems to the Mil Std 1553B Data Bus system and perform data transmissions on the Mil Std 1553B Data Bus as controlled by the Bus Controller.		
Bus Monitor	The Bus Monitor's task is to listen to the Mil Std 1553B Data Bus traffic and to extract selected information to be used at a later time.		
Mil Std 1553 Data Bus	All the hardware including cables, isolation resistors, transformers etc. required to provide a data path between the Bus Controller and all the associated Remote Terminals.		
Message	A single Message is the transmission of a Command Word, Status and Data Words (if they are specified).		
Mode Command	Command Word in which the Subaddress Field is set to '00000' of '11111' and a Mode Code is transferred from the Bus Controller to the Remote Terminal.		
Receive Command	Message with a data flow from the Bus Controller to the Remote Terminal.		
Transmit Command	Command Word in which the Subaddress Field is set different to '00000' or '11111'and the subsequent transfer of Data Word(s) from the Remote Terminal to he Bus Controller is initiated.		
Transmit Message	Message with a data flow from the Remote Terminal to the Bus Controller.		
Vector Word	Data Word provided by the Remote Terminal subsequent to the Status Word in answer to a Mode Command Transmit Vector Word.		
Bit Order	The most significant bit shall be transmitted first with the less significant bits following in descending order of value in the Data Word.		
Redundant Bus	The redundant data bus implements a particular approach for obtaining multiple data paths to improve message arrival probability.		
Bus Switching	When an RT is receiving or operating on a message on one bus, and anothe valid, legal command to the RT occurs on the opposite bus later in time.		
Superseeding Command	When an RT is processing a command, a second valid command word sent to an RT shall take precedence over the previous command. After the minimum intermessage gap time has been exceeded, the RT shall respond to the second valid command when it is not transmitting on that data bus.		

2.4 CONVENTIONS

2.4.1 BIT numbering

Bit n° 0 refers to LEAST Significant Bit (LSB)

Bit nº 15 refers to MOST Significant Bit (MSB)

For 1553 interface, as given in RD4, the Bit 15 (MSB) in registers corresponds to the 4th bit of a 1553 word.

2.4.2 DATA entity

"Word"	refers to	16 Bits data entity
"Byte"	refers to	8 Bits data entity

"BITi..BIT0" indicates value binary coded in BITi TO BITO, BITi being the most significant bit

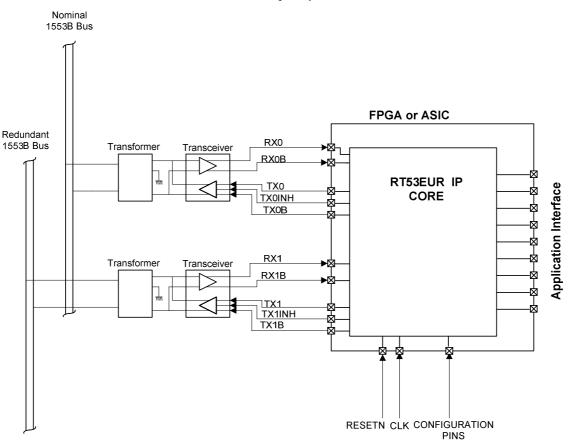
"0XNIBi..NIB0" indicates value hexadecimally coded in NIBi TO NIB0, NIBi being the most significant nibble

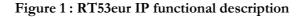
For instance, '1111000010101010' and 0xF0AA indicates the same word value.

2.4.3 BIT definition

A bit in a register is	set	when its value is 1
	reset	when its value is 0

2.4.4 Word numbering in the 1553 frame


The first data word transmitted in a 1553B message shall be numbered as DW 1, the second transmitted shall be numbered as DW 2 and so on.



3. DESCRIPTION OF RT53EUR IP IN ITS ENVIRONMENT

The RT53eur IP is a 1553B Remote Terminal. When used in nominal and redundant mode, it is connected to the 1553B bus with the following elements, as depicted in Figure 1:

- Two single 1553B Transceivers, or a dual 1553B Transceiver
- Two 1553B Transformers
- A stable oscillator that delivers the IP clock frequency

The RT53eur IP block diagram is depicted in **Erreur! Source du renvoi introuvable.** It can be functionally divided in 2 parts: the 1553B interface and the Application Interface. The RT53eur IP contains the following functions:

- A nominal and a redundant Manchester decoder
- A nominal and a redundant Manchester encoder
- A redundancy management function
- A protocol management function
- An application management function

Eur1553

 Ref
 : R&D.E53.RP.01192.ASTR

 Edition:
 01
 Rév. : 01

 Date
 : 2009/12/02

 Page
 : 12/60

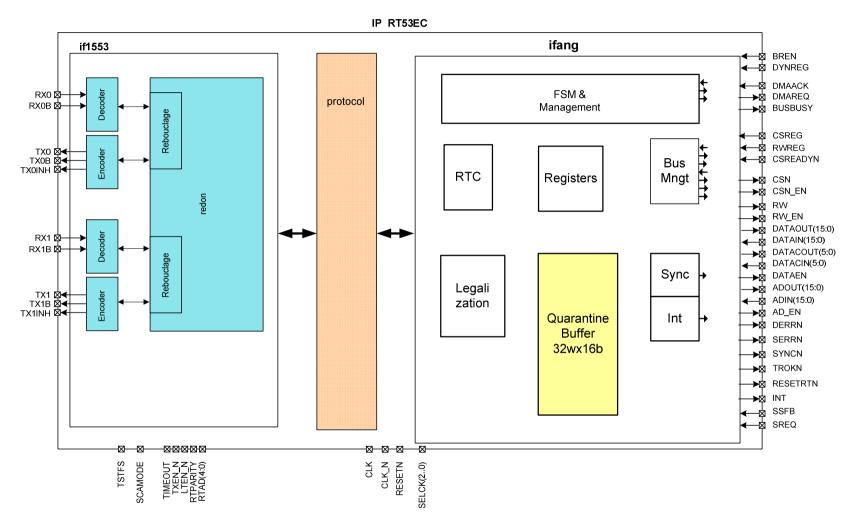


Figure 2 : RT53eur IP block diagram

© EADS ASTRIUM SAS

4. GENERAL FUNCTIONAL DESCRIPTION

4.1 **OPERATING MODES**

The RT53eur IP is able to operate in the following modes: Hardware Reset, Initialization, Operational. The management of the RT53eur IP operating behaves as depicted in the flow chart given in Figure 3 and in Figure 4. Initialization mode is activated when the application sets the APPINIT pin. In this mode, RT53eur IP is frozen concerning 1553B bus operation. It allows the application to initialize RT53eur IP registers and the shared memory.

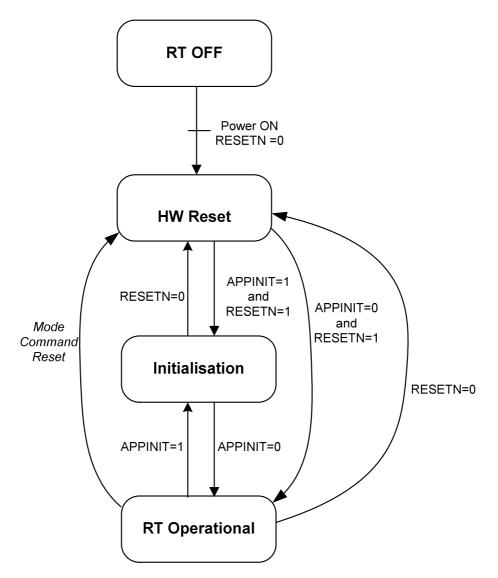


Figure 3 :RT53eur IP Functional Modes flow chart

Important Note: APPINIT pin shall be used only to allow the application to program RT53eur IP registers and to initialize the shared memory after a reset. APPINIT shall not be used, to take the control of the application bus since it would make APS53 mute for the 1553 exchanges.

State	Action	Answer to 1553B bus	Answer to user	
RT53eur IP OFF No action		No answer	No answer	
Reset state All reset		No answer	No answer	
InitialisationFreeze RT53eur IP to allow safe initialization of register and shared memory by application		No answer	Nominal	
RT53eur IP operational	Nominal	Nominal	Nominal	

Figure 4 :RT53eur IP Functional Mode description

A single main clock CLK is provided to the RT53eur IP. The Clock Frequency is selectable in the range:

10MHz to 24 MHz by steps of 2MHz. It must be noticed that this range is limited in 3V mode as detailed in section 9.

The clock frequency depends on the SELCK<2..0> pin :

- SELCK<2..0> =000 : 10 Mhz
- SELCK<2..0> =001 : 12 Mhz
- SELCK<2..0> =010 : 14 Mhz
- SELCK<2..0> =011 : 16 Mhz
- SELCK<2..0> =100 : 18 Mhz
- SELCK<2..0> =101 : 20 Mhz
- SELCK<2..0> =110 : 22 Mhz
- SELCK<2..0> =111 : 24 Mhz.

The RESETN signal is used to either asynchronously or synchronously reset the RT53eur IP. Two versions of the core are provided. It allows the user to select which one is suited for its application. A synchronous reset is recommended when the asynchronous reset tree is sensitive to SET as for ATMEL ATC18RHA or STM 65 nm processes.

