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1 CD Content 

The CD delivered to ESA, in the context of the contract for the developer of the simulators described in 
this document, has the following structure: 

• cross_compilers: contains the compilers running both on linux and on windows operating 
systems, producing code for the sparc architecture. In case it is necessary to re-create such cross-
compilers, or in case they have to be created for different systems (e.g. cygwin or MacOSX), 
instructions and scripts for producing them are contained in folder cross_gcc_scripts. 

• TRAP: contains the sources of TRAP itself; this means all the Python files needed to generate the 
Instruction Set Simulators and the TRAP runtime library (both components are described more 
in detail in the rest of this document). 

• TRAP_runtime: contains the pre-compiled TRAP runtime library; such libraries have been 
compiled for the linux operating system. Use the sources in folder TRAP and the instructions 
given in the rest of the document in case you need to create the libraries for other OSes. 

• LEON2_sim and LEON3_sim, both of them with the same sub-folder structure: 
o trap_sources, containing the python files which describe the LEON2/3 architecture 

according to TRAP’s conventions; together with the TRAP library, such sources can be 
used to re-create the C++ code implementing the Instruction Set Simulators. 

o sources, containing the C++ files implementing the simulators; there are different sub-
folders for each simulator flavor (Instruction-Accurate, Cycle-Accurate, with Loosely-
Timed or Approximate-Timed interfaces, etc., as described in the rest of the document). 

o binaries, containing the binaries (compiled for the linux OS) of the different simulator 
flavors. 

• docs, containing this user manual and other documentation. 
 

Other documents, the development version of TRAP, and more processor models can be found on the 
website http://trap-gen.google.com/ . 
 
TRAP, and the scripts for the cross-compiler creation are licensed under the LGPL license of which we 
report here the main points: 
 
TRAP is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License 
as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. 
 
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the 
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
Lesser General Public License for more details. 
 
You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the 
 

Free Software Foundation, Inc., 
51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA 

 
or see <http://www.gnu.org/licenses/>. 
 
For what concerns the LEON2/3 models, they are delivered to ESA under the following conditions: 
 
The LEON2/3 SystemC models are owned by the Politecnico di Milano, and are delivered to ESA with a  non-
exclusive license that authorizes ESA to make use of them freely for any ESA desired purposes, without any 
restrictions.  ESA is therefore free to use them internally and also distribute the models to ESA contractors or any 

http://trap-gen.google.com/
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other third parties that ESA considers appropriate, in order to maximize the re-use of these models, improve them 
with users’ feedback and facilitate R&D and commercial developments supported by the use of these models. 

2 Transactional Automatic Processor Generator (TRAP) 

TRAP (TRansactional Automatic Processor generator) is a tool for the automatic generation of processor 
simulators starting from high level descriptions. This means that the developer only needs to provide basic 
structural information (i.e. the number of registers, the endianness etc.) and the behavior of each 
instruction of the processor ISA; these data are then used for the generation of C++ code emulating the 
processor behavior. Such an approach consistently eases the developer's work (with respect to manual 
coding of the simulator) both because it requires only the specification of the necessary details and 
because it forces a separation of the processor behavior from its structure. The tool is written in Python 
and it produces SystemC based simulators. 
TRAP requires in input the information about the behavior of the target processor, and also some 
(limited) details about the structure in terms of architectural elements and their connectivity. 
 
The tool consists of a Python library: the processor specification is given through appropriate calls to its 
APIs. The Instruction Set Simulators generated by TRAP are based on the SystemC library and on the 
new TLM 2.0 standard for modeling the processor's communication interfaces. Depending on the desired 
temporal accuracy/simulation speed tradeoff, different flavors of simulators can be created. 

2.1 Setup 
TRAP uses waf (http://waf.googlecode.com/) as build system; from a user point of view, it is similar to 
using the standard autotools (i.e, Makefiles, etc.): first there is a configuration step, then the compilation 
and, finally, the installation. 
 
2.1.1 Required Libraries and Tools 
 

• libELF: There are various versions of the libELF library, normally you can find it among the 
packages of your distribution (e.g. libelf-dev under Ubuntu) or, else, download it from 
http://www.mr511.de/software/english.html (at least version 0.8.13) or from 
https://fedorahosted.org/releases/e/l/elfutils/ as part of the elfutil package (at least version 
0.147). 

• SystemC: downloadable from http://www.systemc.org, it is used to manage simulated time and 
the communication among the hardware modules. Note that in the current version of SystemC 
(2.2.0) there is a small bug which prevents compilation with compiler GCC 4.3 or newer: refer to 
http://www.timfanelli.com/item/2302 for more details. SystemC 2.3 beta release is also 
supported. 

• TLM 2.0: downloadable from http://www.systemc.org, it is used to manage connections among 
the hardware modules. This library is not necessary for the compilation of TRAP itself, but for 
the compilation of the generated processor models. 

• Boost: Boost libraries version >= 1.35, downloadable from http://www.boost.org. As, usual, the 
such libraries are also shipped with Linux distributions, try first to use the package manager of 
your system (e.g. apt for Ubuntu) for installing them; the development package is needed. While it 
is theoretically possible to have more than one version of the boost libraries installed on the 
system, it is better to keep only one in system-wide accessible locations (e.g., in /usr/lib). 

• Python: version 2.4.x - 2.7.x 

http://waf.googlecode.com/
http://www.mr511.de/software/english.html
https://fedorahosted.org/releases/e/l/elfutils/
http://www.systemc.org/
http://www.timfanelli.com/item/2302
http://www.systemc.org/
http://www.boost.org/
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• networkx: library used for the description of graphs in Python. This library can be downloaded 
from http://networkx.lanl.gov/ and it is used during the generation of C++ code implementing 
the processor models, but it is not necessary if only the runtime library of TRAP is needed. 
Version 0.36 or later can be used. 

 
2.1.2 Configuration 

 
In the base folder of TRAP run the ./waf configure command. Several configuration options are 
available: 
 

• --with-systemc=SYSC_FOLDER specifies the location of the SystemC 2.2 library (which, of 
course, should have been already compiled). It is mandatory to specify such option. 

• --prefix=LIB_DEST_FOLDER specifies the destination folder for installation of the TRAP 
C++ runtime libraries. If this option is not specified /usr/local is used as default 

• --py-install-dir=PYTHON_DEST_FOLDER specifies the destination folder for the installation 
of TRAP python files. If this option is not specified, PREFIX/pythonX.X/site-packages/ is used 
as default (where PREFIX is the value of the preceding option). 

• --with-elf=LIBLEF_FOLDER specifies the location of the libELF library; if this option is not 
specified TRAP will look for libelf in the standard library search path. 

• --boost-includes=BOOSTINCLUDES specifies the location of the include files of the boost 
lbraries; it has to be specified in case the libraries are not installed in a standard path. 

• --boost-libs=BOOSTLIBS specifies the location of the library files of the boost libraries; it has to 
be specified in case the libraries are not installed in a standard path. 

 
To have the list of all the possible configuration options run ./waf --help 
For example, supposing the boost and binutils libraries are installed in the default library search path, type: 
 
./waf configure --with-systemc=$HOME/systemc-2.2.0 --prefix=$HOME/trap 
 
in order to configure TRAP for being installed in the user’s home folder. 
 
