MINALOE SOCKET

l'infiniment petit, infiniment utile

Socket Collaborative Project

valle

ée

(SoC toolKit for critical Embedded sysTems)

June 2008 – November 2011

Noordwijk, V.LEFFTZ & J. LACHAIZE (Astrium)

09/19/2011

Agenda

Socket project presentation

MINALOGIC

- Proposed Hardware/Software Co-Design Flow
- Focus on key technologies + perspectives
 - SystemC/TLM Modelling
 - Assertion Based Verification
 - High Level Synthesis

Agenda

Socket project presentation

MINALOGIC

- Proposed Hardware/Software Co-Design Flow
- Focus on key technologies + perspectives
 - SystemC/TLM Modelling
 - Assertion Based Verification
 - High Level Synthesis

SoCKET: Objectives

- Define a "seamless" development flow, integrating the equipment qualification/certification, from the system level, to the IC and validated SW on these ICs;
- Master the SoC solutions for critical embedded systems;
- Master the "system dimension" (software + hardware) into the SoCs integration problematics;
- Master the complexity, the time cycle reduction, design optimisation of SoC-based systems;
- Evaluate the HW simulation models (get from the design flow) usage for the integration and the validation of the critical embedded SWs.

MINALOGIC

"Seamless" design flow

MINALOGIC

Agenda

Socket project presentation

MINALOGIC

- Proposed Hardware/Software Co-Design Flow
- Focus on key technologies + perspectives
 - SystemC/TLM Modelling
 - Assertion Based Verification
 - High Level Synthesis

SoCKET Co-Design flow

aerospace

vallev

Content management with IP-Xact

Consistency vs. heterogeneity

MINALOGIC

ASTRIUM

- Various formalisms (architectures, timing, functionality, power, ...)
- Various levels of abstraction and languages
- Implementation in hardware and software

aerospace

vallev

SoC Architecture definition

- Define the appropriate partitioning between hardware and software
 - Conform with system requirements
- An architect-driven decision process guided by metrics
 - High Level Synthesis

MINALOGIC

- Provides IP internal information
- IP Traffic Generators
 - Assess bandwidth and latency scenarios

- Resulting architecture is described in the IP-Xact format
 - Refined requirements are associated to the architecture

Traffic Generators

Objective

MINALOGIC

Analyze interconnect bandwidth and latency

\rm Means

For each IP, characterize traffic profile

- Assemble a platform with a BCA/RTL interconnect and memory models
- Generate traffic
- Exploit results with analysis tools

aerospace

valley

Transaction Level models (LT)

Model IPs/subsystems at the transaction level

- Bit true behavior & communication
- System synchronization points
- No clock/cycle, but functional timing (e.g. *timer*)
- Fast to implement and simulate

TLM LT models often built using

- C reference model
- TLM wrapper
 - Model registers
 - serve read/write accesses

Used for

MINALOGIC

- Embedded software development
- Functional verification activities for RTL IPs

aerospace

System requirement

Architectu

Co-simulation/Co-emulation

Metric

Softwar

Softwa

Softwar

Software

System Properties

Properties

RTL

Silicor

valley

- The TLM LT model is the golden reference
- Functional test suite is built using the LT model
- TLM LT testbench is used to validate the RTL IP
- High level of confidence for reusing the model

aerospace

MINALOGIC

Transaction Level Models (AT)

Targeting performance evaluation

- Hardware architecture
- Software

MINALOGIC

- Captures micro-architecture information/timing
- Timing accuracy may be trimmed
- Several technical options
 - LT Model refinement -> rewriting
 - LT Model annotation
 - Composition of LT and T models
 - Generation of a CA model from RTL

Validation of AT models

- Functionality of AT models can be assessed with the LT tests
- Building the temporal model is difficult
 - Extract timing information from the RTL
 - Implement the micro-architecture model
 - Statistical approach

MINALOGIC

- And impacts significantly the simulation speed
- The hard topic is the temporal validation
 - Reuse of Implementation Verification Patterns when available
 - As difficult as the validation of cycle accurate models

Comparing abstraction levels

Same functional behavior

aerospace **RTL** Level vallev MINALOGIC System requirements System Global SoC spec. Properties traceability Metrics Metrics SoC Traffic HLS Architecture generators equirement HW SW Platform **IP-Xact** Header Properties Properties assembly generation SoC C/C++/ASM N Functionality TLM Functional validation Software Instruction Functionality Set TLMAT SW Performance validation Software Simulator timing HLS RTL Software Co-simulation/Co-emulation Silicon Software Device execution ASTRIUM