4.2 CONFIGURATION AT POWER UP

Some configuration pins are used to configure the 1553 interface. They shall be stable at least 50 ns before the rising edge of the RESET signal and shall stay unchanged after. They are given in Figure 5.

Name	Definition		
SELCK<20>	Clock Frequency Selection		
RTAD<40>	Address of the RT		
RTPARITY	Odd parity of the RTAD<40> address		
BUSLEVEL	select an Harris or Schmitt Transceiver		
BREN	Broadcast Enable, when set to "1" broadcast is allowed (can also be configured by using RT53eur IP register)		
TIMEOUT	 Time Out selection for an RT to RT exchange: "0": 31 μs "1": 14 μs 		
LTEN_N	Signal for loop function inhibition		
TXEN_N	Signal for encoder output inhibition		
TSTFS	Selection of Fail-Safe test mode i.e. test of the 800 us inhibition timeout.		
DYNREG	Enable the dynamic load configuration register (by the 1553 bus)		
SCANMODE	Shall be set to zero		

Figure 5 : 1553 configuration pins

Specific Management of the BREN signal :

The BREN pin must be set to "1" in order to allow Broadcast commands. But it is also possible to program the Broadcast function by using a bit in the ConfReg1 register. In this case, the priority between the BREN pin and the BRENAB field of the ConfReg1 register is managed as follows:

- At power up the state of the BREN gives the enabling of the Broadcast commands. The BRENAB field is not taken into account.
- In functional mode and in case of write access to the ConfReg 1 by the application or by the 1553 bus, the BRENAB field of ConfReg1 has the priority on the BREN pin to enable the Broadcast commands.

Specific Management of the RTPARITY pin:

The RTPARITY input pin allows the detection of a possible address parity error.

This input must be wired in order to obtain an odd parity on the Remote Terminal address as stated hereafter:

 $RTPARITY = 1 \oplus RTAD(4) \oplus RTAD(3) \oplus RTAD(2) \oplus RTAD(1) \oplus RTAD(0)$

The RTPARITY input is checked for each valid command received. If the check reflects a parity error, the 1553 interface will not process the command.

4.3 CONFIGURATION BY REGISTERS

4.3.1 Configuration register management

The configuration information are stored in four Configuration registers:

- Register 1 : RT Mode definition
- Register 2 : Real Time Clock definition
- Register 3 : Interrupt Mask definition
- Register 4 : Application Interface definition

The Configuration registers can be read and written through the application data bus as specified in section 7.1. But 3 of the 4 Configuration registers can also be read and written through the 1553 bus if the DYNREG pin is asserted. In this case, the Configuration registers 1, 2 and 3 are read and written through the 1553 bus by using the 0x01 sub-address. A 1553B message can contain up to 32 data words, but RT53eur IP uses the following words to read and write in the configuration registers:

- Register 1 corresponds to word 17 of the 1553 message
- Register 2 corresponds to word 18 of the 1553 message
- Register 3 corresponds to word 19 of the 1553 message
- Register 4 is not accessible through the 1553 bus

In case DYNREG is activated and if a valid receive message is issued at 0x01 subaddress then:

- If the number of words is smaller or equal to 16, no update of configuration register is performed.
- If the number of words is between 17 and 219, 1 to 3 configuration registers are updated.
- If the number of words is greater than 19, the 3 registers are updated.

The dynamic update of the registers is performed at the end of the receipt, during the writing of the Data Block descriptor. In addition, a message used to dynamically update the Configuration registers is processed as an usual message and all the data are provided to the application normally.

4.3.2 Configuration Register description

Name	Function	Word number in 1553 message	Address mapping
ConfReg1	RT mode definition	17	0x0000
ConfReg2	Real Time Clock definition	18	0x0001
ConfReg3	Interrupt Mask definition	19	0x0002
ConfReg4	Application Interface Configuration definition	N.A.	0x0003

Figure 6 : List of the Configuration registers

ad = 0x0000		ConfReg1 RT mode		
Bits	Name	Function	Reset Value	
155	-	Not Used	0	
4	CURSTACK	"1" : Current Stack Pointer B is selected	0	
4	CURSTACK	"0" : Current Stack Pointer A is selected	0	
2	EDACEN	"1" : EDAC is enabled	0	
3	EDACEN	"0" : EDAC is disabled	0	
2	INTWRAP	"1": RT53eur IP Internal Data Wrap Around subaddress 30	1	
2	INTWKAP	"0" : Application Data Wrap Around subaddress 30	1	
1	ILLENAB	"1" : Illegalization mechanism enabled	0	
1	ILLEINAD	"0" : Illegalization mechanism disabled	0	
0	DDENIAD	"1" : Broadcast mode enabled	1	
0	BRENAB	"0" Broadcast mode disabled	1	

Figure 7 : ConfReg1 RT mode definition

a	$d = 0 \times 0001$	ConfReg2 Real Time Clock	
Bits	Name	Function	Reset Value
150	FRAMEDUR	Frame duration	0

Figure 8 : ConfReg2 Real Time Clock definition

ad = 0x0002		ConfReg3 Interrupt Mask definition	
Bits	Name	Function	Reset Value
1511	SADSEL	Selected Message sub address	0
		Descriptor Stack Buffer Size:	
		000 : Only One descriptor (5 words)	
		001 : 128 words	
		010 : 256 words	
108	STSIZE	011 : 512 words	000
		100 : 1024 words	
		101 : 2048 words	
		110 : 4096 words	
		111 : 8192 words	
7	EDACDERR	EDAC Double Error interrupt activation	0
6	MIDCIBUF	Middle Boundary of Circular Buffer Interrupt Activation	0
5	RTERROR	Remote Terminal protocol error Interrupt Activation	0
4	TIOVER	Time Tag Rollover Interrupt Activation	0
3	CIOVER	Circular Buffer Rollover Interrupt Activation	
2	STOVER	Descriptor Stack Rollover Interrupt Activation	
1	RTSEL	Selected Message Received Interrupt Activation	0
0	ENDMSG	End of Message Interrupt Activation	1

Figure 9 : ConfReg3 Interrupt Mask definition

a	$d = 0 \times 0003$	003 ConfReg4 Application Interface Configuration	
Bits	Name Function		Reset Value
154		Not Used	0
30	WAITSTATES	Number of Wait States during external access	0000

Figure 10 : ConfReg4 Application Interface Configuration definition

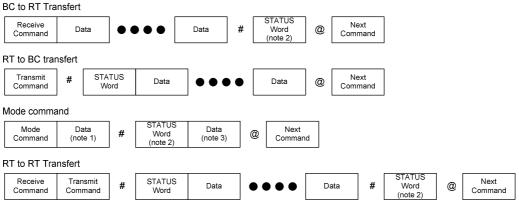
5. 1553B PROTOCOL MANAGEMENT DESCRIPTION

5.1 COMPLIANCE TO THE STANDARD

The 1553B protocol is managed in RT53eur IP in a function that can be called 1553 Interface by opposition to the Application Interface. The 1553 interface is fully compliant with [AD6].

5.2 INITIALIZATION

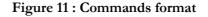
During "Initialization state" the RT53eur IP has the following behaviour:


- it initializes its registers to their power-up value,
- it does not respond to any request from the 1553B bus,

During the application initialization, APPINIT is asserted high by the application. When APPINIT is activated. the RT53eur IP has the following behaviour:

- it does not respond to any request from the 1553B bus and shall not process the incoming commands.
- the internal registers can be read or write by the application.

5.3 COMMAND FORMAT


RT53eur IP is compliant with all 1553 commands described in Figure 11

- # : delay between consecutive commands
- @ : RT Asic Response Time

Note 1 : No data in Received mode commands without data

- Note 2 : No Status Word in Broadcast
- Note 3 : No data in mode Transmit commands without data

5.4 INTERNAL REGISTERS RELATED TO 1553B PROTOCOL

In operational phase, the 1553 interface of RT53eur IP uses three registers to store state information related to the 1553B protocol. These registers are updated during the transactions on the bus. Their data are maintained between two commands. These registers called "1553B state" registers are:

- the RT status word,
- the BIT (Built-In Test) word
- the Last Command Word.

5.4.1 The 1553 Status word register

This Status register memorizes the current Status word. Its content is depicted in Figure 12. At the reception of the Transmit status Mode command, and each time the 1553 interface answers to a command, the status register is returned onto the bus.

Bits	Name	Function	Reset Value
15-11	RTAD<40>	Remote Terminal Address, copy of the hardwired address input pins of the RT53eur IP	RTAD<40>
10	ME	Message Error, set to "1" an error has occurred	0
9	RES	Available for application	0
8	SREQ	RT requesting service, set to "1" when a service is requested	0
7-5	RES	Available for application	0
4	BRX	Broadcast command received, set to "1" when the command received is in broadcast mode	0
3	BUSY	Address channel not available or treatment still in progress	0
2	SSF	Sub System Flag, set to "1" when a sub system fault has occurred	0
1	RES	Available for application	0
0	TF	Terminal Flag, set to "1" when RT fault has occurred	0

The update conditions of the current status are described in Figure 15.

Figure 12 : Status Register Description

An RT fault covers the following cases: Loop error, Time Out during emission and Time Out during application access.

During Transmit BIT word command, the TF bit is forced to "0". When TF bit is high, the B10..B1 bits are irrelevant.

The RES bits are unused, i.e. its value must be "0".