2.1.3 Compilation and Installation 
Once the project is correctly configured execute the ./waf command to trigger the compilation. Once 
this is done, command ./waf install copies the python files and the generated runtime libraries in 
the chosen destination folders (previously specified through the --prefix option). 

2.2 Runtime Library 
The C++ code composing the generated simulators is partly based on auto-generated code and partly 
from TRAP’s runtime library. Its source code is contained in folder trap/runtime; in particular we can 
identify the following parts: 
 

• debugger: contains the GDB server used for the communication with the GDB debugger of 
your target architecture (i.e. in case we are simulating a LEON3 processor with the sparc-elf-gdb 
debugger). 

• osEmulator: enables the execution of software applications (on top of the Instruction Set 
Simulator) without the need to also execute an operating system; calls made to the OS (e.g. for 
writing to stdout) will be sent to the emulator and, from this, forwarded to the host OS. 

• elfFrontend: C++ wrapper around the libELF library used to parse the application being 
executed with the generated simulator. The elfFrontend library is used by the loader, the 

http://networkx.lanl.gov/
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osEmulator, and the profiler. In synthesis, it provides methods for reading all the symbols in the 
application, for determining their correspondence with the addresses in the application executable 
file, and for parsing the different sections of the application to extract the machine code, the static 
data, etc. 

• loader: given the application executable file, it extracts the text segment (i.e. the assembly 
instructions which implement the application behavior), the data segment (containing the static 
data, global variables, etc.), it determines the entry point (the first instruction to be executed) and 
all the other information necessary for application execution. 

• profiler: computes statistics about the application program: the number of times each routine is 
called and the time spent into it, and the number of times each single assembly instruction is 
called and the time spent in its execution. 

When compiling TRAP, all the just mentioned tools are linked together in a runtime library (called libtrap) 
provided both in the form of static (libtrap.a) and dynamic library (libtrap.so); during TRAP installation such 
libraries are copied into folder PREFIX/lib, while the corresponding header files into PREFIX/include. 
Note that, in a 64 bit environment, dynamic linking is possible only if all files are compiled using the –
fPIC – DPIC compilation flags; so, in case SystemC and/or libELF have not been created with such 
flags (as it is the default case for SystemC 2.2, not anymore for SystemC 2.3) the dynamic TRAP library 
will not be created. 
 
2.2.1 Operating System Emulator 
Operating System Emulation is a technique which allows the execution of application programs on an 
Instruction Set Simulator (ISS) without the need to also simulate a complete OS. The low level calls made 
by the application to the OS routines (system calls, SC) are identified and intercepted by the ISS, and then 
redirected to the host environment which takes care of their actual execution. Suppose, for example, that 
the application program, that we want to execute on top of the simulated architecture, contains a call to 
the open routine to open file ``filename''. Such a call is identified by the ISS and routed to the host OS, 
which actually opens ``filename'' on the PC's filesystem. The file handle is then passed back to the 
simulated environment for the use by the application program. 

 
Having an Instruction Set Simulator with Operating System Emulation capabilities allows the application 
developers to start working as early as possible, even before a definite choice about the target OS is 
performed. These capabilities are also used for ISS validation, by enabling fast benchmark execution. 
 
Operating System emulation is enabled by default in TRAP’s created simulators, as the OSEmulator tool 
(see below for more details) is always added to the processor’s generated code; note, anyway, that the 
emulator is not intrusive in the ISS core, and it can be disabled by commenting the following line in the 
main.cpp file of the generated processor: 
 
01. procInst.toolManager.addTool(osEmu); 

 
In addition to simply emulating system calls, the OS emulator fakes a linux-like environment for program 
execution; such environment can be specified through the following command line options of the 
generated ISS (for more details look inside the main.cpp generated file and read Section 3.4): 

• -- arguments: comma separated list of the simulated application arguments (which are passed 
to the main routine of the simulated application); note that, even if no argument is specified by 
the user, the name of the application program is always passed to the main routine of the 
simulated application as first parameter. 

• -- environment: comma separated list of the environmental variables that we want to make 
visible to the application program; they are in the form option=value,option=value. From the 
application program, such variables can be read by calling the getenv routine. 
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• -- sysconf: comma separated list of the environmental variables that we want to make visible 
to the application program; they are in the form option=value,option=value. From the application 
program, such variables can be read by calling the sysconf routine. 

 
2.2.2 GDB Debugger 
A debugger is a tool used for the analysis of software programs in order to catch and, possibly, help 
correcting errors. Being used for software development, Instruction Set Simulators often feature a 
debugger; TRAP was integrated with the GNU/GDB debugger using its capabilities of connecting to 
remote targets through TCP/IP or serial interfaces (the same mechanisms used to debug software running 
on physical boards). The specifications on the GDB remote protocol are present at 
http://sourceware.org/gdb/current/onlinedocs/gdb_33.html According to this protocol a TCP/IP 
server has been implemented inside TRAP; by default it listens for connections on port 1500; from GDB 
the directive for connecting to such remote target is: target remote localhost:1500. 
The standard GDB commands (including all the ones mandatory for being compliant with the GDB 
protocol) are supported. In addition, through the monitor command, we add functionalities to GDB in 
order to manage the flow of simulated time (of course these commands can only be used in a simulator 
created with SystemC enabled, which has the notion of time): 

• go n: specifies that, starting from the current time, simulation has to proceed for n nanoseconds; 
this command only sets the length of the simulation time, but simulation is not resumed until the 
cont command is issued. 

• go_abs n: specifies that simulation has to proceed until time n (in nanoseconds); this command 
only sets the length of the simulation time, but simulation is not resumed until the cont 
command is issued. 

• hist n: prints the history of the last n executed instructions, up to a maximum of n = 1000. 
• status: returns the status of the simulation, i.e. the elapsed simulation time and if it is running 

for an indefinite period of time or if simulation is running only for a specified amount of time, the 
latter situation happening after a go or go_abs command has been issued. 

• time: returns the current simulation time in microseconds. 
• help: prints the list, with a short explanation, of the just listed commands. 

From the GDB console, the syntax for issuing such commands is “monitor command” (e.g. monitor 
help). 
 
When the simulator is started, the --debugger command line option activates the use of GDB; refer to 
the next Chapter for more details and for a small tutorial on the use of GDB together with the Instruction 
Set Simulators. 
 
2.2.3 Application Loader 
The application loader is a simple piece of software which takes an executable file (usually in the ELF 
format, but not limited to it), it parses such file and it extracts the different sections of the executable 
program (the code, the data, and it determines the entry point). The loader is not intrusive at all in the 
Instruction Set Simulator core as it is instantiated in the main.cpp file and simply used to initialize the 
memory with the code and data of the application program to be simulated and to initialize the processor 
with the size of the whole application program and with the value of the entry point. The following 
snippet of code performs such actions: 
01. …………………………………………………………………… 

02. ExecLoader loader(application_name); 
03. //Lets copy the binary code into memory 
04. unsigned char * programData = loader.getProgData(); 
05. for(unsigned int i = 0; i < loader.getProgDim(); i++){ 

http://sourceware.org/gdb/current/onlinedocs/gdb_33.html
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06.     procInst.dataMem.write_byte_dbg(loader.getDataStart() + i, 
programData[i]); 
07. } 
08. procInst.ENTRY_POINT = loader.getProgStart(); 
09. procInst.PROGRAM_LIMIT = loader.getProgDim() + loader.getDataStart(); 
10. procInst.PROGRAM_START = loader.getDataStart(); 
11. …………………………………………………………………… 

 
The --application command line option of the generated simulator is used to specify the software 
application which has to be simulated. 
 
