
ESA UNCLASSIFIED – For Official Use

High Level Synthesis techniques

Laurent Hili
ESA-ESTEC
19/09/2011

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 2

ESA UNCLASSIFIED – For Official Use

What are the challenges ?

Everything tends to become more complex (Moore’s Law)

Miniaturisation thanks to CMOS technologies (65, 45, 28 and 22nm)
offers possibilities to design chips exhibiting a complexity beyond a
billion of transistors

Systems on board(s) tend to move to systems on chip (SoC)

Possibility to integrate various technologies on the same chip (SW,
HW digital, HW analog, MEMs, sensors)

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 3

ESA UNCLASSIFIED – For Official Use

What are the challenges ?

Necessity to have higher abstraction languages to face the new
challenges raised by tighter HW/SW integration and trade offs

Necessity to gain in productivity in order to handle the ever growing
complexity while using the same number of designers (or even less)

Necessity to put in place advanced CAD techniques to enable the
productivity gains

Languages: C, C++, SystemC, System Verilog

Modeling: Transactions Level Modeling (TLM) &
Transaction Based Verification (TBV)

CAD tools: High level synthesis / Virtual Platform

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 4

ESA UNCLASSIFIED – For Official Use

Productivity through abstraction

1970s 1980s 1990s 2000s 2010s

in
te

g
ra

ti
o

n

Layout

Gate Level

RTL

ESLProductivity

Granularity
- transistors
- polygons

CAD
- first CAD tools

Granularity
- gate level

CAD
- netlist standardisation

EDIF, GDSII

Granularity
- cycle, bit, pin accurate
- registers, logic, operators

CAD
- VHDL, Verilog
- floor plan
- logic synthesis

Granularity
- transaction accurate
- pure behavioral description

CAD
- C, C++, SystemC, System Verilog
- High level synthesis
- Virtual platform

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 5

ESA UNCLASSIFIED – For Official Use

Benefits of High Level Synthesis
(HLS)

Higher productivity

New IP development ~ 2 to 3 times faster than RTL (VHDL / Verilog)

Possibility to describe an algorithm in a very concise way compared
to HDL languages (~ 10 times fewer lines of code to maintain)

The designer can better focus on the functionality rather than
implementation details

HLS can generate many RTL derivatives from same C code in a time
effective manner (architecture exploration)

HLS can easily be merged in a HW/SW co-design flow

Integration with virtual platform (SystemC TLM)

Integration with HDL flow (simulators, logic synthesis)

(ST Microelectronics source, 9th annual ESL Symposium, June 2011)

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 6

ESA UNCLASSIFIED – For Official Use

Common features in HLS tools

Architecture exploration

ability to generate RTL variants

Loops optimisation: parallelisation and/or pipelining

Arrays optimisation: registers, RAMs, ROMs

Interfaces optimisation: wire, enable, handshake, bus,
NoC (Network on Chip interface)

Gantt chart analysis

ability to display concurrency and/or
dependencies between resources / tasks

Verification flow analysis

ability to run regression tests,
Transaction Based Verifications (TBV) in order to check the RTL code
automatically generated against original C++ code

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 7

ESA UNCLASSIFIED – For Official Use

Common features in HLS tools

Cross probing analysis

ability to identify resources in the Gantt
chart or RTL and map them to the original C++

Interfacing with conventional ASIC / FPGA back end flows (RTL
simulators and logic synthesis)

Architecture exploration

target technology aware

Resources aware: operators, memories, interfaces

Timing aware

Area aware

Power aware (feature available as an option
sometimes)

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 8

ESA UNCLASSIFIED – For Official Use

HLS solutions on the market

CatapultC originally developed by Mentor Graphics has been spun off
to Calypto the 26/8/2011. This tool has been one of the first used for
ASICs tape out. CatapultC is in full production in Thales where 3
ASICs out of 4 are now produced using this methodology

Synphony C compiler

Synopsys

C to Silicon compiler

Cadence

Cynthesizer

Forte Design Systems

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 9

ESA UNCLASSIFIED – For Official Use

ESA High Level Synthesis flow

C++ function
C++ test bench

fixed point IP
golden reference

CatapultC (Mentor)
Algorithm implementation
bit accurate / untimed

Modelsim / Questasim (Mentor)
Algorithm Implementation

bit & time accurate

Executable IP specification
C / C++ / Matlab

Fixed point or Floating point
untimed

Precision RTL plus (Mentor)
Algorithm logic synthesis / FPGA

Netlist
pin / bit / time accurate

ISE design suite (Xilinx)
Netlist Placed & routed

Design Compiler Ultra (Synopsys)
Algorithm logic synthesis / ASIC

Netlist

Executable hardware IP
on target technology

Hardware in the loop co-simulation / co-emulation
HAPS 60 (Synopsys)