The SREQ bit memorizes the value of the SREQ pin at the time the Status Word is updated.

The SSF bit memorizes the value of the SSF pin at the time the Status Word is updated.

5.4.1.1 1553 Command Word Register

The 1553 Command Word Register contains the last valid Command word addressing the RT53eur IP. The Last Command word content is depicted in Figure 13. The update conditions of the Last command word are described in Figure 15.

Bits	Name	Function	Reset Value
15-11	RTAD<40>	Remote Terminal Address, copy of the hardwired address input pins of the 1553 interface	RTAD<40>
10	T/R	Transfer type, "1" stands for transmit, "0" receive	0
9-5	SA<40>	Sub Address, "00000" or "11111" indicates a mode code for the next field; anything else indicates a data word count for the next field	0
4-0	WC<40>	Data word count or Mode code	0

Figure 13 : Last command register

5.4.1.2 1553 Built-In-Test (BIT) word register

The BIT Word Register contains the information related to the 1553 interface error status. The BIT Word Register content is depicted in Figure 14. The update conditions of the BIT word are described in Figure 15.

Bits	Name	Function	Reset Value
15-14	"O"	Not used in 1553 interface	0
13	TIMOUT1	800µs Time out activation on 1553 bus redundant	0
12	TIMOUT0	800µs Time out activation on 1553 bus nominal	0
11	INHTF	Terminal Flag bit inhibited when set to "1"	0
10-8	···0"	Not used in 1553 interface	0
7	ERRAPP	Application error, set to "1" when timeout activation on application access	0
6	HIDW	Number of words received higher than expected	0
5	LODW	Number of words received lower than expected	0
4	UND	Undefined Mode command, Self-Test or Dynamic Bus Conf Acceptance Mode Code reception	0
3	ILTR	Illegal T/R bit in a Mode command	0
2	LP	Loop Test Error when set to "1" 0	
1	BUSY	User interface busy when set to "1"	0
0	TIMOUT	800µs Time out activation on the current active 1553 bus	0

Figure 14 : Built-In Test (BIT) register

5.4.1.3 1553B State registers updating

The 1553B state registers are updated following the requirements of Figure 15.

Handled command	Last Command	Status	BIT
Transmit last command	Not updated	Not updated	Not updated
Transmit status word	Updated	Not updated	Not updated
Transmit BIT word	Updated	Updated	Not updated
Other valid command words, addressing the 1553 interface	Updated	Updated	Updated
Other commands (invalid, or not addressing the 1553 interface)	Not updated	Not updated	Not updated

Figure 15: 1553 interface state registers evolution

5.5 MODE COMMANDS MANAGEMENT

The mode commands implemented in RT53eur IP are described in Figure 16.

Synchronize with or without data word :

The SYNCN signal is generated about $30.5 \,\mu$ s after the mid-parity bit of the command word. The data, if used, is transmitted to the application.

Transmit status word, Transmit last Command:

These two commands are transparent to the application. In accordance to the standard it is not possible to illegalise them.

Reset Remote Terminal Command :

The RT53eur IP activates the RESETRTN signal when a legal Reset RT Command is received. The activation occurs:

- less than 2 us after the end of status emission in case of a non broadcast command.
- just after the command processing (i.e. the writing of the data block descriptor) in case of a broadcast command received.

Transmitter shutdown:

RT53eur IP inhibits the transmitter related to the other bus.

Override transmitter shutdown:

RT53eur IP resets the inhibition of the transmitter related to the other bus.

Behaviour in case of non implemented mode commands

When the 1553 interface receives Mode commands, which are not implemented, it responds by sending back its status word in accordance with the legalization/illegalization mechanism (Mode Code Control Word).

Code	T/R	Function	Associated signal	Associated data	Broadcast command allowed	RT53eur IP Impleme ntation
00000	1	Dynamic Bus Control	-	-	No	NO
00001	1	Synchronize without data word	SYNC	-	Yes	YES
00010	1	Transmit status word	-	-	No	YES
00011	1	Initiate self test	-	-	Yes	NO
00100	1	Transmitter shutdown		-	Yes	YES
00101	1	Override Transmitter shutdown		-	Yes	YES
00110	1	Inhibit Terminal flag bit	-	_	Yes	YES
00111	1	Override Inhibit Terminal flag bit	-	-	Yes	YES
01000	1	Reset RT	RESETRTN	-	Yes	YES
01001 to 01111	1	Reserved	-	-	TBD	NO (*)
10000	1	Transmit vector word	-	Vector	No	YES
10001	0	Synchronize with data word	SYNC	Yes	Yes	YES
10010	1	Transmit last command	-	Last command	No	YES
10011	1	Transmit BIT word	-	BIT word	No	YES
10100	0	Selected transmitter shutdown	-	Yes	Yes	NO (*)
10101	0	Override Selected transmitter shutdown	-	Yes	Yes	NO (*)
10110 to 11111	1 or 0	Reserved	-	Yes	TBD	NO (*)

Figure 16 : Assigned Mode Commands

(*) : Could be used but no specific signal or mechanism

5.6 NO RESPONSE TIME-OUT MANAGEMENT

The RT53eur IP is able to handle programmable no response time-out. The time-out value is used to detect a no-response from a Remote Terminal in a RT to RT transfer. The TIMEOUT pin determines the chosen value for no response time-out. The extended value is $31 \mu s$ (TIMEOUT = "0"), and the standard value is $14 \mu s$ (TIMEOUT = "1").

5.7 REDUNDANCY MANAGEMENT

The 1553 interface is able to detect any incoming command on either the nominal or the redundant bus and to respond on the bus it has been activated by. The content of the internal registers (Status word register, Last Command register and BIT register) always corresponds to the last transfer performed on either nominal or redundant bus.

If a transfer is interrupted on a 1553B bus by a valid command incoming on the other bus and addressing the RT, the 1553 interface stops the processing of the previous command and starts the processing of the new command.

The 1553 interface responds with a BUSY bit set to "1" in its status if the command arrives on the alternate bus during the end of the processing of a reception command on the other bus to avoid a corruption of the data.

5.8 TEST SUPPORT & ERROR REPORT

5.8.1 Loop test

When RT53eur IP emits on the 1553B bus, its reception function monitors simultaneously the real bus state. It allows checking the correct connections and behaviours of the 1553B Transceiver and of the Transformer. Such feature is called the "loop test".

In case of difference between the emitted message and the received one, the 1553 interface inhibits the current emission within a delay of $3 \mu s$, sets the TF bit in the internal status register and indicates the error nature in the BIT word.

This function is enabled only when LTEN_N input pin is at low level.

5.8.2 Transmission time-out

The 1553 interface limits all the emissions of more than 800 μ s by using an internal timeout, as required in the 1553B norm. In this case emission must be inhibited. This error induces an update of the BIT word, and the setting of the TF bit of the status word. The transmission inhibition is cancelled at the reception of the next valid command addressing the 1553 interface.

5.8.3 "Data wrap around Test" and "Self test"

The 1553 interface does not implement any "Self Test".

But a Data Wrap Around Test is implemented using address 30. The data received at this sub address are transmitted when a transmit command at this sub address is received. The transmit command follows the receive command in case of internal wrap around. RT53eur IP manages two kinds of data wrap around test according to the INTWRAP field of ConfReg1:

- An autonomous test: in that case RT53eur IP stores the received data in its internal buffer.
- A normal test: in that case the application must store the received data.

The number of words accepted by the Data wrap around test ranges from 1 to 32.

6. THE APPLICATION INTERFACE DESCRIPTION

6.1 ILLEGALIZATION MECHANISM

The RT53eur IP can manage an illegalization table stored in memory. The purpose of the illegalization table is to validate an incoming message from its subaddress and from its type. The illegalization mechanism can be activated /deactivated according to the ILLEGAL field of the ConfReg1 configuration register. If the illegalization mechanism is not activated, each incoming message is considered as valid from the illegalization mechanism point of view. But it must be noticed that the illegalization table is always read since it contains the memory mode, busy bit and the circular buffer size (if any) of the incoming message.

The illegalization table has to be built in memory at power up by the application. Such table can be permanently located in a PROM, or be loaded in the memory, or be located in an FPGA connected to RT53eur IP. The illegalization Table is shared in 7 areas which mapping is depending only on the received Command word as depicted in Figure 17 :

- Mode Command in Receipt
- Mode Command in Receipt and Broadcast
- Receive Command
- Receive Command in Broadcast
- Mode Command in Transmit
- Mode Command in Transmit and in Broadcast
- Transmit Command

Within each area, illegalization words are addressed by the subaddress or the mode code value of the message. Each subaddress or mode code must have a subaddress characterization word in the illegalization table. RT53eur IP accesses to the illegalization table at the start of each transfer in order to manage the STATUS word and the data to receive or to transmit

The following mode codes do not have associated characterization word :

- Transmit Status Word
- Transmit last Command

RT53eur IP consider these mode codes as always legal, and they do not generate any traffic on the application.