2.2.4 Profiler 
The profiler is used to compute and produce statistics on the software application being executed on the 
simulator; in particular it produces statistics about single assembly instructions and function calls: 

• assembly instructions: for each single assembly instruction as defined in the Instruction Set Simulator 
(note that not necessarily there is a one-to-one correspondence between the instructions in the 
processor manual and the instructions in the simulator) it computes the number of calls, the 
percentage of the number of calls on the total number of instructions executed, the total SystemC time 
spent in executing this instruction, and the SystemC time per call. 

• routines: for each routine of the application program, the following information is computed: the 
number of calls, the percentage of the number of calls on the total number of routines executed, the number 
of assembly instructions executed inside this routine and the subroutines called from it, the number of 
assembly instructions executed exclusively inside this routine (not considering sub-routines), the 
number of assembly instructions per call, the SystemC time spent inside this routine and the subroutines 
called from it, and the SystemC time spent exclusively inside this routine (not considering sub-
routines). 

The profiler is enabled with the –profiler file command line option of the generated simulator; 
file represents the name of the file in which the profiler output is saved; in particular two files are 
produced: file_instr.csv and file_fun.csv. Such files are in the CSV (comma separated value) 
format and they have the following structure: 

• file_instr.csv: name;numCalls;numCalls %;time;Time per call, where the meaning of the different 
fields is explained above; here is an example of such file: 

name;numCalls;numCalls %;time;Time per call 
ORcc_reg;1;0.0254000508001016;0;0 
LDSH_imm;16;0.4064008128016256;0;0 
SMUL_reg;1;0.0254000508001016;0;0 
FLUSH_imm;1;0.0254000508001016;0;0 
LDUH_imm;13;0.33020066040132079;0;0 
LD_imm;57;1.4478028956057911;0;0 
LD_reg;40;1.0160020320040639;0;0 
 

• file_fun.csv: name;numCalls;numCalls %;totalNumInstr;exclNumInstr;NumInstr per 
call;totalTime;exclTime;Time per call, where the meaning of the different fields is explained above; 
here is an example of such file: 

name;numCalls;numCalls %;totalNumInstr;exclNumInstr; 
              NumInstr per call;totalTime;exclTime;Time per call 
memset;3;4.225352112676056;156;156;52;0;0;0 
_fwrite_r;1;1.408450704225352;386;35;35;0;0;0 
__do_global_ctors_aux;1;1.408450704225352;7;7;7;0;0;0 
software_init_hook;1;1.408450704225352;129;38;38;0;0;0 
f2;1;1.408450704225352;2512;53;53;0;0;0 
f5;1;1.408450704225352;2285;87;87;0;0;0 
f8;1;1.408450704225352;2024;87;87;0;0;0 
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Note how the different elements of such files are separated by a semi-colon ‘;’. 
There are two command line options which affect the way profiling is performed: 

• –prof_range start-end: computes the profiling statistics only among the assembly 
instructions contained at addresses start and end; such addresses can be both specified as decimal 
of hexadecimal numbers or also giving the name of the symbol they correspond to (e.g. the main 
routine). 

• –disable_fun_prof: it disables statistics gathering on software routines: the only statistics 
that the profiler computes are the ones on the single assembly instructions. Using this options 
consistently accelerates execution speed with respect to a fully fledge profiling; moreover, in a few 
corner situations it might happen that the profiler (and, hence, the whole simulation) fails because 
of problems in tracking function calls: using this option prevents such failures from happening. 

 
2.2.5 Creating New Tools 
A Tool, in TRAP, is a software element which needs to be called during the simulation and which 
performs actions in correspondence of particular values of the program counter. Examples of Tools are 
the OSEmulator (in correspondence of the program counter identifying an operating system call, it 
forwards the call to the host OS), the Debugger (in correspondence of the program counter identifying a 
break-point it pauses execution), and the profiler (for each different value of the program counter it 
updates the ISA statistics, while for the PC values corresponding to the entry/exit of a routine it updates 
the related routine statistics). 
 
Other tools, depending on the user needs, might be easily created by extending the ToolsIf class 
contained in the ToolsIf.hpp file (part of TRAP’s runtime library): 

• Method bool newIssue(const issueWidth &curPC, const InstructionBase *curInstr) 
takes in input the current program counter and a point to the corresponding instruction of the 
processor Instruction Set; inside this method the tool can then take the appropriate actions 
depending on the tool itself. true is returned in case the current instruction have to be skipped by 
the processor (i.e. not executed, as it is the case of OS routines for the OSEmulator tool), false 
otherwise. 

• Method bool emptyPipeline(const issueWidth &curPC) is used only inside the cycle-
accurate processor and it specifies whether, before calling the newIssue method of the tools, the 
pipeline has to be emptied: for example, for the LEON3 processor, this method is checked in the 
fetch stage; if it returns true, the current instruction (the one in the fetch stage) is not 
propagated, but a series of 6 nops is propagated instead in the pipeline. Then the newIssue 
method is called: since there has been the propagation of the 6 nops, now the pipeline is empty. 

 
More advanced tools (such as the debugger) may also need to perform actions when particular memory 
addresses are read/or written: such tools need to extend the MemoryToolsIf class contained in the 
ToolsIf.hpp file: 

• Method void notifyAddress(addressType address, unsigned int size) is called in 
correspondence of every memory write; the tool can then take appropriate actions depending on 
the address to be written and on the size (in bytes) of the datum to be written. For instance, the 
debugger uses this method to check for watchpoints. 

 
Once a tool has been written, it can be inserted into the processor by calling method 
procInst.toolManager.addTool(toolInst), where procInst is the instance of the processor and 
toolInst is the instance of the tool to be added to the processor. 
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2.2.6 Communication Between the Processor and Tools 
Of course, in order to be able to perform useful work, the tools have to be able to access and modify the 
processor status (its registers, the memory, etc.): this is provided by the ABI Interface, which can be 
accessed through there getInterface() method of the Processor class.  
 
2.2.7 Miscellaneous Runtime-Library Elements 
The runtime library also contains some miscellaneous elements not used by the simulator core itself, but 
which are anyway helpful for the development: 

• MemoryAT.hpp and MemoryLT.hpp: SystemC IP-models representing generic memories with 
respectively Accurate-Timed and Loosely-Timed interfaces; such IP-models are used to check the 
correct working of the generated simulators which make use of the TLM interfaces for 
connecting with memories 

• PINTarget.hpp: used to connect with the TLM PIN ports of the generated simulators for testing 
them (all the TLM ports which are not used for interrupts and for memory communication are 
called PINs). In the LEON models such ports are used for interrupt acknowledgement. 

• irqTester: it is a folder containing compiler scripts, a TLM interrupt generator, and simple 
applicative software used to check that the generated LEON2 and LEON3 processor simulators 
correctly behave when interrupts are encountered. 

• benchmarks and testsuite: containing real-world benchmark programs and test programs used 
to check the correct behavior of the generated simulators; instructions on how to use such 
programs are contained in those folders. 