ASIC back-end flow

HW / SW
partitioning

HDL

Regression tests
HDL vs C++ test bench

Matlab / Simulink
Algorithm performance validation

bit accurate / untimed

Optional flow

Start point
executable specification

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 10

ESA UNCLASSIFIED – For Official Use

CatapultC and Simulink integration

Step1: C++ algorithm coding

Step2: Simulink wrappers generation

Step3: Wrapper compilation with MEX

Step4: Simulink simulation (algo performances)

Step5: if step4 not OK then iterate in step1
otherwise goto step6

Step6: Generate RTL code

Step7: Run regression tests (SystemC verification
flow / Transaction Based Verification TBV)

1

2

3

4

5

6

7

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 11

ESA UNCLASSIFIED – For Official Use

FIR filter example (algorithm)

Z-1

X H0

Z-1

X H1

Z-1

X H2

Z-1

X H3

Z-1

X H4

Z-1

X H5

Z-1

X H6

Z-1

X H7

…

…

Xn

+ + + + + + +
Yn

)0().7(...)4().3()5().2()6().1()7().0()7(

)7().7(...)3().3()2().2()1().1()().0()(

)(

)(

7

0

0

XHXHXHXHXHY

nXHnXHnXHnXHnXHnY

inXiHnY

inXiHnY

i

N

i

Let’s assume a 8 TAPs FIR filter N=7

Let’s assume n=7

FIR filter direct implementation

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 12

ESA UNCLASSIFIED – For Official Use

FIR filter example (source code)

#include "fir.h"

#pragma hls_design top
void fir_filter (data_t &input, data_t coeffs[NUM_TAPS], data_t &output)
{

static data_t regs[NUM_TAPS];

accu_t temp = 0;

SHIFT:
for (int i = NUM_TAPS-1; i >= 0; i--)
{

if (i == 0)
regs[i] = input;

else
regs[i] = regs[i-1];

}

MAC:
for (int i = NUM_TAPS-1; i >= 0; i--)
{

temp += coeffs[i] * regs[i];
}

output = temp;
}

fir.cpp fir.h

#ifndef _FIR_FILTER_H
#define _FIR_FILTER_H

#include <ac_fixed.h>

#define NUM_TAPS 8

typedef ac_fixed<18, 2, 1, AC_TRN, AC_WRAP> data_t;
typedef ac_fixed<24, 8, 1, AC_TRN, AC_WRAP> accu_t;

void fir_filter (data_t& input, data_t coeffs[NUM_TAPS], data_t& output);

#endif

8 coefficients

8 registers 18 bits

Fixed point types

Loops must be labelled

Pragma identifying the top or
code to be synthesised

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 13

ESA UNCLASSIFIED – For Official Use

FIR filter example (test bench)

#include <iostream>

#include "mc_scverify.h"
#include "fir.h"

// some functions for generating random test vectors

…….

// ---
// Start of MAIN

CCS_MAIN(int argc, char *argv)
{

// Place local testbench variables here
ac_fixed<18, 2, true, AC_TRN, AC_WRAP > input;
data_t coeffs[8];
ac_fixed<18, 2, true, AC_TRN, AC_WRAP > output;

// Initialize local variables to zero
init_input(input);
init_coeffs(coeffs);
init_output(output);

// Main test iterations start here
for (int iteration = 0; iteration < 100; ++iteration) {

// Set test values for this iteration
throw_dice_for_input(input);
throw_dice_for_coeffs(coeffs);

// Call original function and capture data
CCS_DESIGN(fir_filter)(input, coeffs, output);

}
// Return success
CCS_RETURN(0);

}

Instructions in red are
only ones differing from
original C++ test bench

Those instructions are
used by CatapultC
synthesis

fir-tb.cpp

Unique test bench is used for regression
tests RTL vs C++ (Transaction Based Verification)

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 14

ESA UNCLASSIFIED – For Official Use

FIR filter example (architecture
constraints)

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 15

ESA UNCLASSIFIED – For Official Use

FIR filter example (architecture
exploration)

resources

solution MAIN loop SHIFT loop MAC loop

Fir_filter.v3 Rolled Rolled Rolled

Fir_filter.v5 Rolled Unrolled Rolled

Fir_filter.v11 Pipelined

II=1

Unrolled Pipelined

II=1

Fir_filter.v12 Pipelined

II=1

Unrolled Unrolled

Default implementation
loops are rolled and if
timings constraints allow
loops are merged

Clock period constrained to 50ns (20 MHz)

II=1
Initial Interval = 1
1 data fed in the pipeline
Every clock cycle

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 16

ESA UNCLASSIFIED – For Official Use

FIR filter example (architecture
exploration)

