
09/19/2011

Noordwijk,
V.LEFFTZ & J. LACHAIZE

(Astrium) 1

SoCKET Collaborative Project
(SoC toolKit for critical Embedded sysTems)

June 2008 – November 2011

2

Agenda

SoCKET project presentation

Proposed Hardware/Software Co-Design Flow

Focus on key technologies + perspectives
SystemC/TLM Modelling
Assertion Based Verification
High Level Synthesis

3

Agenda

SoCKET project presentation

Proposed Hardware/Software Co-Design Flow

Focus on key technologies + perspectives
SystemC/TLM Modelling
Assertion Based Verification
High Level Synthesis

4

SoCKET: Objectives

Define a “seamless” development flow, integrating the
equipment qualification/certification, from the system
level, to the IC and validated SW on these ICs;

Master the SoC solutions for critical embedded systems;

Master the “system dimension” (software + hardware) into
the SoCs integration problematics;

Master the complexity, the time cycle reduction, design
optimisation of SoC-based systems;

Evaluate the HW simulation models (get from the design
flow) usage for the integration and the validation of the critical
embedded SWs.

5

“Seamless” design flow

Formalisms unification
Remove any semantic holes into
HW/SW interfaces

Models transformation operators
Automation
Traceability
Overall coherency insurance

Tools interoperability
Keystone of 2 previous points

Co-design processClassical process
System Specifications

HW/SW
Partitioning

HW Design

HW Simulation

HW Synthesis
(netlist)

Unit Tests

Equipment Tests

SW Design

SW Simulation

SW Compilation
(code binaire)

Modules Unit Tests

SW Validation Tests

HW/SW Integration

HW Synthesis
(netlist)

Unit Tests

Equipment Tests

SW Compilation
(binary code)

Modules Unit Tests

SW Validation Tests

HW/SW Integration

HW Design

HW Simulation

SW Design

SW Simulation

HW/SW
Partitioning

HW/SW
co-simulation

System Specifications

Executable Specification
(system level simulation)

Alternate architectures
exploration

TO

6

SoCKET: Consortium

• International groups:
Airbus, Astrium, STMicroelectronics,
Thalès R&T

• PMEs:
PSI-S, PSI-E, Magillem Design Services

• Academics and
Research Centers:
CNES, IRIT, Lab-STICC,
TIMA

Paris

Toulouse

Grenoble

Lorient
HLS
Gaut

Security Camera
Use Case

Secondary Flight Control
Computer

Image Processing
Moving Object Tracking

& Compression

Swarm Magnetometer
Computer

SW Properties
WCET

OTAWA

IP-XACT

SystemC/TLM modelling
Heterogeneous Simulation

Techniques

ABV
ISIS & HORUS

SoC Debug & Trace
SW Secure
Architecture

7

Agenda

SoCKET project presentation

Proposed Hardware/Software Co-Design Flow

Focus on key technologies + perspectives
SystemC/TLM Modelling
Assertion Based Verification
High Level Synthesis

8

SoCKET Co-Design flow

Global SoC spec.

SoC
Architecture

Functional validation

SW Performance validation

C/C++/ASM
Functionality

Functionality
+

timing

Instruction
Set

Simulator

System requirements

Platform
assembly

MetricsHLS

System
Properties

HW
Properties

SW
Properties

TLMLT

TLMAT

Software

Software

Co-simulation/Co-emulation

Silicon SoftwareDevice execution

HLS

Traffic
generators

Metrics

IP-Xact
SoC

Header
generation

RTL Software
R

eq
u

ir
em

en
t

tr
ac

ea
bi

lit
y

9

Generation of HDS layers
Header files
Structure and Functions
Parts of drivers

Content management
with IP-Xact

IP/SoC
Functional

Specification

C/C++/ASM/…

TLMLT

TLMAT

Software

Software

Silicon Software

IP-Xact
SoC

RTL Software

Generation of
TLM model skeleton
Top netlist for virtual
platform
Hardware platform
documentation

Consistency vs. heterogeneity
Various formalisms (architectures, timing, functionality, power, …)
Various levels of abstraction and languages
Implementation in hardware and software

10

SoC Architecture definition

Global SoC spec.