2.3 Simulator Generation 
Once TRAP itself is correctly installed, simply execute the main python script of your processor model to 
generate the C++ code implementing the simulator. For the LEON3 processor, for example, go into the 
folder containing its source files (LEON3Arch.py  LEON3Coding.py  LEON3Isa.py  
LEON3Methods.py  LEON3Tests.py  LEONDefs.py) and run the command python 
LEON3Arch.py. The C++ files implementing the different flavors of simulators should be generated. 
Note that, in case the TRAP python files are installed in a custom folder and not in the Python default 
search path, the first lines of the main script (LEON3Arch.py in this case ) should be modified to specify 
this path. 
 
There are different commands and options which can be specified in the LEON3Arch.py file to 
customize the generated simulator; such options are specified in two places: in the constructor of the 
processor class and when calling the write method to start the actual processor creation. 
The main architectural file (LEON3Arch.py, for example) is indeed organized as follows: 
 
01. …………………………………………………………………… 

02. processor = trap.Processor('LEON3', version = '0.2.0', systemc = True, 
instructionCache = True, cacheLimit = 256) 

03. …………………………………………………………………… 

04. …………………………………………………………………… 

05. processor.write(folder = 'processor', models = ['accLT', 'funcAT', 'accAT', 
'funcLT'], dumpDecoderName = 'decoder.dot', trace = False, combinedTrace = False, 
forceDecoderCreation = False, tests = True, memPenaltyFactor = 4) 

06. …………………………………………………………………… 

 
 Line 02 contains the processor constructor: 

o The first parameter specifies the name of the processor being generated. 
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o The second parameter is a string specifying its version. 
o The third parameter specifies whether SystemC should be used or not for keeping track 

of time: note that it is possible to avoid using SystemC (thus consistently speeding up 
simulation) with the standalone Instruction-Accurate model (called later funcLT) and 
when no TLM ports are specified. 

o The fourth parameter (instructionCache) specifies whether the instruction buffer 
should be used or not: generally it should be used as it delivers high simulation speed 
without introducing any drawback in the generated models. 

o The fifth parameter (cacheLimit) specifies the threshold with which instructions are 
added to the instruction buffer: only after an instruction has been encountered 
cacheLimit times it is added to the buffer. The value of this parameter is a tradeoff 
among having many instructions in the buffer (thus avoiding to decode them every time) 
and the effort due to adding the instructions to the buffer and searching for instructions 
in a huge buffer. 

o Other less important parameters can be used; refer to the source code for more details. 
 Line 05 contains the write method; this method is the one actually triggering the creation of 

the C++ code implementing the simulator: 
o folder parameter: specifies the folder, relative to the current one, in which the 

simulator’s C++ code will be created. 
o models parameter: the models which will be created; four different types of models can 

be created: funcLT, funcAT, accLT, accAT; they respectively represent the Instruction-
Accurate with loosely-timed TLM interfaces, the Instruction-Accurate with accurate-
timed TLM interfaces, the Cycle-Accurate with loosely-timed TLM interfaces and the 
Cycle-Accurate with accurate-timed interfaces. Note that the Instruction-Accurate 
models can also be created standalone (so not able to connect with any external IP), by 
specifying an internal memory instead of TLM port(s). 

o dumpDecoderName specifies the file in which the tree representing the decoder is saved 
using the dot format; this is useful just for debugging purposes, if no name is specified, 
no file is printed. 

o trace specifies that the processor is created with tracing capabilities: after the execution 
of each instruction (or at each clock cycle for the cycle accurate processor), a dump of 
the whole processor status is printed on standard error. 

o combinedTrace, if used in combination with trace, enables the creation of the same 
structure for the dump of both the functional and cycle accurate processors (by default 
these processors have a different dump format): this can be used to ease the development 
of the Cycle-Accurate processor, if an Instruction-Accurate version already exists. 

o forceDecoderCreation: as generating the decoder is an expensive operation, it is 
usually executed only once and saved in cache; when this option is set to true, the cache 
is discarded and the decoder re-created. 

o tests: when set to True, it enables the creation of the executable running the tests for 
the single instructions; note that such tests are created only when SystemC is not used, so 
they can only be created for the funcLT standalone simulator. 

o memPenaltyFactor: this parameter affects the way the decoder is created: higher values 
give preferences to if structures in the decoder, lower values to switch/case 
statements. 

 
Other minor options can influence the generated code, as shown in the following snippet of code again 
taken from file LEON3Arch.py: 
 
01. …………………………………………………………………… 

02. processor.addTLMPort('instrMem', fetch = True) 
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03. processor.addTLMPort('dataMem') 

04. processor.setMemory('dataMem', 10*1024*1024) 

05. processor.setMemory('dataMem', 10*1024*1024, debug = True, programCounter = 
'PC') 

06. …………………………………………………………………… 

 
Lines 02-03/04/05 are exclusive with each other, and they determine how the processor connects to 
memory: 

• Lines 02-03 specify that the generated simulator will instantiate two TLM ports, with the first one 
being the one from which instructions are fetched (two memory ports are declared as the LEON3 
processor features a Harward architecture). 

• Line 04 declares an internal memory: both instructions and data will be fetched from this 
memory; the use of an internal memory is only suitable for standalone simulators, not connected 
with any other SystemC IP. 

• Line 05 declares a debugging memory: it is an internal memory which also tracks each location 
written and the time at which each write operation happened; in case the fourth parameter is 
specified (containing the name of the register representing the program counter), the value of the 
program counter in correspondence of each memory write is saved. The resulting memory dump 
is saved in a binary file always called memoryDump.dmp; such file can be parsed with the 
memAnalyzer program created during the compilation of TRAP and contained, after TRAP’s 
installation, in folder PREFIX/bin. 

 
Next Chapter shows how to compile and use the simulator generated with the just seen commands; a brief 
overview of how it is possible to connect the simulator with other, externally provided, SystemC IP-
models is also given. 

3 LEON2/3 Simulator 

This Chapter gives an overview of the LEON2/3 instruction set simulators generated with TRAP and it 
provides detailed instructions, also with simple tutorials, on how to use them. This Chapter is based on 
the LEON3 processor simulator, but the same considerations also apply to the LEON2 processor 
simulator. 

3.1 Overall Structure 
According to the instructions given in the previous Chapter, simulators are created with the following 
command: 

python LEON3Arch.py 
where LEON3Arch.py is the main file of the processor description (the one containing the call to the 
write method). Supposing that all the different flavors of simulators are created inside folder processor 
(which means that the call to the write method is write(folder = 'processor', models = 
['accLT', 'funcAT', 'accAT', 'funcLT'])), the following folder structure is created: 
 
processor 
 accLT 
 funcAT 
 accAT 
 funcLT 
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Such folders directly contain the C++ source code and the compilation scripts for the Instruction Set 
Simulators. In case the funcLT model has been created without SystemC and with the tests enabled, there 
will also be a sub-folder containing the C++ sources of the testsuite (for testing the decoder, the indivisual 
instructions, the interrupt behavior, etc.). 
 
The different folders funcLT, funcAT, accLT, accAT respectively represent the Instruction-Accurate with 
loosely-timed TLM interfaces, the Instruction-Accurate with accurate-timed TLM interfaces, the Cycle-
Accurate with loosely-timed TLM interfaces and the Cycle-Accurate with accurate-timed interfaces. 
 

3.2 Compiling the Simulator 
TRAP uses waf (http://waf.googlecode.com/) as build system; from a user point of view it is similar to 
using the standard autotools (e.g. Makefiles, etc.): first there is a configuration step, then the compilation 
and, finally, the installation. 
 