1	+
EADS	Erium

0x0200	Mode Code 0 Receive	0x0280	Mode Code 0 Transmit		
0x021F	Mode Code 31 Receive	0x029F	Mode Code 31 Transmit		
0x0220	Mode Code 0 Receive Broadcast	0x02A0	Mode Code 0 Transmit Broadcast		
0x023F	Mode Code 31 Receive Broadcast	0x02BF	Mode Code 31 Transmit Broadcast		
0x0241	Subadress 1 Receive	0x02C1	Subadress 1 Transmit		
0x025E	Subadress 30 Receive	0x02DE	Subadress 30 Transmit		
0x0261	Subadress 1 Receive Broadcast				
0x027E	Subadress 30 Receive Broadcast				

Figure 17 : Illegalization Table Addresses

A characterization word for each subaddress contains the information given in Figure 18 and for mode code the information given in Figure 19.

Bits	Name	Function			
1513		Not Used			
		Circular Buffer Size:			
		000 : 64 words			
		001 : 128 words			
		010 : 256 words			
1210	BUFSIZE	011 : 512 words			
		100 : 1024 words			
		101 : 2048 words			
		110 : 4096 words			
		111 : 8192 words			
		Data Block in memory availability :			
9	BUSY	0 : Data Block available			
,		1 : Data Block are not ready to be Read or Writen over by			
		RT53eur IP.			
		RT53eur IP shall check data word count :			
8	CHECK	0 : No			
		1 : Yes			
		Memory Mode			
76	MODE	00 : Direct Addressing			
70		10 : Indirect Addressing			
		01 : Indirect Stacked Addressing			
		Data Word Count			
51	DWC	0 : 32 words			
		131 : same			
		legality (ME bit in STATUS WORD)			
0	ILLSA	0 : Legal			
		1 :Illegal			

Figure 18 : Subaddress Characterization Word

Bits	Name	Function			
151		Not Used			
		legality (ME bit in STATUS WORD)			
0	ILLMC	0 : Legal			
		1 :Illegal			

Figure 19 : Mode Code Characterization Word

6.2 THE MEMORY MANAGEMENT

The memory management is configurable in one of these 3 modes:

- the Direct addressing
- the Indirect addressing
- the Indirect Stacked addressing

The Direct Addressing mode and the Indirect Addressing mode are similar. In the Direct Addressing mode each message is stored at a unique address depending only on the content of the received command word. The Indirect Addressing mode provides an indirect addressing mechanism allowing to store the message more freely. The Indirect Stacked mode manages circular buffers to store the data and the data block descriptors.

The access to the characterization table is made by using a specific chip selection signal called CHARSN.

All the memory exchanges are protected by an EDAC.

6.2.1 EDAC protection

The RT53eur IP embeds an EDAC able to detect and correct one error in memory. The EDAC is based on the Hamming code depicted in Figure 20. When enabled the RT53eur IP manages 6 extra bits in the Data bus named DATAC0 to DATAC5. This EDAC shall be enabled only when EDACEN field of the Confreg1 Configuration Register is active.

In case of single error, the SERRN signal is activated. In case of double error, the DERRN signal is activated. If the double error occurs during a message processing, the RT53eur IP sets the TF bit of the Status Word returned, and raises an interrupt. RT53eur IP does not correct double errors. It is assumed that the application implements a scrubbing mechanism that is in charge of managing double errors.

CHECK BITS																	
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
DATAC0	XNOR	Х	Х		Х	Х				Х	Х	Х			Х		
DATAC1	XNOR	Х		Х	Х		Х	Х		Х			Х			Х	
DATAC2	XOR		Х	Х		Х	Х		Х		Х			Х			Х
DATAC3	XOR	Х	Х	Х				Х	Х			Х	Х	Х			
DATAC4	XOR				Х	Х	Х	Х	Х						Х	Х	Х
DATAC5	XOR									Х	Х	Х	Х	Х	Х	Х	Х

Figure 20 : EDAC definition

6.2.2 Direct addressing

The memory mapping of the Direct Addressing mode is described in Figure 21 and in Figure 22. The address is only command dependant. The memory is shared in the following areas:

- The Last data Block Descriptor area is composed of 5 words that store the Command Word, the Status Word, the Time Tag Word, The Frame Tag Word and the Data Block Pointer. This area is updated at the end of each valid exchange. In this mode only the last descriptor is kept in memory. The Data Block Pointer is the address of the data words in memory.
- The Illegalization table as described in section 6.1.
- The data block area in receive mode
- The data block area in transmit mode
- The data block area in broadcast mode

The size of each reserved data block area is 32 times 32 words. The data related to a message are stored consecutively in memory.

In Direct Addressing, the associated data of mode commands are stored in the "Data Block reception area" corresponding to subaddress 0. The 5 LSB bits of the address are the mode code identifier.

In Direct Addressing, the associated data of a Transmit command at subaddress 30, corresponding to wrap-around , is stored in the Receive area of this subaddress.

0000-0004	Last data Block Descriptor		
0200-027E	Illegalization table reception		
0280-02DE	Illegalization table transmission		
0800-0BFF	Data Block area in reception (direct)		
0C00-0FFF	Data Block area in transmission (direct)		
1800-1BFF	Data Block area in broadcast (direct)		
others	Not Used		

Figure 21 : Direct Addressing Memory Map

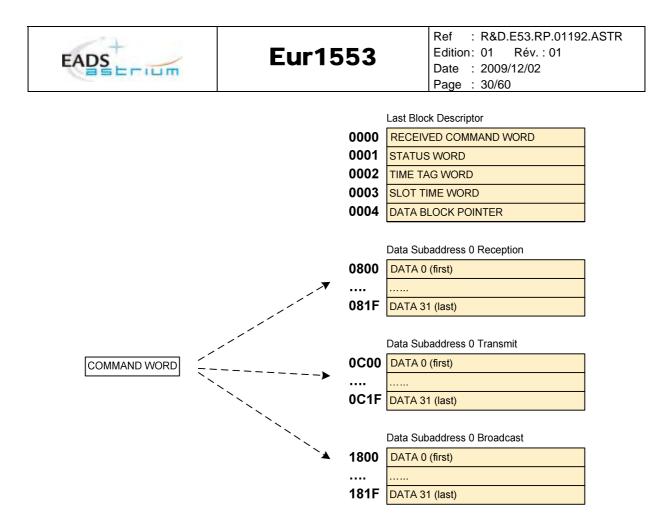


Figure 22 : Direct addressing

6.2.3 Indirect addressing

In Indirect Addressing mode, the data received or transmitted through a subaddress that is not a mode code command are exchanged with memory using an indirect addressing mechanism. A look-up table stores the indirect address of the first word of each subaddress that does not correspond to a mode code command. The memory mapping is depicted in Figure 23 and in Figure 24.

The memory is shared in the following areas:

- The Last data Block Descriptor area is composed of 5 words that store the Command Word, the Status Word, the Time Tag Word, The Frame Tag Word and the Data Block Pointer. This area is updated at the end of each valid exchange. In this mode only the last descriptor is kept in memory. The Data Block Pointer is the address of the data words in memory.
- The Look Up Table that contains 96 pointers to data blocks corresponding to 32 indirect addresses in receive mode, 32 indirect addresses in transmit mode, and 32 indirect addresses in broadcast mode.
- The Illegalization table as described in section 6.1.
- A mode code command area in reception containing 32 words
- A mode code command area in transmit containing 32 words
- A mode code command area in broadcast containing 32 words

• The rest of the memory can be used to store data blocks by using the indirection mechanism. The organization of this area is left free to the user.

0000-0004	Last data Block Descriptor	
0140-019F	Look Up Table	
0200-027E	Illegalization table reception	
0280-02DE	Illegalization table transmission	
02DF-07FF	Free for Data Blocks	
0800-081F	Mode code command reception	
0820-0BFF	Free for Data Blocks	
0C00-0C1F	Mode code command emission	
0C20-17FF	Free for Data Blocks	
1800-181F	Mode code command broadcast	
1820-FFFF	Free for Data Blocks	

Figure 23 : Indirect addressing Memory Map

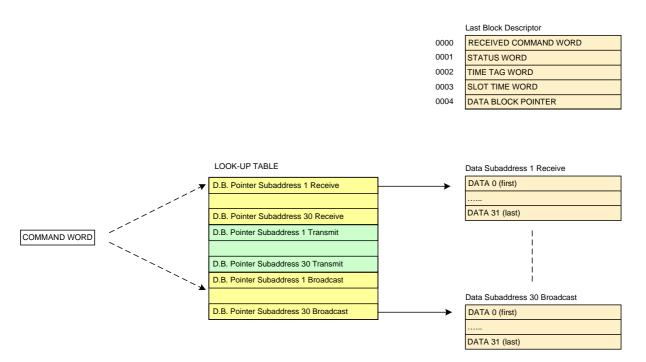


Figure 24 : Indirect addressing

6.2.4 Indirect Stacked mode

6.2.4.1 Memory mapping

The memory mapping of the Indirect Stacked mode is described in Figure 25.

In Indirect Stacked mode, the data received or transmitted through a subaddress that does not correspond to a mode code command, are exchanged with memory using an indirect addressing mechanism. A lookup table stores the indirect addressing for the first word of each subaddress that is not a mode code command, as depicted in Figure 26.

In Indirect Stacked mode, RT53eur IP stores all the data Block Descriptors in a stack.