SoC
Architecture

Functional validation

SW Performance validation

C/C++/ASM
Functionality

Functionality
+

timing

Instruction
Set

Simulator

System requirements

Platform
assembly

MetricsHLS

System
Properties

HW
Properties

SW
Properties

TLMLT

TLMAT

Software

Software

Co-simulation/Co-emulation

Silicon SoftwareDevice execution

HLS

Traffic
generators

Metrics

IP-Xact
SoC

Header
generation

RTL Software
R

eq
u

ir
em

en
t

tr
ac

ea
bi

lit
y

11

SoC Architecture definition

Define the appropriate partitioning between hardware
and software

Conform with system requirements

An architect-driven decision process
guided by metrics

High Level Synthesis
Provides IP internal information

IP Traffic Generators
Assess bandwidth and latency scenarios

Resulting architecture is described in the IP-Xact format
Refined requirements are associated to the architecture

Global SoC spec.

SoC
Architecture

Functional validation

SW Performance validation

C/C++/ASM

Functionalit
y

Functionality
+

timing

Instruction
Set

Simulator

System requirements

Platform
assembly

MetricsHLS

System
Properties

HW
Properties

SW
Properties

TLMLT

TLMAT

Software

Software

Co-simulation/Co-emulation

Silicon SoftwareDevice
execution

HLS

Traffic
generators

Metrics

IP-Xact
SoC

Header
generation

RTL Software

R
eq

ui
re

m
en

t
tr

ac
ea

bi
lit

y

12

Traffic Generators

Objective
Analyze interconnect bandwidth and latency

Means
For each IP, characterize traffic profile

Assemble a platform with a BCA/RTL
interconnect and memory models

Generate traffic

Exploit results with analysis tools

Global SoC spec.

SoC
Architecture

Functional validation

SW Performance validation

C/C++/ASM

Functionalit
y

Functionality
+

timing

Instruction
Set

Simulator

System requirements

Platform
assembly

MetricsHLS

System
Properties

HW
Properties

SW
Properties

TLMLT

TLMAT

Software

Software

Co-simulation/Co-emulation

Silicon SoftwareDevice
execution

HLS

Traffic
generators

Metrics

IP-Xact
SoC

Header
generation

RTL Software

R
eq

ui
re

m
en

t
tr

ac
ea

bi
lit

y

13

Transaction Level models (LT)

Global SoC spec.

SoC
Architecture

Functional validation

SW Performance validation

C/C++/ASM
Functionality

Functionality
+

timing

Instruction
Set

Simulator

System requirements

Platform
assembly

MetricsHLS

System
Properties

HW
Properties

SW
Properties

TLMLT

TLMAT

Software

Software

Co-simulation/Co-emulation

Silicon SoftwareDevice execution

HLS

Traffic
generators

Metrics

IP-Xact
SoC

Header
generation

RTL Software
R

eq
u

ir
em

en
t

tr
ac

ea
bi

lit
y

1414

Transaction Level models (LT)

Model IPs/subsystems at the transaction level
Bit true behavior & communication
System synchronization points
No clock/cycle, but functional timing (e.g. timer)
Fast to implement and simulate

TLM LT models often built using
C reference model
TLM wrapper

Model registers
serve read/write accesses

Used for
Embedded software development
Functional verification activities for RTL IPs

Global SoC spec.

SoC
Architecture

Functional validation

SW Performance validation

C/C++/ASM

Functionality

Functionality
+

timing

Instruction Set
Simulator

System requirements

Platform
assembly

Metrics
HLS

System
Properties

HW
Properties

SW
Properties

TLMLT

TLMAT

Software

Software

Co-simulation/Co-emulation

Silicon SoftwareDevice execution

HLS

Traffic
generators

Metrics

IP-Xact
SoC

Header
generation

RTL Software

R
eq

u
ir

em
en

t t
ra

ce
ab

il
it

y

15

Validation of LT models

The TLM LT model is the golden reference

Functional test suite is built using the LT model

TLM LT testbench is used to
validate the RTL IP

High level of confidence for
reusing the model

Global SoC spec.