3.2.1 Required Libraries and Tools 
 

• libELF: There are various versions of the libELF library, normally you can find it among the 
packages of your distribution (e.g. libelf-dev under Ubuntu) or, else, download it from 
http://www.mr511.de/software/english.html (at least version 0.8.13) or from 
https://fedorahosted.org/releases/e/l/elfutils/ as part of the elfutil package (at least version 
0.147). 

• SystemC: downloadable from http://www.systemc.org, it is used to manage simulated time and 
the communication among the hardware modules. Note that in the current version of SystemC 
(2.2.0) there is a small bug which prevents compilation with compiler GCC 4.3 or newer: refer to 
http://www.timfanelli.com/item/2302 for more details. SystemC 2.3 beta is also supported. 

• TLM 2.0: downloadable from http://www.systemc.org, it is used to manage connections among 
the hardware modules. 

• Boost: Boost libraries version >= 1.35, downloadable from http://www.boost.org. As, usually, 
the such libraries are also shipped with Linux distributions, try first to use the package manager of 
your system (e.g. apt for Ubuntu) for installing them; the development package is needed. 

 
3.2.2 Configuration 

 
In the base folder of the simulator (folder processor, according to the example above) run the ./waf 
configure command. Several configuration options are available: 

• --with-systemc=SYSC_FOLDER specifies the location of the SystemC 2.2 library (which, of 
course, should have been already compiled). It is mandatory to specify such option. 

• --with-tlm=TLM_FOLDER specifies the location of the TLM 2.0 library. It is compulsory to 
specify such option. 

• --with-trap=TRAP_FOLDER specifies the location of the TRAP runtime libraries and headers. It 
must be specified if TRAP was installed in a custom folder (so not in the standard gcc library 
search path) 

• --boost-includes=BOOSTINCLUDES specifies the location of the include files of the boost 
lbraries; it has to be specified in case the libraries are not installed in a standard path. 

• --boost-libs=BOOSTLIBS specifies the location of the library files of the boost libraries; it has to 
be specified in case the libraries are not installed in a standard path. 

• --with-elf=LIBLEF_FOLDER specifies the location of the libELF library; if this option is not 
specified TRAP will look for libelf in the standard library search path. 

http://waf.googlecode.com/
http://www.mr511.de/software/english.html
https://fedorahosted.org/releases/e/l/elfutils/
http://www.systemc.org/
http://www.timfanelli.com/item/2302
http://www.systemc.org/
http://www.boost.org/
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• --static specifies that a fully static executable have to be built. Such executable can be redistributed 
standalone and, once created, it does not require any library to be presented on the system on 
which is going to be executed. 

• --enable-history activates the compilation of the data structures allowing to keep track of the 
instructions executed by the processor model. 

 
To have the list of all the possible configuration options run ./waf –help. Note that other 
compilation options can be present depending on the processor model being compiled; it is, indeed, 
possible to specify custom compilation options from the main processor description file (LEON3Arch.py 
for instance) through the processor.setPreProcMacro(option_name, macro_name): it adds 
a compilation option called option_name which, when triggered, has the effect of defininf macro 
macro_name. Such macro can then be used in the ISA behavior. 
So far LEON2 and LEON3 models contain the --tsim-comp option, which controls the definition of 
macro TSIM_COMPATIBILITY; such macro activates controls, initializations, etc. used to make the 
simulator behave like Aeroflex Gaisler’s TSIM. 
 
For example, supposing the boost and binutils libraries are installed in the default search path, type: 
 
./waf configure --with-systemc=$HOME/systemc-2.2.0 --with-tlm=$HOME/TLM-
2009-07-15 --with-trap=$HOME/trap 
 
in order to configure the processor. 
 
3.2.3 Compilation 
After the configuration successfully ends, compilation can be started with the ./waf command; the 
executables files of the processor simulator an of its testing scripts (in case test generation was enabled) 
are contained inside the _build_/default folder. 
 
3.2.4 Running the Tests 
The tests of the decoder, of the instruction set, and of the interrupts (if they are declared) are located into 
folder funcLT/tests of the generated code; note that the tests are created only for the functional 
simulator and if SystemC is not used in the generated simulator. The tests are based on the boost.test library 
and they are composed of four main files: 

• main.cpp: main file driving the tests; it simply instantiates the tests and runs them. 
• isaTests.cpp: tests of the instruction set behavior; it contains all the tests specified by the developer 

to test the correct behavior of each instruction of the instruction set; as there tend to be many 
tests, this file has been split into multiple parts. 

• decoderTests.cpp: tests of the decoder; at processor creation we pick up random bit strings exercising 
each instruction (i.e. the variable parts of each instruction are randomly chosen, the parts that 
identify each instruction of course are not) and we verify that the decoder is able to correctly 
decode them. 

• irqTests.cpp: tests checking the correct behavior of the interrupt; they mimic the arrival of an 
interrupt and check that the processor correctly responds. 

Running the tests is simple: just run the tests executable found under the 
_build_/default/funcLT/tests folder. 
 

3.3 Using the Simulator 
The executable file implementing the functional simulator has the following command line parameters: 
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• --help: prints the available command line parameters together with a brief explanation on how 
to use them. 

• --debugger: enables the debugger for the debugging of the applications running on the 
simulator; the debugger simply consists of a GDB stub. In order to use it open GDB (of course 
the one relative to the architecture being simulated, if we are simulating a sparc-based processor, 
we need to open the GDB debugger for that architecture), open the application being simulated 
and connect to the GDB stub as a remote host using GDB command target remote 
localhost:1500 (since the GDB Stub is waiting for connections on port 1500). Then you can 
normally debug the application as you would do using a standard GDB debugger; only note that, 
as normally happens when connecting to a remote target, you start execution with the cont 
command and not with run. 

• --application arg: application which has to be simulated on the simulator; of course this 
application has to be compiled with a compiler for the architecture being simulated. Some cross-
compilers are provided at page http://home.dei.polimi.it/fossati/downloads.html and on the 
delivered CD; note when using these cross-compilers, the -specs=osemu.specs command 
line option have to be passed to GCC in order to enable the use of the Operating System 
emulator tool. 

• --frequency arg: this option is available only if the generated processor model is based on 
SystemC and it specifies the processor clock frequency; the frequency is expressed in MHz, the 
default value is 1 MHz. 

• --profiler arg: activates the use of the software profiler, specifying, as argument the name of 
the output file; two files are created: arg_instr.csv and arg_fun.csv. 

• --disassembler: prints to standard output the disassembly of the application; it works in a 
similar way to the objdump –d program (part of the binutils tools). 

• --arguments arg: comma separated list of the simulated application arguments (which are 
passed to the main routine of the simulated application); note that, even if no argument is 
specified by the user, the name of the application program is always passed to the main routine 
of the simulated application as first parameter. 

• --environment arg: comma separated list of the environmental variables that we want to 
make visible to the application program; they are in the form option=value,option=value. From the 
application program, such variables can be read by calling the getenv routine. 

• --sysconf arg: comma separated list of the environmental variables that we want to make 
visible to the application program; they are in the form option=value,option=value. From the 
application program, such variables can be read by calling the sysconf routine. 

• --prof_range arg: specifies, in the form start-end, the addresses among which profiling is 
enabled; such addresses can be represented by decimal or hexadecimal numbers or by the name 
of the symbol corresponding to the address (be it a function name of a variable). 

