
SpaceWire
Design of the SystemC model of the SpaceWire-b CODEC

Dr. Nikos Mouratidis
Qualtek Sprl.
36 Avenue Gabriel Emile Lebon
B-1160, Brussels, Belgium
19/09/2011

Project Overview

 Activity objectives:
◦ High-level modeling of the ESA SpaceWire using SystemC TLM 2.0

 SystemC Simulation speed
 TLM 2.0 Interoperability

◦ Functional validation and timing accuracy analysis of said model
 Model functions identical to RTL IP core
 Reported timing is useful for system performance evaluation

 Intended uses of activity outputs:
◦ Allow ESA to develop new VPs based on the available SystemC IP

Models and distribute them to contractors without being subject to any
fee or restriction, allowing software development before SoC hardware
is ready

◦ ESA will license the SystemC IP Models without being subject to any
fee or restriction and allow contractors to develop new VPs using the
guidelines in the model documentation and perform design space
exploration for future SoCs to be implemented either as ASICs or on
FPGA

Motivation

 Why is the model of an existing IP necessary?
◦ Royalty-free access

◦ Development of VPs prior to commitment / licensing
◦ Actual IP licensed only after grounds for commitment
◦ Licensing process does not stall development

◦ Simulation speed
 x10s to x1000s improvement over RTL simulation
 Simulation kernel constitutes part of model

◦ Linked library
◦ No specialized simulation tools necessary
◦ Interoperability
 Compliant models utilise standardised interface

◦ TLM 2.0 implements interoperability layer
 Model may be directly used in compliant platforms

◦ No interface adaptations necessary
◦ Different use cases demand different level of detail
 Software development – LT (b_transport)
 Design space exploration – AT (nb_transport)

SpaceWire standard*

 Point-to-point data connection
◦ Lightweight protocols (w.r.t to alternatives)
◦ Low-latency data transfer (minimal buffering)
◦ Flow controlled (data loss avoidance)

 low-complexity technology for building scalable,
fault tolerant networks
◦ using routing switches connected by point-to-point links

 Aims at equipment compatibility and reuse
 High speed data link

◦ Minimum speed is ~2Mb/s, maximum 400Mb/s

 Widely adopted

SpaceWire IP overview

 Configurable – conf. class + macros
◦ Pipelined / non pipelined
◦ DDR or SDR outputs
◦ Transmission clk configuration options
◦ Configurable receive buffer size
◦ Discard empty packets
◦ Reserve timecodes when link inactive
◦ Observation points, module names,

addresses

CTxEncode

SpacewireTop

LinkFSM

write host time codes

enable Txer,
reset Txer,
send FCT

Tx credit error,
FCT sent,
reset link FSM

CRxDecode

Spacewire
TLM

Initiator Socket

to spacewire
network

from spacewire
network

FIFO
i/f

Tx FIFO
(CUntimedFifo)

Rx buffer
(CUntimedFifo)

FIFO
i/f

FIFO
i/f

FIFO
i/f

host i/fnetwork i/f

Spacewire
TLM

Target Socket

SpW
char/packet

SpW
char/packet

Status Register
(CStatusReg)

Status
Reg

i/f

Status
Reg

i/f

Control Register
(CControlReg)

Control
Reg

i/f

Control
Reg

i/f

CSpacewLinkTop

TLM-2.0
Target Socket

transaction checking +
address decoding logic

write SpW
N-chars

read SpW
N-chars

read network time codes

from
host

read status

write contol

 CODEC to manage connection and data
flow across SpW link

 L-chars (link) and N-chars (normal)
◦ L-chars - flow control
◦ N-chars - information (data, EOP, timecodes, etc.)

Implementation constraints

 Timing report target examples (±20%)
◦ Tx 1024 bytes@200mbits, 1024 byte packet: 51.22 us

(159.937 Mbps effective rate)
◦ Tx 1024 bytes@200mbits, 1 byte packet: 103 ns

(114.286 Mbps effective rate)
◦ Delay between ErrorReset and ErrorWait: 6.4 us
◦ Delay between ErrorWait and Ready: 12.8 us

 Several times faster on same machine
 Internal accuracy

◦ Character level

 Interface accuracy
◦ LT: transfers at the packet level no flow control
◦ AT: transfers at the character level all control in place

Implementation characteristics

 Dual coding style targets - Interfaces at two different accuracy levels
implemented (AT and LT)

 Dual data abstraction layers – Exchange (Character) and packet level
 General Modelling Style – TLM 2.0

◦ TLM Interfaces – Base protocol/generic payload host side, custom net side
 Functional compliance (TLM  RTL)

◦ Same input same output

 Timing accuracy - Max Divergence from RTL: 7% (vs. 20% target)
◦ Timing behaviour – Matched to RTL (AT, exchange level)

 Simulation Performance - Assessed against RTL IP
◦ Up to 1000s times faster than RTL

