

High Level Synthesis techniques

Laurent Hili ESA-ESTEC 19/09/2011

What are the challenges ?

- Everything tends to become more complex (Moore's Law)
- Miniaturisation thanks to CMOS technologies (65, 45, 28 and 22nm) offers possibilities to design chips exhibiting a complexity beyond a billion of transistors
- Systems on board(s) tend to move to systems on chip (SoC)
- Possibility to integrate various technologies on the same chip (SW, HW digital, HW analog, MEMs, sensors)

What are the challenges ?

- Necessity to have higher abstraction languages to face the new challenges raised by tighter HW/SW integration and trade offs
- Necessity to gain in productivity in order to handle the ever growing complexity while using the same number of designers (or even less)
- Necessity to put in place advanced CAD techniques to enable the productivity gains
 - ✓ Languages: C, C++, SystemC, System Verilog
 - Modeling: Transactions Level Modeling (TLM) & Transaction Based Verification (TBV)
 - ✓ CAD tools: High level synthesis / Virtual Platform

Productivity through abstraction

European Space Agency

- Higher productivity
- ✓ New IP development ~ 2 to 3 times faster than RTL (VHDL / Verilog)
- Possibility to describe an algorithm in a very concise way compared to HDL languages (~ 10 times fewer lines of code to maintain)
- The designer can better focus on the functionality rather than implementation details
- ✓ HLS can generate many RTL derivatives from same C code in a time effective manner (architecture exploration)
- ✓ HLS can easily be merged in a HW/SW co-design flow
 - ✓ Integration with virtual platform (SystemC TLM)
 - ✓ Integration with HDL flow (simulators, logic synthesis)

(ST Microelectronics source, 9th annual ESL Symposium, June 2011)

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 5

Common features in HLS tools

Architecture exploration \rightarrow ability to generate RTL variants

- Loops optimisation: parallelisation and/or pipelining
- Arrays optimisation: registers, RAMs, ROMs
- Interfaces optimisation: wire, enable, handshake, bus, NoC (Network on Chip interface)
- ✓ Gantt chart analysis → ability to display concurrency and/or dependencies between resources / tasks
- ✓ Verification flow analysis → ability to run regression tests, Transaction Based Verifications (TBV) in order to check the RTL code automatically generated against original C++ code

Common features in HLS tools

- ✓ Cross probing analysis → ability to identify resources in the Gantt chart or RTL and map them to the original C++
- Interfacing with conventional ASIC / FPGA back end flows (RTL simulators and logic synthesis)
- ✓ Architecture exploration \rightarrow target technology aware
 - ✓ Resources aware: operators, memories, interfaces
 - Timing aware
 - Area aware
 - Power aware (feature available as an option sometimes)

HLS solutions on the market

- CatapultC originally developed by Mentor Graphics has been spun off to Calypto the 26/8/2011. This tool has been one of the first used for ASICs tape out. CatapultC is in full production in Thales where 3 ASICs out of 4 are now produced using this methodology
- ✓ Synphony C compiler \rightarrow Synopsys
- ✓ C to Silicon compiler \rightarrow Cadence
- ✓ Cynthesizer → Forte Design Systems

ESA High Level Synthesis flow

CatapultC and Simulink integration

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 10

FIR filter example (algorithm)

FIR filter direct implementation

$$Y(n) = \sum_{i=0}^{N} H(i) \times X(n-i)$$

Let's assume a 8 TAPs FIR filter N=7

$$Y(n) = \sum_{i=0}^{7} H(i) \times X(n-i)$$

 $Y(n) = H(0).X(n) + H(1).X(n-1) + H(2).X(n-2) + H(3).X(n-3) + \dots + H(7).X(n-7)$

Let's assume n=7

$$Y(7) = H(0).X(7) + H(1).X(6) + H(2).X(5) + H(3).X(4) + \dots + H(7).X(0)$$

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 11

European Space Agency

ESA UNCLASSIFIED – For Official Use

FIR filter example (source code)

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 12

FIR filter example (test bench)

	<u>fir-tb.cpp</u>	
	#include <iostream></iostream>	
	<pre>#include "mc_scverify.h" #include "fir.h"</pre>	
	// some functions for generating random test vectors	
	// // Start of MAIN	Unique test bench is used for regression tests RTL vs C++ (Transaction Based Verification)
	CCS_MAIN(int argc, char *argv) {	
only ones differing from original C++ test bench	ac_fixed<18, 2, true, AC_TRN, AC_WRAP > input; data_t coeffs[8];	
Those instructions are used by CatapultC synthesis	<pre>// Initialize local variables to zero init_input(input); init_cooffe(cooffe);</pre>	
	init_output(output);	
	<pre>// Main test iterations start here for (int iteration = 0; iteration < 100; ++iteration) {</pre>	
	<pre>// Set test values for this iteration throw_dice_for_input(input); throw_dice_for_coeffs(coeffs);</pre>	
	 // Call original function and capture data CCS_DESIGN(fir_filter)(input, coeffs, output); 	
	<pre>} // Return success CCS_RETURN(0);</pre>	
	}	

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 13

European Space Agency

FIR filter example (architecture constraints)