SoC
Architecture

Functional validation

SW Performance validation

C/C++/ASM

Functionality

Functionality
+

timing

Instruction Set
Simulator

System requirements

Platform
assembly

Metrics
HLS

System
Properties

HW
Properties

SW
Properties

TLMLT

TLMAT

Software

Software

Co-simulation/Co-emulation

Silicon SoftwareDevice execution

HLS

Traffic
generators

Metrics

IP-Xact
SoC

Header
generation

RTL Software

R
eq

u
ir

em
en

t t
ra

ce
ab

il
it

y

16

Transaction Level Models (AT)

Global SoC spec.

SoC
Architecture

Functional validation

SW Performance validation

C/C++/ASM
Functionality

Functionality
+

timing

Instruction
Set

Simulator

System requirements

Platform
assembly

MetricsHLS

System
Properties

HW
Properties

SW
Properties

TLMLT

TLMAT

Software

Software

Co-simulation/Co-emulation

Silicon SoftwareDevice execution

HLS

Traffic
generators

Metrics

IP-Xact
SoC

Header
generation

RTL Software
R

eq
u

ir
em

en
t

tr
ac

ea
bi

lit
y

1717

Transaction Level Models (AT)

Targeting performance evaluation
Hardware architecture
Software
Captures micro-architecture information/timing
Timing accuracy may be trimmed

Several technical options
LT Model refinement -> rewriting
LT Model annotation
Composition of LT and T models
Generation of a CA model from RTL

Global SoC spec.

SoC
Architecture

Functional validation

SW Performance validation

C/C++/ASM

Functionality

Functionality
+

timing

Instruction Set
Simulator

System requirements

Platform
assembly

Metrics
HLS

System
Properties

HW
Properties

SW
Properties

TLMLT

TLMAT

Software

Software

Co-simulation/Co-emulation

Silicon SoftwareDevice execution

HLS

Traffic
generators

Metrics

IP-Xact
SoC

Header
generation

RTL Software

R
eq

u
ir

em
en

t t
ra

ce
ab

il
it

y

18

Validation of AT models

Functionality of AT models can be assessed with the
LT tests
Building the temporal model is difficult

Extract timing information from the RTL
Implement the micro-architecture model
Statistical approach

And impacts significantly
the simulation speed
The hard topic is the temporal validation

Reuse of Implementation Verification Patterns when
available
As difficult as the validation of cycle accurate models

Global SoC spec.

SoC
Architecture

Functional validation

SW Performance validation

C/C++/ASM

Functionality

Functionality
+

timing

Instruction Set
Simulator

System requirements

Platform
assembly

Metrics
HLS

System
Properties

HW
Properties

SW
Properties

TLMLT

TLMAT

Software

Software

Co-simulation/Co-emulation

Silicon SoftwareDevice execution

HLS

Traffic
generators

Metrics

IP-Xact
SoC

Header
generation

RTL Software

R
eq

u
ir

em
en

t t
ra

ce
ab

il
it

y

19

Comparing abstraction levels

TLM LT

TLM AT

RTL

Same functional
behavior

Same timed
behavior

Same functional
behavior

20

RTL Level

Global SoC spec.

SoC
Architecture

Functional validation

SW Performance validation

C/C++/ASM
Functionality

Functionality
+

timing

Instruction
Set

Simulator

System requirements

Platform
assembly

MetricsHLS

System
Properties

HW
Properties

SW
Properties

TLMLT

TLMAT

Software

Software

Co-simulation/Co-emulation

Silicon SoftwareDevice execution

HLS

Traffic
generators

Metrics

IP-Xact
SoC

Header
generation

RTL Software
R

eq
u

ir
em

en
t

tr
ac

ea
bi

lit
y

21

RTL level

Entry point for logic synthesis flow

RTL models might be
Implemented manually
Generated from higher description (HLS flow)

Co-simulation
Joint simulation of SystemC/TLM and
VHDL/Verilog models

Co-emulation
Simulation of SystemC with the execution of VHDL/Verilog models
mapped on a hardware emulators

Global SoC spec.