RTL level

Entry point for logic synthesis flow

- RTL models might be
 - Implemented manually
 - Generated from higher description (HLS flow)

Co-simulation

MINALOGIC

 Joint simulation of SystemC/TLM and VHDL/Verilog models

Co-emulation

 Simulation of SystemC with the execution of VHDL/Verilog models mapped on a hardware emulators

SW

Properties

Software

Software

Software

Software

aerospace

Metrics

System requirements

Global SoC spec

Architecture

IP-Xact SoC

Functional validation

Device execution

SW Performance valida

System

Properties

HW

Properties

TLM,

Silicon

Verification concern

MINALOGIC

Regs

- Each model is a golden model for his level of abstraction
- Verification at a lower level extends the validation capacities
- Verification flow is connected to requirement management
- Requirement update impacts all relevant models

Agenda

Socket project presentation

MINALOGIC

- Proposed Hardware/Software Co-Design Flow
- Focus on key technologies + perspectives
 - SystemC/TLM Modelling (Time modelling)
 - Assertion Based Verification
 - High Level Synthesis

Programmer's View (PV) or functional simulation (LT)

- Time is not represented, only functionality is modelled.
- Functional synchronization is necessary. It is done at System Synchronization Points (SSP): configuration registers access, interrupts and all state alternating accesses.

MINALOGIC

The need for time

- Performance measurements
- Design Space Exploration
- Feasibility assessment

...how ???

Precision?

MINALOGIC

- Modelling granularity?
- Simulation performance?

The obvious solution: mixing erospace time and functionality

It works !!!

MINALOGIC

...but...

- Functional modifications cannot be verified without having to verify all timed aspects as well
- Modelling granularity is hard to modify once it has been set
- Modules cannot be easily reused for other platforms

Time & functionality separation

- Each model has a functional (PV) part and a timed part (T)
- Simulation switches between PV and T phases: when all PV models have reached a SSP
- T models record time relevant data (address, size of transfer...) during PV phases
- During T phases, T models "replay" the last PV phase and simulate time accordingly

Jérôme Cornet's Thesis: "Separation of Functional and Non-Functional Aspects in Transactional Level Models of Systems-on-Chip" (Verimag 2008)

MINALOGIC

Enriching a functional platformerospace

MINALOGIC

Functioned simulation phase succession

Advantages and limitations

PV & T mixed

Modelling is "natural".
 Platforms are simple.

MINALOGIC

 Asynchronous events can be modelled easily

PV & T separated

- Parallel development and debug of reusable PV and T models
- Granularity can be controlled easily (by changing T model)

- Granularity is fixed
- Mixed debugging
- no control over simulation performance
- Reuse issue

- Modelling is more abstract. Platforms are complex
- Asynchronous events are harder to model

Agenda

Socket project presentation

MINALOGIC

- Proposed Hardware/Software Co-Design Flow
- Focus on key technologies + perspectives
 - SystemC/TLM Modelling
 - Assertion Based Verification
 - High Level Synthesis

What is ABV ?

Assertion: statement about the intended behaviour or a requirement of the design

Temporal logics: CTL, LTL,...

MINALOGIC

- Specification languages: SVA (IEEE Std 1800),
 PSL (IEEE Std 1850)
- Assertion-Based Verification: does the design obey these temporal assertions?
 - Static analysis (model checking)
 - Dynamic verification (during simulation)

Assertions at the system level:

ASTRIUM

Any time a source address *is transferred* to the DMA, a *read access* eventually occurs and the right address is used

Astrium's REX

Good expressivity of PSL

MINALOGIC

- Moderate time overhead induced by monitoring (5-8%)
- The property checkers will provide a valuable help for nonregression testing
- Careful (natural language) expression of the requirements
 - Specify at the TLM interfaces

aerospace

Disambiguate the properties, in particular the meaning of communication actions, and specify your preferred observation points

ABV perspectives

Among the future works

MINALOGIC

- Perform other experiments and refine the definition rules for the expression of properties
- Relation between PSL properties at the transactional level and at the RT level ?