The memory is shared in the following areas:

- The Stack pointer A and B words contain the addresses of the Data Block Descriptor A and B.
- The Last data Block Descriptor area is composed of 5 words that store the Command Word, the Status Word, the Time Tag Word, The Frame Tag Word and the Data Block Pointer. This area is updated at the end of each valid exchange. The Data Block Pointer is the address of the data words in memory.
- The Look Up Table that contains 90 pointers to data blocks corresponding to 30 indirect addresses in receive mode, 30 indirect addresses in transmit mode, and 30 indirect addresses in broadcast mode.
- The Illegalization table as described in section 6.1.
- A mode code command area in reception containing 32 words
- A mode code command area in transmit containing 32 words
- A mode code command area in broadcast containing 32 words
- The rest of the memory can be used to store data blocks. The organization of this area is left free to the user.

0100	Stack Pointer A		
0104	Stack Pointer B		
0140-019F	Look Up Table		
0200-027E	Illegalization table reception		
0280-02DE	Illegalization table transmission		
02DF-07FF	Free for Data Blocks		
0800-081F	Mode code command reception		
0820-0BFF	Free for Data Blocks		
0C00-0C1F	Mode code command emission		
0C20-17FF	Free for Data Blocks		
1800-181F	Mode code command broadcast		
1820-FFFF	Free for Data Blocks		

Figure 25 : Indirect Stacked Addressing Memory Map

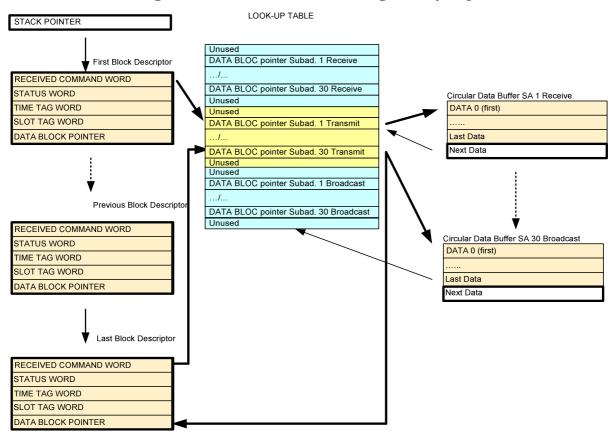


Figure 26 : Indirect Stacked addressing and stack management

6.2.4.2 Stack mechanism

The stack mechanism uses 2 pointers which means that 2 stacks A and B are present in memory. The 2 stack pointers are stored at a fixed address in memory. RT53eur IP uses only one stack (i.e. one stack pointer) at a time for a given exchange. A flag in the Application Interface Configuration register indicates the stack pointer used to write the next descriptor.

The start address of the stack is defined by the user by initializing the stack pointer. The size of the stack is defined in the Confreg3 configuration register. The start address of the stack must have as many LSB set to zeros as the stack size, i.e. if stack size is 64 words 6 LSB are zeros, if stack size is 128 words 7 LSB bits are zeros, and so on... It allows RT53eur IP to determine the start and end addresses of the stack when knowing the stack pointer and the stack size.

After the processing of a 1553 exchange, the RT53eur IP writes the block descriptor at a location starting at an address equal to the current stack pointer. After writing the descriptor block, RT53eur IP checks if there is enough space remaining in the current stack for the next descriptor block. Enough space means 5 words free, if 4 words or less are available the stack is considered as full.

When the stack is full, the other stack will be used for the next message. The CURSTACK field of the ConfReg4 register is toggled by RT53eur IP. RT53eur IP raises an internal interrupt that is transmitted to the INT pin if the interrupt is not masked.

6.2.4.3 Circular Buffer mechanism

A circular buffer mechanism is used to store the data blocks in Indirect Stacked addressing mode. The sizes of the circular buffers are defined by the user in the illegalization table.

The start addresses of the circular buffers are defined by the user in the Look Up table. The start address of the circular buffers shall have a defined number of LSB bits forced to zero depending on the buffer size. For example, if the buffer size is set to 64 words, the 6 LSB shall be forced to 0. If it is 128 words, 7 LSB shall be forced, and so on. It allows RT53eur IP to determine the start and end addresses of a circular buffer when knowing the current address in the buffer and its size.

RT53eur IP raises an internal interrupt each time the current size of the buffer reach 50% and 100%, that is transmitted to the INT pin if the interrupt is not masked.

6.2.5 Data Block Descriptor

The Data Block Descriptor stores 5 words related to the last exchange:

- The Command Word
- The 1553 Status Word
- The Time Tag value sampled when the Command word has been received and decoded
- The Frame Tag value sampled when the Command word has been received and decoded

• The Data block pointer that is the start address of the data block related to the exchange. If no data block is associated to the command (in case of Mode Code command without data), this pointer is set to 0x0000.

6.2.6 Subaddress busy management

Each Subaddress uses a busy mechanism to indicate the availability of a data block. The busy mechanism is managed by application via the characterization word. The busy bit of the STATUS is set if the busy bit of the characterization word is set. In this case no data word are transmitted or written in memory.

6.2.7 Processing

When a valid and legal message is received by RT53eur IP, it performs the following accesses in memory:

- Read illegalization word at an address depending only on the information contained in the Command Word.
- Read the Look Up Table at an address depending only on the information contained in the command word. The start address of the data block is read, it is called the data block pointer. (only in indirect and stacked mode)
- Read or Write the data words in the data block.
- Read the Stack Pointer. (only in stacked mode)
- Write the 5 words of the Descriptor Block in the stack.
- Update the Data Block pointer in the Look Up Table. (only in indirect and stacked mode)
- Update the Stack Pointer. (only in stacked mode)

6.3 RTC MANAGEMENT

The RT53eur IP includes a Real Time Clock Management based on 3 parameters:

- The "time into a frame " or TimeTag which is a 16 bit counter.
- The "frame number" or FrameTag which is a 16 bit register
- The "Frame Duration" which is a 16 bit register

The TimeTag counter is reset at power up. The TimeTag counter is counting when the Frame Duration is different from zero. Its increment represents 16 us whatever the SELCK clock selection is. When the Frame Duration is equal to zero the TimeTag is stopped and reset.

When the TimeTag counter reaches the Frame Duration, it is reset and an interrupt can be generated according to the TIOVER bit of the Confreg3 Configuration register.

Upon receipt of a Synchronize without or with data word command, the TimeTag counter is reset.

Upon receipt of a Synchronize with data word command, the FrameTag is loaded with the value of the received data word.

The duration between the mid-parity bit of the SYNC command word and the load or reset time is about 30.5 us (+/-500 ns).

6.4 THE INTERRUPT MANAGEMENT

RT53eur IP manages the following cause of interrupts:

Nbr	Name	Function	Maskable	IT signal
9	APPERR	Application Interface Error Interrupt	No	INT, DERRN
8	EDACDERR	EDAC Double Error Interrupt	Yes	INT, DERRN
7	MIDCIBUF	Circular Buffer Size reach 50% Interrupt	Yes	INT
6	RTERROR	Remote Terminal protocol error Interrupt	Yes	INT
5	TIOVER	Time Tag Rollover Interrupt	Yes	INT
4	CIOVER	Circular Buffer Rollover Interrupt	Yes	INT
3	STOVER	Descriptor Stack Rollover Interrupt	Yes	INT
2	RTSEL	Selected Message Received Interrupt	Yes	INT
1	ENDMSG	End of Message Interrupt	Yes	INT

Figure 27 : Interrupt definition

RT53eur IP is able to mask the interrupt numbered 1 to 8 by using the ConfReg3 register fields. Interrupt 8 is activated only if EDAC is enabled. It can be masked also. Interrupt 9 cannot be masked, since it is caused by an application interface error as timeout or bus grant terminated too early by the application.

When an interrupt has been raised, the Interrupt Vector Register is updated accordingly to memorize the interrupt cause as defined above.

All the interrupts except the TimeTag Rollover $(n^{\circ}4)$ interrupt are reset at the reception of a new valid command word. All the interrupts are reset after a read access to the Interrupt Vector register by the application.

In case of Interrupt that is not a Time Tag Rollover or a Remote Terminal Error, the INT signal is raised at the same time as the TROKN signal at the end of the exchange. In case of Interrupt that is a Time Tag Rollover or a Remote Terminal Error, the INT raises at the time the Interrupt occurs. The INT signal lasts generally one clock cycle. It lasts 2 clock cycles in case a Time Tag Rollover arrives just before or after another interrupt.

The TROKN signal is activated when the exchange is successfully completed from a 1553 point of view. It indicates that the message has been correctly sent to the Bus Controller in case of Transmit, or that the message has been correctly received in the internal buffer of the IP. The TROKN signal is activated during one cycle after all memory updates related to the exchange.

The following mode commands do not generate a TROKN or INT interrupt:

- Transmit Status Word
- Transmit Last Command
- Transmit BIT word

Nevertheless an application interface error or an EDAC double error can occur after, for example during the read and write performed when the descriptor block is written.

In case of EDAC Double Error or application interface error, the DERRN signal is activated immediately. It is maintained until the end of the current message processing. The user is thus able to check it when TROKN is activated to determine the validity of the descriptor block (see also 7.3)

7. INTERFACE DESCRIPTION

7.1 **REGISTER MAPPING AND ACCESS**

The internal register listed in Figure 28 can be accessed in read and/or write by the application. The access to RT53eur IP internal registers is made by requesting the bus access as specified in section 7.3, and activating the CSREGN and RWREG control signals.