SoC
Architecture

Functional validation

SW Performance validation

C/C++/ASM

Functionality

Functionality
+

timing

Instruct
Set

Simulato

System requirements

Platform
assembly

MetricsHLS

System
Properties

HW
Properties

SW
Properties

TLMLT

TLMAT

Software

Software

Co-simulation/Co-emulation

Silicon SoftwareDevice execution

HLS

Traffic
generators

Metrics

IP-Xact
SoC

Header
generation

RTL Software

R
eq

ui
re

m
en

t
tr

ac
ea

bi
lit

y

22

IP-Xact

Verification concern

TLMLT

TLMAT

RTL

Performance verification

Functional verification

Implementation verification

Reqs

Reqs

Reqs

Reqs

Each model is a golden model for his level of abstraction
Verification at a lower level extends the validation
capacities
Verification flow is connected to requirement
management
Requirement update impacts all relevant models

23

Agenda

SoCKET project presentation

Proposed Hardware/Software Co-Design Flow

Focus on key technologies + perspectives
SystemC/TLM Modelling (Time modelling)
Assertion Based Verification
High Level Synthesis

2424

Programmer’s View (PV) or
functional simulation (LT)

Time is not represented, only functionality is
modelled.

Functional synchronization is necessary. It is done at
System Synchronization Points (SSP): configuration
registers access, interrupts and all state alternating
accesses.

2525

The need for time

Performance measurements
Design Space Exploration
Feasibility assessment

…how ???
Precision?
Modelling granularity?
Simulation performance?

2626

The obvious solution: mixing
time and functionality

It works !!!
…but…

Functional modifications cannot be verified without
having to verify all timed aspects as well
Modelling granularity is hard to modify once it has
been set
Modules cannot be easily reused for other platforms

2727

Time & functionality separation

Each model has a functional (PV) part and a timed part (T)
Simulation switches between PV and T phases: when all PV
models have reached a SSP
T models record time relevant data (address, size of transfer…)
during PV phases
During T phases, T models “replay” the last PV phase and
simulate time accordingly

Jérôme Cornet’s Thesis: “Separation of Functional and Non-Functional Aspects
in Transactional Level Models of Systems-on-Chip” (Verimag 2008)

282828

Enriching a functional platform

Initiator port

Target port

Memory
T

ISS
PV

ISS PVT Memory PVT

PV router
Memory

PV

ISS
T

Detailed bus
model

ISS Router Memory

2929

Functional simulation phaseTimed simulation phase

29

ISS
PV PV router

Memory
PV

Initiator port

Target port

ISS
T

ISS PVT

Detailed bus
model

Memory
T

Memory PVT

T= 0 nsT= 1 nsT= 2 nsT= 3 nsT= 4 nsT= 5 nsT= 6 nsT= 7 nsT= 8 nsT= 9 nsT= 10 nsT= 11 nsT= 12 ns

3030

Advantages and limitations

PV & T mixed

Modelling is “natural”.
Platforms are simple.
Asynchronous events can
be modelled easily

Granularity is fixed
Mixed debugging
no control over simulation
performance
Reuse issue

PV & T separated

Parallel development and
debug of reusable PV and
T models
Granularity can be
controlled easily (by
changing T model)

Modelling is more
abstract. Platforms are
complex
Asynchronous events are
harder to model

31

Agenda

SoCKET project presentation

Proposed Hardware/Software Co-Design Flow

Focus on key technologies + perspectives
SystemC/TLM Modelling
Assertion Based Verification
High Level Synthesis

32

What is ABV ?

