

Extending TASTE through integration with Space Studio

Guy Bois, Laurent Moss - Space Codesign Systems

Marc Pollina, Yan Leclerc - M3 Systems

www.spacecodesign.com

Outline

- 1) Overview of the Space Studio platform for hardware/software (Hw/Sw) codesign
- 2) Demo
- 3) Propositions for adding Hw/Sw capabilities to TASTE

Problem and Market Need

- Electronics design is dealing with larger, more complex Hardware and Software that must work well together
- Rapid market changes impact product direction and strategy, changing requirements that drive design:
 - e.g., Tablets versus Netbooks (iPad)
 - e.g., Smart versus Feature phone (iPhone)
- Decisions needed <u>rapidly</u>
- TI: Silicon Respin Cost up to \$3 Million (Synopsys)

Solution Product & Technology

Rapid decisions at <u>front end</u> of design process

- Electronic System Level (ESL)
- Create Large Complex Systems at Higher Level removes complexity of details ...
- Co-design of Software AND Hardware together (Software content is increasing)

Mapping Problem (1)

Mapping Problem (2)

Today's traditional workflow may take many iterations And many hours per iteration **Architecture Application**

Elix: Functional Design and Validation

Simtek

Also Performance Monitoring Our Solution

and Analysis (with Simtek)

GenX

Roadmap (products)

- During the next 3 years
- Priority according to market demands

Q2	2011	SpaceStudio Aerospace Aerospace version for FPGA – LEON processor + Larger IP Portfolio			
Q4	2011	SpaceStudio Multimedia Xilinx Multimedia version for FPGA - ARM Cortex-A9 + Larger IP Portfolio			

Aerospace – ESL for Actel

Aerospace version for FPGA – Cortex M processor

+ Lower Power Strategies

Aerospace - ESL for ASIC

Aerospace version for ASIC

- + Integrated Verification Flow
- + Leon 4

MultiM - ESL for Altera

Xilinx Multimedia version for FPGA - ARM Cortex-A9

+ Low Power Strategies

MultiM - ESL

Multimedia version for ASIC

+ Integrated Verification Flow

JPEG Decoder

Demo

JPEG Decoder

Demo

Architectural exploration examples

	# Processor		latency (s)	#images/sec	(CPU %	AH	IB Bandwith	%
Config1	N/A		0,0022991	435		N/A		24	
1									
Leon 3									
Config2	1 Leon	with cache	0,0713448	15		100		8	
	,	without cache	0,209142	5		100		20	
Config3	2 Leon	with RTOS	0,0585551	18	P1:	99	AHB1:	7	
					P2:	43	AHB2:	7	
		without RTOS	0,0361186	28		100	AHB1:	7	
						100	AHB2:	15	
uBlaze									
Config2	1 uBlaze	BRAM	0,0938534	11		100		2	

Demo

$V = \frac{1}{2}(R+L) \bullet V max$

TASTE Change Note: Objectives

 Demonstrate that TASTE's capabilities for complex systems development would greatly benefit from codesign technologies

 Show that such codesign technologies can be integrated into the TASTE toolset

TASTE Change Note: Methodology

- Assessment of the TASTE and SpaceStudio tool suites
- Identification of complementarities between the TASTE and SpaceStudio
- Identification of integration possibilities
- Specification of a roadmap for integration
- Work performed jointly by Space Codesign and M3 Systems

Complementarity of TASTE and SpaceStudio

Strong points of TASTE			Strong points of SpaceStudio				
•	Strong support for complex distributed multi-board systems	•	Strong support for complex systems-on-chip				
•	Graphical and explicit definition of component interfaces	•	Ease of defining and modifying the system-on-chip architecture				
•	Ease of implementation of individual system functions	•	Ease of mapping functions on the architecture				
•	Support for several languages for functional implementation	•	Strong support for design space exploration & HW/SW co-design				
•	Strong support of aerospace technologies	•	Integrated performance monitoring and analytics				

Side by side integration

Bottom-up Integration

Top-down Integration