Area

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 17

ESA UNCLASSIFIED – For Official Use

FIR filter example (architecture
exploration)

Timing

Fir_filter.V12 is the fastest solution but also consumes more resources (direct implementation)

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 18

ESA UNCLASSIFIED – For Official Use

FIR filter example (Gantt chart
analysis)

10% slack to account
for place & route

High level synthesis is technology aware
(Virtex 6 in the present case)
HLS tool can provide info on:

- Speed
- Area
- Power consumption (optional)8 TAPs shift register

each TAP = 18 bits

Control step1 of the main
loop. For each iteration:

- input is read
- coeff is read
- register is shifted
- MAC is performed
- output is written

MAC and SHIFT loops
in this example are merged
in the same control step

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 19

ESA UNCLASSIFIED – For Official Use

FIR filter example (RTL code & target
technology netlist generation)

Fir_filter.V11

Main loop: pipelined
Shift loop: unrolled
MAC loop: pipelined

Best area solution

MAC

MUX 81
Coeffs 8 * 18 bits

Input data 18 bits
1 data_in &
1 data_out every
8 clock cycles

Mux 21 to hold
Input stream during
accumulation (8 cycles)

18 bits register

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 20

ESA UNCLASSIFIED – For Official Use

FIR filter example (RTL code & target
technology netlist generation)

Fir_filter.V12

Main loop: pipelined
Shift loop: unrolled
MAC loop: unrolled

Best timing solution

MAC

Coeffs 8 * 18 bits

Input data 18 bits

Direct FIR filter implementation
no MUXes 21 needed to hold
input stream during 8 clock cycles
1 data_in & 1 data_out issued at
each clock cycle

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 21

ESA UNCLASSIFIED – For Official Use

FIR filter example (implementation
after synthesis & place-route)

MAC mapped on DSP 48 block
(example based on Virtex 6)

Complete layout

Layout zoom

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 22

ESA UNCLASSIFIED – For Official Use

FIR filter example (simulink
validation)

8 TAPs FIR filter symbol

Test bench

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 23

ESA UNCLASSIFIED – For Official Use

Integration of HLS flow with virtual
platform

Spec capture / analysis

HW/SW partitioning

Virtual Platform

IPs repository
- Software IPs
- Hardware IPs

TLM IPs
RTL IPs

Platform
Refinement

HW architecture
exploration

TLM 2.0 AT, CA

High Level Synthesis

HW RTL

HW refinement flow

SW development
TLM 2.0 LT

Compile & optimise

SW executable

SW refinement flow

RTL platform
RTL / ESL verification

TBV
Optional: HW in the loop

Legend:

TLM 2.0: SystemC Transaction Level Modeling
(IEEE 1666)

TBV: Transaction Based Verification
LT: loosely timed
AT: approximately timed
CA: cycle accurate

Spec modifications

HW / SW partitioning modifications

HW modifications SW modifications

High Level Synthesis | Laurent Hili | ESA-ESTEC | 19/09/2011 | Microelectronics Section (TEC-EDM) | Slide 24

ESA UNCLASSIFIED – For Official Use

Virtual Platform deployment view

System Engineer

Design optimisation,
Performance,
Power analysis

Virtual Platform
TLM

Hardware Engineer

Generation of RTL
from TLM

C/C++/ SystemC

Software Engineer

Software / Firmware optimisation

Verification Engineer

TLM / RTL verification
and sign-off of HW/SW
platform

Architectural
Design

Virtual
Prototyping

High Level
Synthesis

System
Verification

ESA UNCLASSIFIED – For Official Use

Thanks for your attention

Special thanks to my colleague Jelle Poupaert
and Stephane Labert (Mentor Graphics France)

for their support

Any question ?

	High Level Synthesis techniques
	What are the challenges ?
	What are the challenges ?
	Productivity through abstraction
	Benefits of High Level Synthesis (HLS)
	Common features in HLS tools
	Common features in HLS tools
	HLS solutions on the market
	ESA High Level Synthesis flow
	CatapultC and Simulink integration
	FIR filter example (algorithm)
	FIR filter example (source code)
	FIR filter example (test bench)
	FIR filter example (architecture constraints)
	FIR filter example (architecture exploration)
	FIR filter example (architecture exploration)
	FIR filter example (architecture exploration)
	FIR filter example (Gantt chart analysis)
	FIR filter example (RTL code & target technology netlist generation)
	FIR filter example (RTL code & target technology netlist generation)
	FIR filter example (implementation after synthesis & place-route)
	FIR filter example (simulink validation)
	Integration of HLS flow with virtual platform
	Virtual Platform deployment view
	Thanks for your attention