AD	Name	Definition		Reset Value
0x0000	ConfReg1	RT Mode Definition Register	r/w	0005
0x0001	ConfReg2	RTC Definition Register	r/w	0000
0x0002	ConfReg3	Interrupt Mask Register	r/w	0001
0x0003	ConfReg4	Application Interface Configuration Register		0000
0x0004	InterruptVec	Interrupts Vector Register	r/*	0000
0x0005	TimeTag	RTC Time Counter	r/w	0000
0x0006	FrameTag	RTC Frame Register	r/w	0000

Figure 28 : Internal Register Mapping

Note * : the Interrupt Vector Register is reset in case of read

The RT53eur IP registers are summarized hereafter.

ad = 0x0000		ConfReg1 RT mode	
Bits	Bits Name Function		Reset Value
155	-	Not Used	0
4	CURSTACK	"1" : Current Stack Pointer B is selected	0
4	CORSTACK	"0" : Current Stack Pointer A is selected	0
3	EDACEN	"1" : EDAC is enabled	0
3	EDACEN	"0" : EDAC is disabled	0
2	INTWRAP	"1" : RT53eur IP Internal Data Wrap Around subaddress 30	1
2	INTWKAP	"0" : Application Data Wrap Around subaddress 30	1
1	"1" : Illegalization mechanism enabled	"1" : Illegalization mechanism enabled	0
1	ILLEINAD	"0" : Illegalization mechanism disabled	0
0	DDENIAD	"1" : Broadcast mode enabled	1
0	BRENAB	"0" Broadcast mode disabled	l

ad = 0x0001		ConfReg2 Real Time Clock	
Bits	Name	Function	Reset Value
150	FRAMEDUR	Frame duration	0

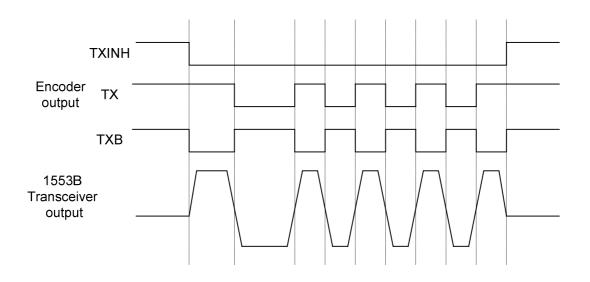
ad = 0x0002		ConfReg3 Interrupt Mask definition	
Bits	Name	Function	Reset Value
1511	SADSEL	Selected Message sub address	0
		Descriptor Stack Buffer Size:	
		000 : Only One descriptor (5 words)	
		001 : 128 words	
		010 : 256 words	
108	STSIZE	011 : 512 words	000
		100 : 1024 words	
		101 : 2048 words	
		110 : 4096 words	
		111 : 8192 words	
7	EDACDERR	EDAC Double Error interrupt activation	0
6	MIDCIBUF	Middle Boundary of Circular Buffer Interrupt Activation	0
5	RTERROR	Remote Terminal internal error Interrupt Activation	0
4	TIOVER	Time Tag Rollover Interrupt Activation	0
3	CIOVER	Circular Buffer Rollover Interrupt Activation	0
2	STOVER	Descriptor Stack Rollover Interrupt Activation	0
1	RTSEL	Selected Message Received Interrupt Activation	0
0	ENDMSG	End of Message Interrupt Activation	1

ad = 0x0003		ConfReg4 Application Interface Configuration	
Bits	Name	Function	Reset Value
154		Not Used	0
30	WAITSTATES	Number of Wait States during external access	0000

	ad = 0x0004	Interrupt Vector Register	
Bits	Name	Function	Reset Value
159		Not Used	0
8	APPERR_V	Application Interface Error Interrupt	0
7	EDACDERR_V	EDAC Double Error Interrupt	0
6	MIDCIBUF_V	Circular Buffer Size reach 50% Interrupt 0	
5	RTERROR_V	Remote Terminal internal Error Interrupt	0
4	TIOVER_V	Time Tag Rollover Interrupt	0
3	CIOVER_V	Circular Buffer Rollover Interrupt	0
2	STOVER_V	Descriptor Stack Rollover Interrupt	0
1	RTSEL_V	Selected Message Received Interrupt 0	
0	ENDMSG_V	End of Message Interrupt	0

ad = 0x0005		TimeTag Time Counter	
Bits	Name	Function	Reset Value
150	TIMETAG	Time counter	0x0000

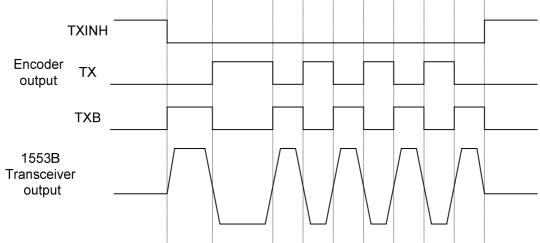
ad = 0x0006		FrameTag Register	
Bits	Name	Function	Reset Value
150	FRAMETAG	Frame number	0x0000


7.2 1553B TRANSCEIVER INTERFACE

The RT53eur IP is compatible at least with ASP54 transceiver as defined in [AD14].

The idle input and output levels to the 1553B transmitter are selectable by using the BUSLEVEL pin.

The truth table of the TX and TXB signals is described in Figure 29 when BUSLEVEL=1 and Figure 30 when BUSLEVEL=0.


The truth table of the RX and RXB signals is described in Figure 31 for BUSLEVEL=1 and in Figure 32 for BUSLEVEL=0.

TX	ТХВ	TXINH	1553B bus Voltage expected for BUSLEVEL=1
0	0	0	no drive TX/TXB state not generated by the IP
0	1	0	negative
1	0	0	positive
1	1	0	no drive - Idle state
Х	Х	1	no drive

Figure 29 : 1553 transmitters signals waveform and truth table for BUSLEVEL = 1

TX	ТХВ	TXINH	1553B bus Voltage expected for BUSLEVEL=0
0	0	0	no drive – Idle State
0	1	0	positive
1	0	0	negative
1	1	0	no drive TX/TXB state not generated by the IP
Х	Х	1	no drive

1553B bus Voltage	BUSLEVEL	RX	RXB
No voltage	1	0	0
negative	1	1	0
positive	1	0	1

Figure 31 RX and RXB truth table for Transmitters for BUSLEVEL = 1

1553B bus Voltage	BUSLEVEL	RX	RXB
No voltage	0	1	1
negative	0	0	1
positive	0	1	0

Figure 32 RX and RXB truth table for Transmitters for BUSLEVEL=0

As a recommendation is done on TX and TXB outputs, the RX and RXB inputs should be wired with short and identical links from the receiver to the RT53eur IP.

7.3 APPLICATION INTERFACE DESCRIPTION

The RT53eur IP is able to manage an SRAM interface of 64 K words of 16 bits. RT53eur IP uses the CSREADYN input pin to access to slow memories.

7.3.1 WaitStates and CSREADYN mechanism

The RT53eur IP implements a waitstate mechanism to extend the duration of the CSN or CHARSN signals. This mechanism can be useful for slow memory access time.

WaitState duration is initially defined to 400 ns whatever the frequency selected is, and despite the initial value x0000 of the Configuration Register 4. A first Write access to this register can modify the WaitStates duration. The WaitStates duration is defined as a number of clock periods that is programmable from 0 (CSN or CHARSN lasts only one clock cycle) to 15 clock periods (CSN or CHARSN lasts 16 clock cycle).

It is also possible to interface slow memories by using the CSREADYN signal. The duration of CSN or CHARSN signals can be extended by setting CSREADYN low only when memory is ready after CSN or CHARSN signals was activated. It must be noticed the whole access time can not last more than 3us.

7.3.2 Arbitration mechanism

The RT53eur IP implements one arbitration mechanism: the RT53eur IP is in slave mode, the arbitration is managed by the application.

RT53eur IP requests the access to the bus by activating the DMAREQN signal. RT53eur IP is granted when DMAACKN signal is activated.

The application can manage DMAACKN. DMAACKN release must be made at a maximum time of 2 clock cycles after DMAREQN release. If DMAACKN is not released at this time, and if the IP has set its DMAREQN signal to zero, the IP considers that the bus is granted.

RT53eur IP sets the BUSBUSY signal when the bus is used by RT53eur IP.

7.3.3 Errors management

When RT53eur IP requests the bus, the application must grant the bus in less than 3 µs, otherwise the processing of RT53eur IP will be disturbed. The access will be considered as unsuccessful by RT53eur IP. The processing of this error by RT53eur IP depends on the access that is erroneous:

• If the error occurs during the characterization word reading or the data pointer reading, RT53eur IP returns a status word with TF bit set on 1553. In case of transmit message, RT53eur IP does not transmit data words on the 1553 bus., TROKN is not activated, an APPERR interrupt is raised, DERRN and INT signals are activated. In case of receive message, RT53eur IP does not store the incoming data words, TROKN is not activated, an APPERR interrupt is raised, DERRN and INT signals are activated.