• --cycles_range arg: specifies, in the form start-end, the addresses among which the count of 
the elapsed simulation cycles if performed; such addresses can be represented by decimal or 
hexadecimal numbers or by the name of the symbol corresponding to the address (be it a 
function name of a variable). 

• --history arg: saves the history of all the executed instructions on the file specified in arg; note 
that this option is not available if the model has been compiled without instruction history (i.e., if 
the model has been compiled without the --enable-history option) 

• --disable_fun_prof: it disables statistics gathering on software routines: the only statistics that 
the profiler computes are the ones on the single assembly instructions. Using this options 
consistently accelerates execution speed with respect to a fully fledge profiling; moreover, in a few 
corner situations it might happen that the profiler (and, hence, the whole simulation) fails because 
of problems in tracking function calls: using this option prevents such failures from happening. 

 

http://home.dei.polimi.it/fossati/downloads.html
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For examples on how to use the different features of the simulator, refer to Section 3.4. 

3.4 Tutorials 
This Section aims at guiding you step by step in the cross-compilation of an application program, and in 
running it with the LEON instruction set simulators, fully exploiting their capabilities. In the following we 
will use the LEON3 simulator, but the tutorial also applies to the LEON2 simulator. 
 
3.4.1 Cross-Compiling 
Cross-compiling is the first step in running an application program on the generated instruction set 
simulators (actually it is also the first step when running any piece of code on a board); it consists in taking 
the source code of your application, passing it to the GCC cross-compiler which, in turn, creates the 
executable code which can be executed on the simulator. This step is very similar to the standard use of 
GCC for compiling programs, with the only difference that normally both the compilation and the 
execution steps are performed on the same machine, while now GCC runs on one machine (your PC), but 
it produces code for another machine (the LEON2/3 simulator). From this heterogeneity comes the name 
cross-compilation. 
 
So, let’s start with a simple program (which we save in file test.c): 
01. #include <stdlib.h> 
02. #include <stdio.h> 
03.  
04. void foo1(){ 
05.     printf(“inside foo1\n”); 
06. } 
07.  
08. void foo2(){ 
09.     printf(“calling foo1\n”); 
10.     foo1(); 
11.     printf(“called foo1\n”); 
12. } 
13.  
14. int main(int argc, char * argv[]){ 
15.     foo2(); 
16.     foo1(); 
17.     return 0; 
18. } 
19.  

Now, get the cross-compiler for sparc architectures: go into folder cross_compilers of the CD and 
de-compress file sparc-elf-4.3.3.tar.bz2 in any location on you filesystem. Supposing you have it in folder 
/home/fossati/, in order to cross-compile the previous program simply issue the command: 
 
/home/fossati/sparc/bin/sparc-elf-gcc -o test –g –specs=osemu.specs test.c 
 
The syntax is very similar to the normal use of GCC (-g is the normal flag to enable the production of 
debugging information and –o specifies the output file name); the only difference is the –
specs=osemu.specs flag: it specifies that the BSP (Board Support Package) for the Operating System 
Emulation has to be used; as such, in case you are not using emulation but your own operating system, 
such flag does not have to be employed. The source files, together with some documentation, of the osemu 
BSP created in the context of this contract are contained in folder cross-compilers 
/cross_gcc_scripts. 
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Now that we have produced the first cross-compiled application program we can proceed to the rest of 
the tutorial.  
 
3.4.2 Running a Simple Program 
Running programs on the generated simulators is simple: in case we are using the standalone Instruction-
Accurate simulator (whose executable file is called funcLT), the command to run the test application 
program is: 
 
funcLT –a test 
 
The result of the execution should look like: 

             SystemC 2.2.0 --- Dec 15 2008 10:29:20 
        Copyright (c) 1996-2006 by all Contributors 
                    ALL RIGHTS RESERVED 
 
calling foo1 
inside foo1 
called foo1 
inside foo1 
 
Program exited with value 0 
 
SystemC: simulation stopped by user. 
Elapsed 0 sec. 
Executed 3481 instructions 
Execution Speed inf MIPS 
Elapsed 4119 cycles 

 
As you can see, the printf instructions have been forwarded to the host OS which has executed them, 
printing their argument to the Linux shell. After such prints, line Program exited with value 0 
indicates the program return value, i.e. the return value of the main routine of the applicative program. 
The simulator then prints some statistics about the execution, in particular: host elapsed time, number of 
assembly instructions executed, Simulator Execution Speed, simulated elapsed time (SystemC time in case 
SystemC is employed, simply the approximated number of cycles for the Standalone non-SystemC-base 
simulator). 
 
3.4.3 Exploiting the OS Emulator Capabilities 
Actually the OS Emulation capabilities have already been exploited in the previous example for redirecting 
the printf instructions to the host Operating System: it is clear that the emulator is totally transparent to 
the user, a part from using the –specs=osemu.specs compilation flag no special actions have to be taken. 
In this paragraph we show how to write simple programs that read the command line arguments, the 
environmental variables, and the system configuration information; note that such programs do not use 
any special instruction, but the standard C directives for performing such tasks: 
 
01. #include <stdlib.h> 
02. #include <stdio.h> 
03.  
04. int main(int argc, char * argv[]){ 
05.     int i = 0; 
06.     printf("There are %d arguments\n", argc); 
07.     for(i = 0; i < argc; i++){ 
08.         printf("The %d-th argument is %s\n", i, argv[i]); 
09.     } 
10.     return 0; 
11. } 
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12.  

 
Let’s now cross-compile the program with the instructions given above into the executable file test; then 
we can simulated it as: 
 
funcLT –a test –-arguments one,two,three,four 
 
The output of the run is: 
 

             SystemC 2.2.0 --- Dec 15 2008 10:29:20 

        Copyright (c) 1996-2006 by all Contributors 

                    ALL RIGHTS RESERVED 

 

There are 5 arguments 
The 0-th argument is test 
The 1-th argument is one 
The 2-th argument is two 
The 3-th argument is three 
The 4-th argument is four 

 

Program exited with value 0 

 

SystemC: simulation stopped by user. 

Elapsed 0 sec. 

Executed 9664 instructions 

Execution Speed inf MIPS 

Elapsed 10965 cycles 

 
Note the use of the --arguments command line argument to specify the application command line 
arguments. 
 
01. #include <stdlib.h> 
02. #include <stdio.h> 
03.  
04. int main(int argc, char * argv[]){ 
05.     printf("The env ONE is -%s-\n", getenv("ONE")); 
06.     printf("The env TWO is -%s-\n", getenv("TWO")); 
07.     if(getenv("THREE") == NULL){ 
08.         printf("Not found THREE"); 
09.     } 
10.     else{ 
11.         printf("Found THREE"); 
12.     } 
13.  
14.     return 0; 
15. } 
16.  
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Let’s now cross-compile the program with the instructions given above into the executable file test; then 
we can simulated it as: 
 
funcLT -a test --environment ONE=foo,TWO=fii 

 
The output of the run is: 
 
             SystemC 2.2.0 --- Dec 15 2008 10:29:20 

        Copyright (c) 1996-2006 by all Contributors 

                    ALL RIGHTS RESERVED 

 

The env ONE is -foo- 
The env TWO is -fii- 
Not found THREE 

Program exited with value 0 

 

SystemC: simulation stopped by user. 

Elapsed 0.01 sec. 