Agenda

Socket project presentation

MINALOGIC

- Proposed Hardware/Software Co-Design Flow
- Focus on key technologies + perspectives
 - SystemC/TLM Modelling
 - Assertion Based Verification
 - High Level Synthesis

1st step: Algorithm -> HLS

aerospace vallée valley

HLS for architecture exploration of space

- Metrics (area, performance) 20% pessimistic Usable for for tradeoffs
- Help for bit accurate arithmetic migration (fixed point (ac_type/sc_type))
- HLS requires to consider any IO architecture bottlenecks
- HLS incremental refinement try/test loop: heuristic approach
- Allows to measure latency introduced by pipelining
- Separation of the processing process and the IO constraints

Tools evaluation report

Celoxica HandleC

MINALOGIC

- ->2007: GAIA project metrics for DSE
- Obsolete since 2009

Mentor/Calypto CatapultC

- 2005 evaluation: great tool, but too expensive
- 2010->...: HLS bluebook (Michael Fingeroff)
- Mathworks HDL Coder
 - 2011: introduction in production process
- Université de Bretagne Sud Lab-STICC GAUT
 Socket

High Level Synthesis: GAUT

Academic tool

MINALOGIC

- Public Domain (CECILL-B License)
- Open source and free
- Dedicated to DSP applications
 - Data-dominated algorithm
- Inputs :
 - Algorithm written in bit-accurate C/C++
 - Bit-accurate integer and fixed-point from Mentor Graphics
 - Synthesis constraints (data average throughput, clock, I/O constraints...)
- Outputs :

ASTRIUM

- RTL Architecture written in VHDL (IEEE 1076)
- Simulation model in SystemC
- Automated Test-bench generation

GAUT REX

- Powerful academic tool for Data Flow Graph
- Good support of Xilinx targets
- Generated component directly pluggable on a bus (not used).
- ATC18RHA targeting on-going study
- Generated HDL efficiency (# gates and speed)
- Hierarchic synthesis support (not tested)
- Further evolution in the frame of project P
 - CDFG support

MINALOGIC

IO communication pattern instantiation

GAUT expected enhancement

- Pipelining needs to be externally handled
 - A valid signal is not propagated
- Control of loops unrolling

- Automatic loop unrolling under constraint No manual override
- Output timing constraint propagation
- Add traceability between the C code and generated VHDL code
- Operators set extension (e.g: fixed-point division)
- Smart IO management (optimal data organization, ...)
- Would require some additional work for tool industrialization/qualification (documentation, validation of generated HDL, IO interface configuration/control, ...)

HLS highlights

- Ease IP maintenance/evolution.
- Requires both hardware competence and software skills.
- It's quite natural to transform Matlab to C then to RTL.
- Not optimal for data handling (FIFO, Cache, prefetch)
- Manager : no speed up development process but the exploration process and avoid some dead-end

MINALOGIC

Global Conclusion

ESL techniques very useful:

- B For DSE,
- **For removing ambiguities at HW/SW interfaces level**,
- For improving the fast prototyping phase
- Need of

MINALOGIC

- Building a Space ESL ecosystem
 - Common Model Library and Toolbox
 - Common Model Coding Rules for model exchange
- Can we avoid any dependence with commercial tools

SoCKET: Further information

Public website: <u>http://socket.imag.fr</u>

- Public "final" workshop:
 - 23 & 24 November 2011 at Toulouse, France
 - Ist day: Tutorial on pillar technologies & Results presentation

2nd day: Industrial Return of Experience YOU ARE ALL WELCOMED

Thank you for your attention

Any questions ?

Technical pillars (1)

- High level synthesis (Lab_STICC)
 - Under time constraint
 - Under resources constraint
- Heterogeneous simulation techniques (STM)
 - SystemC/TLM

MINALOGIC

- LT/AT/CABA abstraction levels
- IPs encapsulation and interoperability (MDS, STM)
 - SPIRIT/IP-XACT (structural information) => configuration/documentation/deployment
 - OCP-IP

Technical pillars (2)

Validation techniques

MINALOGIC

- Formal and semi-formal methods (TIMA, IRIT)
 - Formal verification by model-checking
 - Semi-formal verification by automatic generation of monitors
- Mutation analysis techniques (STM)
 - Atomic modification of the design to check if the validation environment detect it
 - Today, at RTL level, SoCKET will try to extend it to system level
- Test cases automatic generation (STM)
 - E language OK for IPs, performance issues for SoCs
 - Evaluation of techniques based on IP-XACT description and C generators