EADS

- If the error occurs during the read of data word in case of transmit message, a clear status is sent on 1553, RT53eur IP stops sending the words on the 1553B bus. TROKN is not set, an APPERR interrupt is raised. The TF bit is set in RT53eur IP BIT word. DERRN and INT signals are activated.
- If the error occurs during the write of data word in case of receive message. A clear status is sent on 1553 in case of direct or indirect mode, a status with TF bit set is sent in case of stacked mode. TROKN is activated, an APPERR interrupt is raised. The TF bit is set in RT53eur IP BIT word. DERRN and INT signals are activated.
- If the error occurs during the read/write exchanges related to the data block descriptor. A clear status is sent on 1553, TROKN is activated, an APPERR interrupt is raised. The TF bit is set in RT53eur IP BIT word. DERRN and INT signals are activated.

When RT53eur IP performs a read access in the shared memory with EDAC enabled, a double error can be detected. In this case the processing of the error depends on the considered access. It is identical to the management described above.

8. SIGNAL CHARACTERISTICS

8.1 **DESCRIPTION**

Name	I/0	Signal definition	Туре	Reset value	Usage
		Clock and reset			
СК	Ι	IP input clock	clock input	N.A.	
CK_N	Ι	IP input clock for CK inverted clock Specific input used to be able to access to the inverted clock tree which may be useful for example in case of scan insertion. CK_N drives only 5 flip flops.	clock input	N.A.	CK_N shall be connected to (not CK) inside the ASIC or the FPGA.
RESETN	Ι	Hardware Reset	reset input	N.A.	can be synchronous or asynchronous – 2 IP cores are provided
SELCK<20>	Ι	Clock frequency selection	Static / Asynchronous	N.A	shall he hard wired – depends on the selected clock frequency
APPINIT	Ι	Application Initialization - to be used only at power-up	Resynchronized	N.A.	To be used carefully only during application initialization, otherwise force it at 0.
		1553B configuration			
RTAD<40>	Ι	Address of the RT	Static / Asynchronous	N.A	shall be glitch free and static, connected to RTAD input port and wired at board level.
RTPARITY	Ι	Odd parity of the RTAD<40> address	Static / Asynchronous	N.A	shall be glitch free and static, connected to RTPARITY input port and wired at board level

© EADS ASTRIUM SAS

Eur1553

Ref : R&D.E53.RP.01192.ASTR Edition: 01 Rév. : 01 Date : 2009/12/02 Page : 47/60

Name	I/0	Signal definition	Туре	Reset value	Usage
DYNREG	Ι	Enable the dynamic load configuration register (by the 1553 bus)	Resynchronized	N.A	connection to an input port, a register or force it
BREN	Ι	Enable/disable Broadcast acceptance	Resynchronized	N.A	connection to an input port, a register or force it
TIMEOUT	Ι	Time Out selection for an RT to RT exchange: • "0": 31 μs • "1": 14 μs	Static / Asynchronous	N.A	connection to input port, a register or force it
LTEN_N	Ι	Signal for loop function inhibition, when set to "1" the loop function is disabled	Resynchronized	N.A	connection to input port, a register or force it
TXEN_N	Ι	Signal for encoder output inhibition, when set to "1" the transmitters are disabled	Resynchronized	N.A	connection to input port, a register or force it
BUSLEVEL	Ι	Configuration of the Active Bus Level (refer to Figure 30)	Static / Asynchronous	N.A	shall be hard wired except if the user wants to use different types of Transceiver (Smith or Harris)
		1553B Signals			
RX0	Ι	Manchester coded data input, nominal Bus	sampled on clock rising and falling edges	N.A	connection to input port
RX0B	Ι	Manchester coded data input, nominal Bus	sampled on clock rising and falling edges	N.A	connection to input port
TX0	О	Manchester coded data output, nominal Bus	Synchronous	1 if Buslevel =1 0 if Buslevel = 0	connection to output port – constraints on timing see § 9
TX0B	О	Manchester coded data output, nominal Bus	Synchronous	1 if Buslevel =1 0 if Buslevel = 0	connection to output port constraints on timing see § 9
TX0INH	О	Emission on nominal bus inhibition	Synchronous	1	connection to output port

© EADS ASTRIUM SAS

Name	I/0	Signal definition	Туре	Reset value	Usage
RX1	Ι	Manchester coded data input, redundant Bus	sampled on clock rising and falling edges	N.A	connection to input port or force it if Bus B is not used
RX1B	Ι	Manchester coded data input, redundant Bus	sampled on clock rising and falling edges	N.A	connection to input port or force it if Bus B is not used
TX1	О	Manchester coded data output, redundant Bus	Synchronous	1 if Buslevel =1 0 if Buslevel = 0	connection to output port or let it unconnected if Bus B is not used
TX1B	Ο	Manchester coded data output, redundant Bus	Synchronous	1 if Buslevel =1 0 if Buslevel = 0	connection to otuput port or let it unconnected if Bus B is unused - constraints on timing see § 9
TX1INH	Ο	Emission on redundant bus inhibition	Synchronous	1	connection to ouput port or let it unconnected if Bus B is not used - constraints on timing see § 9
		Application interface			
ADIN<150>	Ι	Input Address bus	Resynchronized	N.A.	connection to application or input of bidir port
ADOUT<150>	Ο	Output Address bus	Synchronous	0	connection to application or output of bidir port
ADEN	Ο	Enable signal for AD bus	Synchronous + Async. from DMAACKN	0	connection to application or enable of bidir port
DATAIN<150>	Ι	Input Data bus	Resynchronized	N.A.	connection to application or input of bidir port
DATAOUT<150	Ι	Output Data bus	Synchronous	0	connection to application or output of bidir port
DATACIN<50>	Ι	Input Check bits of the Data Bus	Resynchronized	N.A.	connection to application or input of bidir port

Ref : R&D.E53.RP.01192.ASTR Edition: 01 Rév. : 01 Date : 2009/12/02 Page : 49/60

Name	I/0	Signal definition	Туре	Reset value	Usage
DATACOUT<50	0	Output Check bits of the Data Bus	Synchronous	0	connection to application or output of bidir port
DATAEN	0	Enable signal for AD bus	Synchronous + Async. from DMAACKN	0	connection to application or enable of bidir port
CSREADYN	Ι	Availability of the data	Resynchronized	N.A.	connection to input port or force it at zero if no wait states are requried
CSREGN	Ι	Selection of the internal registers access	Synchronous	N.A.	connection to application or input port
RWREG	Ι	Read Write selection for internal registers access	Synchronous	N.A.	connection to application or input port
CSN	0	Data bus selection other than the characterization area	Synchronous	1	connection to application or output port of tristate buffer
CSN_EN	0	Enable signal for CSN	Synchronous + Async. from DMAACKN	0	connection to application or enable port of tristate buffer
CHARSN	0	Data bus selection specific to the characterization area	Resynchronized	1	connection to application or output port of tristate buffer
CHARSN_EN	0	Enable signal for CHARSN	Resynchronized	0	connection to application or enable port of tristate buffer
RW	0	Read Write selection	Resynchronized	1	connection to application or output port of tristate buffer
RW_EN	Ο	Enable signal for RW	Resynchronized	0	connection to application or enable port of tristate buffer
		Arbitration			
DMAACKN	Ι	Acknowledge of the request by the application	Synchronous + Async. from DMAACKN	N.A.	connection to application or input port

Ref : R&D.E53.RP.01192.ASTR Edition: 01 Rév. : 01 Date : 2009/12/02 Page : 50/60

Name	I/0	Signal definition	Туре	Reset value	Usage
DMAREQN	О	Request for the bus asked by RT53eur IP	Synchronous + Async. from DMAACKN	1	connection to application or output port
BUSBUSY	О	Bus used by the RT	Synchronous + Async. from DMAACKN	0	connection to application or output port
		Application Interface related to 1553B			
SSF	Ι	Set Sub System Flag Bit in STATUS word	Resynchronized	N.A.	connection to application or input port or force it at zero
SREQ	Ι	Set Service Request Bit in STATUS word	Resynchronized	N.A.	connection to application or input port or force it at zero
SERRN	О	Single Error detection	Synchronous	1	connection to application or output port
DERRN	О	Double or Application Error detection	Synchronous	1	connection to application or output port
TROKN	0	End of data transfer (after command processing)	Synchronous	1	connection to application or output port
SYNCN	О	Synchronization (with or without data word) received	Synchronous	1	connection to application or output port
INT	О	Interruption	Synchronous	0	connection to application or output port
RESETRTN	О	Initialisation phase active	Synchronous	1	connection to application or output port
		Test Interface			
SCANMODE	Ι	Activation of the scan mode modes	Asynchronous	N.A.	force it at zero in functional mode
TSTFS	Ι	Activation of theFail Safe (800 us Timeout) test mode	Resynchronized	N.A.	force it at zero in functional mode

© EADS ASTRIUM SAS

EADS	Eur1553	Ref : R&D.E53.RP.01192.ASTR Edition: 01
------	---------	--

Figure 33 : Signal Functional Description

9. ELECTRICAL REQUIREMENTS

9.1 AC CHARACTERISTICS

9.1.1 Clock characteristics

The RT53eur IP uses an external clock, whose frequency is multiple of 2 MHZ from 10 Mhz to 24 Mhz at least. The following characteristics are required:

- Short-term stability (over less than 1 second): ±0.01%
- Long-term stability and precision: $\pm 0.1\%$
- Allowed cyclic rate: 40%-60%
- Fall/rise time: <10ns

9.1.2 Characteristics of TX and TXB signals

A general recommendation for 1553 IP cores concerns the timing characteristics of the TX outputs. the following rules shall be followed :

- The timings of the TX0 and TX0B shall be as identical as possible, i.e. the paths from CLK rising edge to TX0 and TX0B edges shall be as identical as possible, and as short as possible. It shall be ensured by placing the flip flops generating TX0 and TX0B close to the Ouput buffers, and by making similar routes.
- Same requirement for TX1 and TX1B
- The propagation delays of a TXx output shall be as identical as possible for TXx rising and TXx falling edges. The exact specification of this requirement depends on the Transceiver characteristics. It is nevertheless safe not to exceed 0.2 ns in worst case conditions.