Assertion: statement about the intended behaviour or a
requirement of the design

Temporal logics: CTL, LTL,…
Specification languages: SVA (IEEE Std 1800),
PSL (IEEE Std 1850)

Assertion-Based Verification: does the design obey these
temporal assertions?

Static analysis (model checking)
Dynamic verification (during simulation)

32

33

ABV at system level

Assertions at the system level:

33

Any time a source address is transferred to the DMA,
a read access eventually occurs and the right address
is used

Observation

34

ISIS tool from TIMA Lab

34

PSL assertion

Automatic
transformation

Design under verification

SystemC assertion
monitor (checker)

Automatic
instrumentation





35

Astrium’s REX

35

Good expressivity of PSL

Moderate time overhead induced by monitoring (5-8%)

The property checkers will provide a valuable help for non-
regression testing

Careful (natural language) expression of the requirements
Specify at the TLM interfaces
Disambiguate the properties, in particular the meaning of
communication actions, and specify your preferred observation points

36

ABV perspectives

36

Among the future works
Perform other experiments and refine the definition rules for
the expression of properties
Relation between PSL properties at the transactional level and
at the RT level ?

ISIS (TLM monitors) HORUS (RTL monitors)

Correctness, and
mitigation of radiation effects

37

Agenda

SoCKET project presentation

Proposed Hardware/Software Co-Design Flow

Focus on key technologies + perspectives
SystemC/TLM Modelling
Assertion Based Verification
High Level Synthesis

38

1st step: Algorithm -> HLS

Validation
Intermediate results
required
Validity criteria
(computation precision)

Algorithm
spécification

MATLAB
Implementation
(floating point)

C implementation
(floating point)

Intermediate
results

Extraction

Intermediate
results

Comparison

Acceptable ?

C implementation
(floating point)

Intermediate
results

Comparison

Acceptable ?

Golden Model
Bit accurate

Test Scenario Acceptance
criteria

Precision
requested

GAUT integer
implementation

GAUT
implementation

SystemC
Modeling

HW/SW
partitionning

Intermediate
results
Bit2bit

Comparison

Intermediate
results

Extraction

39

HLS for architecture exploration

Metrics (area, performance) – 20% pessimistic - Usable for
for tradeoffs
Help for bit accurate arithmetic migration (fixed point
(ac_type/sc_type))
HLS requires to consider any IO architecture bottlenecks
HLS incremental refinement try/test loop: heuristic approach
Allows to measure latency introduced by pipelining
Separation of the processing process and the IO constraints

40

Tools evaluation report

Celoxica HandleC
->2007: GAIA project – metrics for DSE
Obsolete since 2009

Mentor/Calypto CatapultC
2005 evaluation: great tool, but too expensive
2010->...: HLS bluebook (Michael Fingeroff)

Mathworks HDL Coder
2011: introduction in production process

Université de Bretagne Sud Lab-STICC GAUT
SoCKET

41

Academic tool
Public Domain (CECILL-B License)
Open source and free

Dedicated to DSP applications
Data-dominated algorithm

Inputs :
Algorithm written in bit-accurate C/C++

Bit-accurate integer and fixed-point from Mentor Graphics

Synthesis constraints (data average
throughput, clock, I/O constraints…)

Outputs :
RTL Architecture written in VHDL (IEEE 1076)

Simulation model in SystemC

Automated Test-bench generation

High Level Synthesis: GAUT

Global SoC spec.