Catapult University Version 2010a.104 (Production Release) Constraint Ed	itor			
ne wew toos window men	3 The Current Solution	27 F1 🕅 🋐 👔		
Task Bar A X Project Files	≜ ▼ ×	Start Page Start Page	Constraint E	≜ - ×
Synthesis Tasks				
🗗 Add Input Files		🙀 fir filter	LUUp: man	
Setup Design			Iteration Count:	.
🔅 Architecture Constrai		- 🧶 clk	Unroll	
Schedule		🖨 🚞 Interface	Partial:	2
Generate RTL		Imput:rsc (1x18) model	Next P	
B 🔁 SCVerify		output:rsc (1x144)	Pipeline	
🕀 🦢 Schematics		🖻 🕥 core	Initiation Interval:	1
Verification		🖹 🣴 Arrays	Cenerate distributed pineline	
		😑 🜓 regs:rsc (8x18)	Enderstate and marca pipeline	
Gycle VHDL output 'cycle.vhdl' v	s Untimed C++		Decoupling stages:	
RTL VHDL output 'rtl.vhd' vs Unt	.imed C++			
Mapped VHDL output 'rtl.vhdl' vs	Untimed C++	MAC	Loop can be Merged	
Gate VHDL output 'gate.vhdi vs	Untimed C++			
🕂 📴 Synthesis				
🗄 🚞 Precision				
Details - Loop	<u>≜ ▼ ×</u>			
Path: //fir_filter/core/main				
File: C:\PROGRA~1\MENTOR~1\CATAPU~1.104\Mgc_home\pkgs\CC5_TO~1\flows\mat	:lab\src\fir\fir.cpp(4)			
			Settings	Apply Cancel
Transcript				
0 0 Errors * 1 0 Warnings * 1 0 Infos * # 0 Comments * 5 0 Comm	ands • Get Location			= • ^
# Nessage				D File(line) Id
# Reading component library '\$MGC_HOME\pkgs\siflibs\ps:	r2009a_up2\mgc_Xilinx-VIRTEX-6-1L	L_beh_psr.lib' [mgc_Xilinx-VIR	TEX-6-1L_beh_psr]	LIB-49
# Reading component library '\$MGC_HOME\pkgs\siflibs\ps;	r2009a_up2\ram_Xilinx-VIRTEX-6-1L	L_RAMDB.lib' [ram_Xilinx-VIRTE	XX-6-1L_RAMDB]	LIB-49
<pre># Keading component library '\$MGC_HOME\pkgs\siflibs\ps; # Reading component library '\$MGC_HOME\pkgs\siflibs\ns;</pre>	52009a_up2\ram_Xilinx-VIRTEX-6-1L r2009a_up2\ram_Xilinx-VIRTEX-6-11	L_FIFE.IID' [ram_Xilinx-VIRTEX L RAMSB.lib' [ram_Xilinx-VIRTE		LIB-49 LIB-49
# Reading component library '\$MGC_HOME\pkgs\siflibs\ps	r2009a_up2\rom_Xilinx-VIRTEX-6-11	L.lib' [rom_Xilinx-VIRTEX-6-1L		LIB-49
# Reading component library '\$MGC_HOME\pkgs\siflibs\ps	r2009a_up2\rom_Xilinx-VIRTEX-6-1L	L_SYNC_regin.lib' [rom_Xilinx-	VIRTEX-6-1L_SYNC_regin]	LIB-49
# Reading component library '\$MGC_HOME\pkgs\siflibs\ps:	22009a_up2\rom_Xilinx-VIRTEX-6-1L	L_SINC_regout.lib' [rom_Xilinx	-VIRTEX-6-1L_SYNC_regout]	LIB-49
fir_filter{2}>				
Ready Project Dir: Catapult Working Dir: Settings\Laurent Hill\Desktop\FIR Filter example				
🛃 Start 🛛 🏠 ESL day September 2011 🛛 🏠 fir_filter.v3 🛛 🔯 fir	😡 Laurent Hili - Inbox - IBM	. 🛛 🐻 Microsoft PowerPoint - [🗍 🔁 hls-repo	rt-2011.pdf - Ad 🛛 🔤 Catapult University Versi 🗍 🎯 Catapult University V	2 🕵 🗟 🤉 🖻 🖉 🛞 💟 💷 餐 📎 🖉

ESA UNCLASSIFIED - For Official Use

FIR filter example (architecture exploration)

Report: General		- 🔆 🗙 🛄 🛄				
Solution /	Latency Cycles	Latency Time	Throughput Cycles	Throughput Time	Slack	Total Area
fir_filter.v3 (extract)	8	400.00	10	500.00	43.03	858.44
fir_filter.v5 (extract)	9	450.00	10	500.00	44.89	678.12
fir_filter.v11 (extract)	8	400.00	8	400.00	44.51	593.86
fir_filter.v12 (extract)	1	50.00	1	50.00	42.85	2966.85

Clock period constrained to 50ns (20 MHz)

		resources			
solution	MAIN loop	SHIFT loop	MAC loop	Default implementation	
Fir_filter.v3	Rolled	Rolled	Rolled 🔺	timings constraints allow loops are merged	
Fir_filter.v5	Rolled	Unrolled	Rolled		
Fir_filter.v11	Pipelined	Unrolled	Pipelined II=1 ◀	II=1 Initial Interval = 1	
Fir_filter.v12	Pipelined	Unrolled	Unrolled	i data red in the pipeline Every clock cycle	

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 15

FIR filter example (architecture exploration)

Solutions

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 16

FIR filter example (architecture exploration)

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 17

FIR filter example (Gantt chart analysis)

FIR filter example (RTL code & target technology netlist generation)

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 19

FIR filter example (RTL code & target technology netlist generation)

Fir_filter.V12

Main loop: pipelined Shift loop: unrolled MAC loop: unrolled

Best timing solution

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 20

FIR filter example (implementation after synthesis & place-route)

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 21

FIR filter example (simulink validation)

ESA UNCLASSIFIED - For Official Use

Integration of HLS flow with virtual platform

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 23

Virtual Platform deployment view

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 24

Thanks for your attention

Special thanks to my colleague Jelle Poupaert and Stephane Labert (Mentor Graphics France) for their support

Any question ?