9.1.3 Typical timings given as an example

These are typical timings that can be obtained by synthetizing the IP with a 0.5 um technology as ATMEL MG2RTP process supplied in 5V. These timings are given for a 50 pF load on outputs.

These timings are given as an example only.

name	description	ref edge	min	max	unit
Tp1	RW output delay	CK+		20	ns
Tp2	CSN/CHARSN output delay	CK+		20	ns
Тр3	DATAOUT DATA_EN output delay	CK+		22	ns
Тр3	DATACOUT output delay	CK+		24	ns
Tsu1	DATAIN setup time	CK+	0		ns
Th1	DATAIN hold time	CK+	6		ns
Tp4	ADOUT AD_EN output delay	CK+		24	ns
Tsu2	ADIN setup time	CK+	0		ns
Th2	ADIN hold time	CK+	7		ns
Tsu3	CSREGN RWREG setup time	CK+	2		ns
Th3	CSREGN RWREG hold time	CK+	7		ns
Tp5	DMAREQN output delay	CK+		16	ns
Tsu4	DMAACKN CSREADYN setup time	CK+	0		ns
Th4	DMAACKN CSREADYN hold time	CK+	7		ns
Tp6	DATA HighZ to valid in case of register access			22	ns
Tp7	DATA valid to HighZ in case of register access			22	ns
Тр9	SYNC TROKN RESETRTN INT DERRN SERRN output delay	CK+		19	ns
Tp10	TX0 TX0B TX1 TX1B TX0INH TX1INH output delay	CK+		18	ns
Tp11	Duration between DMAREQN rise and DMAACKN rise	CK+		2 clock cycles	
Tp12	RW_EN CSN_EN CHARSN_EN output delay	CK+		20	ns

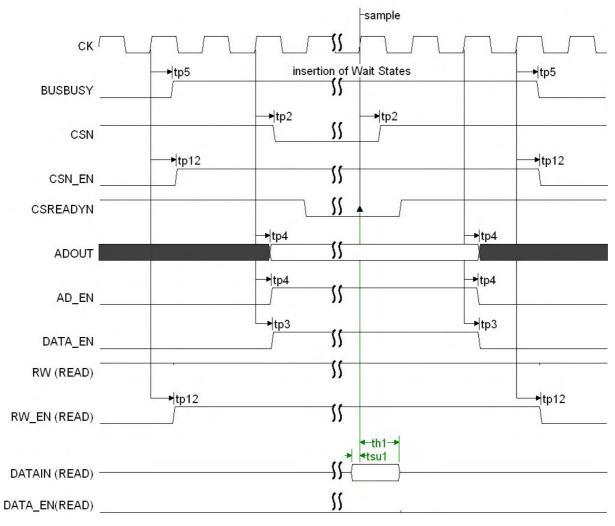


Figure 34 : Application Interface - Read access performed by the IP

Note 1 : CSN low minimum duration is 1 clock cycle corresponding to 0 WS, maximum duration is 16 clock cycles corresponding to 15 WS.

Ref : R&D.E53.RP.01192.ASTR Edition: 01 Rév. : 01 Date : 2009/12/02 Page : 55/60

Figure 35 : Application Interface - Write access performed by the IP

Note 1 : CSN low minimum duration is 1 clock cycle corresponding to 0 WS, maximum duration is 16 clock cycles corresponding to 15 WS.

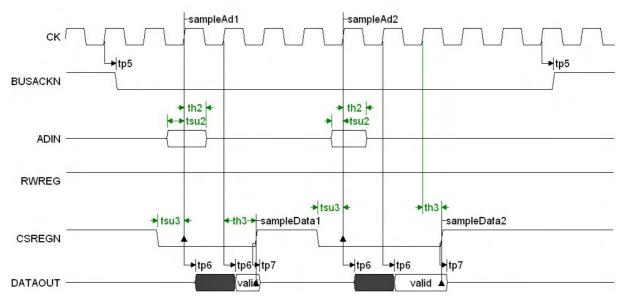


Figure 36 : Application Interface - Read IP internal register

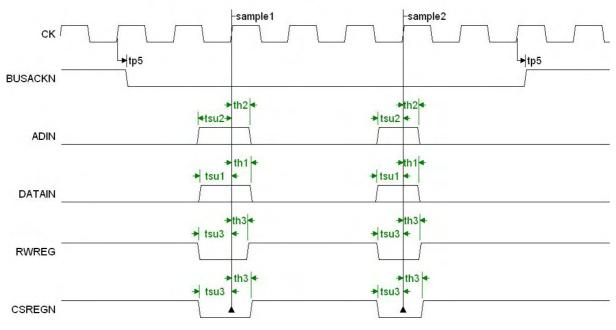


Figure 37 : Application Interface - Write IP internal register

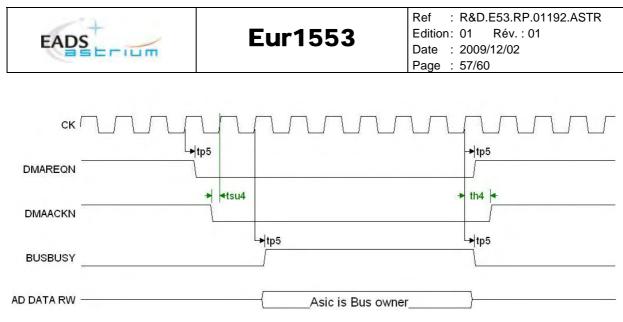


Figure 38 : Application Interface – Arbitration in case of IP request

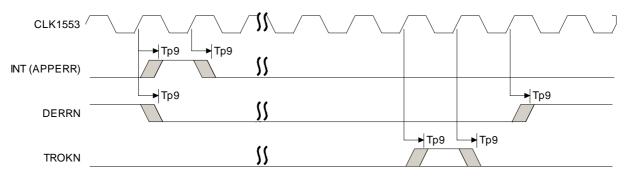


Figure 39 : interrupt occurence - access error after status emission

10. IP PORT MAP

```
entity RT53eur is
  qeneric(
    GSYNC RST : boolean := false
  )
 port(
    -- Clock & Reset
            : in std logic;
    CK
    RESETN
                : in std logic;
   SELCK : in std_logic_vector(2 downto 0);
APPINIT : in std_logic;
    -- Bus1553
                 : in std_logic;
    RX0
    RX0B
                 : in std_logic;
    RX1
                : in std logic;
    RX1B
                : in std logic;
    -- Configuration
               : in std logic vector(4 downto 0);
    RTAD
                : in std logic;
    RTPARITY
                : in std_logic;
: in std_logic;
    DYNREG
    BREN
               : in std_logic;
    TIMEOUT
   LTEN_N
                : in std logic;
    TXEN_N : in std_logic;
BUSLEVEL : in std_logic;
    -- Data management
    ADIN : in std_logic_vector(15 downto 0);
ADOUT : out std_logic_vector(15 downto 0);
    ADEN
                : out std_logic;
                : in std_logic_vector(15 downto 0);
    DATAIN
    DATAOUT
                : out std_logic_vector(15 downto 0);
    DATAEN
                : out std logic;
   DATACIN : in std_logic_vector(5 downto 0);
DATACOUT : out std_logic_vector(5 downto 0);
                : in std_logic;
: in std_logic;
    CSREADYN
    CSREGN
    RWREG : in std_logic;
DMAACKN : in std_logic;
    -- Status management
               : in std logic;
    SSF
    SREQ
                 : in std logic;
    _ _
    TX0
                : out std_logic;
    TX0B
                : out std_logic;
    TXOINH
                : out std logic;
    TX1
                : out std logic;
                : out std logic;
    TX1B
    TX1INH : out std_logic;
```


Data manage	ment
CSN :	out std_logic;
CSN_EN :	out std_logic;
CHARSN :	out std_logic;
CHARSN_EN :	out std_logic;
RW :	out std_logic;
RW_EN :	out std_logic;
DMAREQN :	out std_logic;
BUSBUSY :	out std_logic;
Specific si	gnals
SERRN :	out std_logic;
DERRN :	out std_logic;
TROKN :	out std_logic;
SYNCN :	out std_logic;
INT :	out std_logic;
RESETRTN :	out std_logic;
testability	signals
SCANMODE :	in std_logic;
TSTFS :	in std_logic
);	

DISTRIBUTION LIST

Alberto BOETTI	ESA	
Kostas MARINIS	ESA	
Arnaud WAGNER	Astrium	
Marc SOUYRI	Astrium	
Jean Marc TAINE	Astrium	
Marc Daniel WEBER	Astrium	
Nicolas BEHOT	Astrium	