Executed 3907 instructions 

Execution Speed 0.3907 MIPS 

Elapsed 4577 cycles 

 
Note the use of the --environment command line argument to specify the environment. 
 

01. #include <stdlib.h> 
02. #include <stdio.h> 
03. #include <unistd.h> 
04.  
05. int main(int argc, char * argv[]){ 
06.     printf("The _SC_NPROCESSORS_ONLN value is %ld\n", sysconf(_SC_NPROCESSORS_ONLN)); 
07.     printf("The _SC_CLK_TCK value is %ld\n", sysconf(_SC_CLK_TCK)); 
08.  
09.     return 0; 
10. } 
11.  

Let’s now cross-compile the program with the instructions given above into the executable file test; then 
we can simulated it as: 
 
funcLT -a test --sysconf _SC_NPROCESSORS_ONLN=2,_SC_CLK_TCK=500 
 
The output of the run is: 
 
             SystemC 2.2.0 --- Dec 15 2008 10:29:20 

        Copyright (c) 1996-2006 by all Contributors 

                    ALL RIGHTS RESERVED 

 

The _SC_NPROCESSORS_ONLN value is 2 

The _SC_CLK_TCK value is 500 
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Program exited with value 0 

 

SystemC: simulation stopped by user. 

Elapsed 0.01 sec. 

Executed 3637 instructions 

Execution Speed 0.3637 MIPS 

Elapsed 4319 cycles 

 
Note the use of the --sysconf command line argument to specify the system configuration information; 
with respect to the other two examples, which can take an arbitrary environment and arbitrary command 
line parameters, the system configuration can only be specified for the _SC_NPROCESSORS_ONLN and 
_SC_CLK_TCK parameters, which respectively identify the number of online (available) processors and the 
number of clock ticks per second. In case it is necessary to consider other configuration parameters, the 
file syscCallB.hpp, part of TRAP’s runtime in folder runtime/osEmulator, must be accordingly modified. 
 
3.4.4 Using GDB Debugger 
The standard GDB debugger can be used for debugging programs running on the generated simulators, 
so a more in depth guide on the use of GDB can be found on the internet; anyway this Section aim at 
showing in brief a sample debugging session. Note that, as for the GCC compiler, the plain debugger of 
the host system cannot be used, but the cross-debugger (running on your host system, able to debug sparc 
architectures) for sparc architectures have to be employed; such debugger is contained in the same folder 
of the cross-compiler. 
For this example we will use the application program written in Section 3.4.1: lets run it on the simulator 
(for this example we do not use the standalone simulator anymore, but the one featuring the use of 
SystemC to keep track of time) with the --debugger command line option: 
 
Now the simulator is stopped waiting for the connection of the GDB debugger: 
 

             SystemC 2.2.0 --- Dec 15 2008 10:29:20 
        Copyright (c) 1996-2006 by all Contributors 
                    ALL RIGHTS RESERVED 
 

GDB: waiting for connections on port 1500 

 
Let’s now start GDB in a different terminal: 
 
sparc-elf-gdb test 

 
GDB can be connected to the remote target (i.e. the simulator) by typing the following instruction in the 
GDB command prompt: 
 
(gdb) target remote localhost:1500 

 
Now simulation is still stopped, but the connection between the debugger and the simulator has been 
successfully performed. At this time it is possible to set breakpoints, watchpoints, etc. or simply to resume 
simulation with the cont GDB command. Let’s set a breakpoint on main and then resume simulation: 
 
(gdb) break main (which responds with Breakpoint 1 at 0x940: file prova.c, line 15.) 
(gdb) cont (which responds, when the main routine is encountered, with Breakpoint 1, main (argc=1, 
argv=0x13da4) at test.c:15, 15          foo2();) 
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Now simulation is stopped at the beginning of the main routine: we can use the monitor commands, which 
can be listed with the monitor help command at the GDB command prompt: 
 
(gdb) monitor help 

 
which responds with: 
 

Help about the custom GDB commands available for TRAP generated simulators: 
   monitor help:       prints the current message 
   monitor time:       returns the current simulation time 
   monitor status:     returns the status of the simulation 
   monitor go n:       after the 'continue' command is given, it simulates for n (ns)  
starting from the current time 
   monitor go_abs n:   after the 'continue' command is given, it simulates up to instant 
n (ns) 
   monitor history n:  prints the last n (up to a maximum of 1000) instructions 

 
Let’s use monitor time to examine the simulated flow of time: 
 
(gdb) monitor time (which responds with 1501 (us)) 
 
We can also inspect the value of some variables, for example the argv parameter of the main function: 
 
(gdb) p argv[0] 
 

and we see that it correctly is a string containing the name of the application program being simulated: 
 
$1 = 0x13dac "test" 

 
Finally we resume simulation, which runs until the end: 
 
(gdb) cont 
 

which responds with: 
 

Program Correctly Ended 
 
Program exited normally. 
 

 
3.4.5 Using the Profiler 
For this example we will use the application program written in Section 3.4.1: lets run it on the simulator 
with the --profiler command line option: 
 
funcLT –a test --profiler prof_out 
 
After the execution, profiling results will be saved in files prof_out_instr.csv and 
prof_out_fun.csv; such files have the format already presented in Section 2.2.4. 

3.5 Integration in a SystemC Environment 
In order to allow the integration of the simulator into a SystemC and TLM based Virtual Platform (or 
simply in order to enable its connection with other SystemC IP-models) the simulators must be created 
with SystemC enabled and with TLM interfaces instead of using an internal memory; refer to Section 2.3 
for details on how to generate different simulator flavors; anyway C++ sources of already generated 
simulators are available in folders LEON2/sources and LEON3/sources. There are three different kind of 
ways of communicating with the external world: through TLM memory ports, through TLM interrupt ports, 
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and through TLM pins. In the following we will show how to isolate the processor core from the rest of 
the simulator and how to use such TLM ports. 
 
Note that communication through the TLM interfaces takes place according to the processor's endiannes: 
big-endian processors (as the LEON processor) send data through the interface using big-endian ordering, 
while little-endian ones (as the ARM processor) send it with little-endian ordering, independently of the 
byte-ordering of the host machine. All the processor models, anyway, internally work with the host 
endiannes, in order to ease the processor description and to improve execution speed. 
 
3.5.1 Isolating the Processor Core 
The generated simulators, the tools, and the external memories are connected together in the generated 
main.cpp file; the processor core is, thus, already perfectly isolated from the rest of the system, to which it 
can be connected as follows: 

• Processor procInst("LEON3", sc_time(1, SC_US)); : instantiation of the processor 
object, the first parameter being its name and the second the clock latency (the inverse of the 
frequency). 

• procInst.instrMem.initSocket.bind(mem_port); and 
procInst.dataMem.initSocket.bind(mem_port); : binding of the TLM memory ports 
toward the interconnection medium (e.g. bus) or towards a cache, etc. 

• procInst.ENTRY_POINT, procInst.PROGRAM_LIMIT, and procInst.PROGRAM_START must 
be set respectively to: (a) the application program entry point (i.e. the address of the first 
instruction which has to be executed), (b) the highest address of the application program 
(including data, i.e. the lowest address of free memory after program loading), and (c) the lowest 
address of the code of the application program (sometimes this is the same as the entry point, but 
not always). 