SoC
Architecture

Functional validation

SW Performance validation

C/C++/ASM

Functionalit
y

Functionality
+

timing

Instruction
Set

Simulator

System requirements

Platform
assembly

MetricsHLS

System
Properties

HW
Properties

SW
Properties

TLMLT

TLMAT

Software

Software

Co-simulation/Co-emulation

Silicon SoftwareDevice
execution

HLS

Traffic
generators

Metrics

IP-Xact
SoC

Header
generation

RTL Software

R
eq

ui
re

m
en

t
tr

ac
ea

bi
lit

y

42

GAUT REX

Powerful academic tool for Data Flow Graph
Good support of Xilinx targets
Generated component directly pluggable on a bus
(not used).
ATC18RHA targeting on-going study
Generated HDL efficiency (# gates and speed)
Hierarchic synthesis support (not tested)
Further evolution in the frame of project P

CDFG support
IO communication pattern instantiation

43

GAUT expected enhancement

Pipelining needs to be externally handled
A valid signal is not propagated

Control of loops unrolling
Automatic loop unrolling under constraint No manual override

Output timing constraint propagation
Add traceability between the C code and generated VHDL code
Operators set extension (e.g: fixed-point division)
Smart IO management (optimal data organization, ...)
Would require some additional work for tool
industrialization/qualification (documentation, validation of
generated HDL, IO interface configuration/control, ...)

44

HLS highlights

 Ease IP maintenance/evolution.
 Requires both hardware competence and software

skills.
 It’s quite natural to transform Matlab to C then to

RTL.
 Not optimal for data handling (FIFO, Cache, prefetch)
 Manager : no speed up development process but

the exploration process and avoid some dead-end

45

Global Conclusion

ESL techniques very useful:
For DSE,
For removing ambiguities at HW/SW interfaces level,
For improving the fast prototyping phase

Need of
Building a Space ESL ecosystem

Common Model Library and Toolbox
Common Model Coding Rules for model exchange

Can we avoid any dependence with commercial tools

46

SoCKET: Further information

Public website: http://socket.imag.fr

Public “final” workshop:
23 & 24 November 2011 at Toulouse, France
1st day: Tutorial on pillar technologies &
Results presentation
2nd day: Industrial Return of Experience

YOU ARE ALL WELCOMED

http://socket.imag.fr/�

47

Thank you for your attention

?

Any questions ?

48

Backup

49

Technical pillars (1)

High level synthesis (Lab_STICC)
Under time constraint
Under resources constraint

Heterogeneous simulation techniques (STM)
SystemC/TLM
LT/AT/CABA abstraction levels

IPs encapsulation and interoperability (MDS, STM)
SPIRIT/IP-XACT (structural information)

=> configuration/documentation/deployment

OCP-IP

50

Technical pillars (2)

Validation techniques
Formal and semi-formal methods (TIMA, IRIT)

Formal verification by model-checking
Semi-formal verification by automatic generation of monitors

Mutation analysis techniques (STM)
Atomic modification of the design to check if the validation
environment detect it
Today, at RTL level, SoCKET will try to extend it to system level

Test cases automatic generation (STM)
E language OK for IPs, performance issues for SoCs
Evaluation of techniques based on IP-XACT description and C
generators

	SoCKET Collaborative Project
	Agenda
	Agenda
	SoCKET: Objectives
	“Seamless” design flow
	SoCKET: Consortium
	Agenda
	SoCKET Co-Design flow
	Content management �with IP-Xact
	SoC Architecture definition
	SoC Architecture definition
	Traffic Generators
	Transaction Level models (LT)
	Transaction Level models (LT)
	Validation of LT models
	Transaction Level Models (AT)
	Transaction Level Models (AT)
	Validation of AT models
	Comparing abstraction levels
	RTL Level
	RTL level
	Verification concern
	Agenda
	Programmer’s View (PV) or functional simulation (LT)
	The need for time
	The obvious solution: mixing time and functionality
	Time & functionality separation
	Enriching a functional platform
	Functional simulation phase
	Advantages and limitations
	Agenda
	What is ABV ?
	ABV at system level
	ISIS tool from TIMA Lab
	Astrium’s REX
	ABV perspectives
	Agenda
	1st step: Algorithm -> HLS
	HLS for architecture exploration	
	Tools evaluation report
	Slide Number 41
	GAUT REX
	GAUT expected enhancement
	HLS highlights
	Global Conclusion
	SoCKET: Further information
	Thank you for your attention
	Backup
	Technical pillars (1)
	Technical pillars (2)