• procInst.toolManager.addTool(tool); : called to add tools to the  processor. In case the 
specific tool also needs to monitor memory ports (as it is for a debugger) for each memory port 
which needs monitoring it is necessary to call procInst.instrMem.setDebugger(tool); 

• In case there is the need to also use the interrupt ports (even if interrupts are declared in the 
processor they do not necessarily need to be connected to an interrupt source, the port can be left 
unconnected), they can be connected as follows: 
init_port.bind(procInst.IRQ_port.socket);, where init_port is the TLM port of the 
interrupt source. 

• Finally if the design features PIN ports (remember, a any TLM port which is not a memory or 
IRQ port is a PIN port), and for example the LEON2/3 models feature a port for the interrupt 
acknowledgment (called irqAck), they can be connected with the PIN target as 
procInst.irqAck.initSocket.bind(pin_target_port); 
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Figure 1: Diagram of the processor core together with its external interfaces. Square boxes represent TLM 2.0 
interfaces:         represents the acknowledgment port,        represents the incoming interrupt port, while        and       
the ports for memory mapped communication.       represents the addTool method, for adding to the processor 

the necessary tools (e.g. OS emulator, debugger, etc.); finally     stands for the variables which give to the processor 
core information about the executable application being simulated (i.e. ENTRY_POINT, PROGRAM_LIMIT, and 

PROGRAM_START). 
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3.5.2 TLM Loosely-Timed Memory Interfaces 
The loosely-timed memory interface is produced for the funcLT and accLT processor flavors when 
SystemC is employed and no internal memory is used; refer to Section 2.3 for the description of the 
different processor models and of the specification of TLM interfaces into the processor models. 

 
The memory interface is contained into the externalPorts.hpp and externalPorts.cpp files; it 
uses the concepts of blocking transports interface (for standard communication), direct memory interface 
(dmi) to improve simulation speed by directly accessing the target memory storage, and the debug 
interface for non-standard communication (such as the memory traffic generated by the Operating System 
emulator and by the GDB debugger). 
Instruction-Accurate processors also make use of the tlm_quantumkeeper concept to improve simulation 
speed by reducing the synchronization points with the SystemC scheduler. Cycle-Accurate processors, 
instead, do not employ the tlm_quantumkeeper as each pipeline stage is composed of a different SystemC 
thread (SC_THREAD) and such stages must be always synchronized with respect to each other. 
For more details on the inner working of the cited elements, refer to the TLM 2.0 user manual (contained 
in folder doc of the TLM 2.0 distribution) 

 
The TLM port itself is implemented with a simple_initiator_socket (as defined in the tlm_utils namespace) 
with a width of 32 bits. 
 
3.5.3 TLM Accurate-Timed Memory Interfaces 
The accurate-timed memory interface is produced for the funcAT and accAT processor flavors; refer to 
Section 2.3 for the description of the different processor models and of the specification of TLM 
interfaces into the processor models. 
 
The memory interface is contained into the externalPorts.hpp and externalPorts.cpp files; it 
uses the concepts of non-blocking transports interface (for standard communication) and the debug 
interface for non-standard communication (such as the memory traffic generated by the Operating System 
emulator and by the GDB debugger). Even though the non-blocking interface is used, the port itself is 
blocking, which means that calls to the write or read methods of the ports do not return until the memory 
transaction has not correctly completed. 
 
The TLM port itself is implemented with a simple_initiator_socket (as defined in the tlm_utils namespace) 
with a width of 32 bits. 
 
3.5.4 TLM Interrupt Ports 
The interrupt ports are implemented in the irqPorts.cpp and irqPort.hpp generated files; they use 
the concept of blocking interface for receiving the interrupts. 
 
The port itself is implemented with a multi_passthrough_target_socket which allows the connection of at most 
1 initiator socket (this means that there might even be no interrupt source connected with the processor if 
it is not needed). 
 
The interrupt port defined in the LEON2/3 models has a width of 32 bits; two different data values can 
be sent through this port: if the data value is different from 0 then the address of the transaction can have 
a value between 1 and 15 and it corresponds to the interrupt priority (1 being the lowest and 15 the 
highest priority level). The interrupt is level triggered: once an interrupt has been raised, to lower it is 
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needed to write a transaction with a data value equal to 0. Note that interrupts are not buffered: if the 
interrupt source lowers the interrupt before the processor has been able to service it, the interrupt is lost, 
it will not be serviced. 
 
When an interrupt is sent to the processor through the interrupt port, the IRQ variable of the processor 
class is set to the interrupt priority level (i.e. to the address of the received interrupt transaction): then, at 
each cycle (for the Cycle-Accurate processor) or before issuing a new instruction (for the Instruction-
Accurate processor) there is a check to see if the interrupt has to be serviced: 
 
(IRQ != -1) && (PSR[key_ET] && (IRQ == 15 || IRQ > PSR[key_PIL])) 
 
if it is the case, the interrupt behavior is executed. 
 
3.5.5 TLM PIN ports 
PIN ports are defined in files externalPins.hpp and externalPins.cpp generated files; they use 
the concept of blocking interface for communicating with the external world. A PIN port is a TLM port 
not related to interrupts or to memory-mapped communication; it is possible to declare an arbitrary 
number of PIN ports in TRAP’s based designs. 
 
In general PIN ports can be both initiator or target ports (i.e. inbound or outbound) and they can transfer 
any arbitrary value, depending on the declaration in the main architectural file of the processor model (e.g. 
LEON3Arch.py). In the LEON2/3 case, a single initiator port was declared to be used for interrupt 
acknowledgement, transporting an integer value of 32 bits. Such value represent the priority level (1 to 15) 
of the interrupt being acknowledged. Internally the port is declared as a multi_passthrough_initiator_socket 
allowing the connection of at most 1 target socket (this means that there might even be no pin target 
connected with the processor if it is not needed). 
The blocking transport method is used for communication through this port. 
 
3.5.6 Additional Glue 
The implementation of some parts of the processor model is not finished, and it can only be completed 
together with the rest of the SystemC-on-Chip, in particular together with the system bus. 
The following details still need to be implemented: 

• SWAP Instruction, implemented in the classes SWAP_imm, SWAP_reg, SWAPA_reg and in the 
ISA instructions with the same name. For the whole duration of the instruction the bus has to be 
locked so that no other instruction can access memory and, thus, SWAP holds the property of 
atomicity. As the TLM 2.0 standard does not give any guidelines on how to do it, such operation 
has to be implemented ad hoc for the particular bus model which shall be connected to the 
processor. 

• In all load and store alternate instructions, the ones that make use of the ASI codes (to work on 
alternate memory spaces) do not consider such codes and the instructions behave as normal 
load/store instructions. 
As the TLM 2.0  standard does not given any guideline on how to work with alternate memory 
spaces, such instructions have to be modified to take ASI codes into account accordingly to the 
bus behavior. 

• Instructions STBAR and FLUSH (implemented in STBAR, FLUSH_reg and FLUSH_imm classes) 
still have to be completed implemented, as their behavior only affects the bus and the memory 
status and how they perform such actions depends on the internal implementation of the bus and 
the memory. 

 
Instruction classes are contained in files instructions.hpp and instructions.cpp, files which are 
directly generated from the LEON3Isa.py file. Even though it is perfectly fine to modify the generated 
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C++ files, I suggest that, in order to complete the gluing between the processor and the rest of the SoC, 
file LEON3Isa.py is modified and the simulator implementations re-created using TRAP. 
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