 Scalability
◦ Memory footprint / CPU load - minor increase when multiply instantiating

 Self containment – Complete package delivered, no 3rd party deps.
 CAD tool independence

◦ gcc tested on Linux, cygwin
◦ Build system – cmake based

Model structure

 Separate computation and communication
◦ Communication class
 TLM 2.0 forward/backward interface
 Read and write wrappers for computation callbacks

◦ Computation class
 Data operations

 Definition of four base classes
◦ Multiply inherited by most blocks

 Inter-process communication using callbacks
 Data represented as arrays of bytes

◦ Assure compatibility with any host, regardless of endianess

 Selection through constructor argument
◦ Coding style
◦ Interface data abstraction level

Implementation decisions - I

 Timing annotations instead of explicit timing
◦ Communicating processes exchange timing related information instead

of actually delaying simulation
◦ WAIT statements are aggregated, thus avoiding multiple context

switches

 Use of callbacks rather than events
 Temporal decoupling

◦ Individual SystemC processes are permitted to run ahead without
actually advancing simulation time until they reach the point when they
need to synchronize with the rest of the system

◦ SystemC processes run ahead of simulation time for an amount of time
known as the time quantum

 Simulation control
◦ Details like transaction tracing and value recording are done through

SystemC coding
 Unlike vendor specific simulation tools that use script languages and GUI

commands to control simulation details

Implementation decisions - II

 Runtime vs Compile-time configuration
◦ Central point of configuration for the whole model, giving the end user

the option to select simulation parameters, even the data abstraction
level (packet vs character), and the coding style (LT vs AT). These
features would typically be implemented in #ifdef statements.

 LT/AT switching
◦ Style switching during model execution
 Compliance checking for communicating instances

◦ Loosely Timed – helps in advancing simulation faster during sections
not important for particular use case

◦ Approximately Timed – provides increased timing detail and data
accuracy, but slows simulation down
 LT -> AT - Switching has to delay for the length of the maximum 'wait'

within all outstanding b_transport calls
 AT -> LT - If outstanding nb_transport calls exist, issuing of b_transport

calls is stalled until every single nb_transport completes

Abstraction levels combination

 AT for accuracy + LT for speed in same model
 Independent Character or Packet level abstraction

BUT
 Partial model switch

◦ Host side fixed at character level
◦ Network side switchable between character and packet levels

 Run-time switch of network side possible
 4 possible combinations

◦ Character/packet – AT/LT

Verification strategy

 TBV - Transactor Based Verification
◦ Original testbench used - Mixed RTL-TLM simulation performing

the complete set of testbenches supplied with RTL
◦ TLM model interfaced through transactors
◦ Automated verification mechanisms from RTL maintained to great

extent
 Satisfy assertions of testbench

◦ Possibility to adopt incremental block replacement using some
transactors internally

◦ Variable and Transaction Recording
 Values of a variable across time recorded using value-change

callback functions
 Recording timing information and attribute information associated

with transactions

 SystemC only vs RTL only

Timing and speed comparisons

 Compare TLM and VHDL results using
◦ Varying number of fixed-size packets
◦ Fixed number of varying size packets

 Simulation time logged in both models
◦ Timing accuracy assessed

 Computer time logged in both models
◦ Speed of execution assessed

 Single testbench to run multiple scenarios
in accordance to configuration

Testbench – re-use method

UUT
(RTL)

SpaceWire
TB (RTL)

Log

Cmd
script

Cmd1 Cmd2 Cmdx UUT
(TLM)

Transactor

SystemC only verification

CSpacewireTop2

S
pacew

ire i/f

Tx FIFO

Rx Buffer

Status
Register

Control
Register

C
S

pacew
LinkTop

TL
M

-2
.0

 i/
f

CHostEmulator2

TLM
-2.0 i/f

SpW characters/
packet tx logic

Tx time codes
logic

SpW characters/
packets rx logic

Status register read and
time codes rx logic

CSpacewireTop1

S
pacew

ire i/f

Tx FIFO

Rx Buffer

Status
Register

Control
Register

C
S

pacew
LinkTop

TL
M

-2
.0

 i/
f

CHostEmulator1

TLM
-2.0 i/f

SpW characters/
packet tx logic

Tx time codes
logic

SpW characters/
packets rx logic

Status register read and
time codes rx logic

SoC1 SoC2

 Completely tests the TLM implementation
 Normal functionality, corner cases, handling of abnormal situations

 Allows direct speed comparisons
 Each host utilizes 4 SystemC processes to generate data for

and receive data from the SpaceWire CODEC model:
 TxCharsTh()
 RxCharsTh()
 ReadStatusRegTh()
 TxTcodesTh()

Results

SpaceWire CODEC Model
(400 packets, 10K characters,

40 timecodes)

Simulation Duration
(seconds)

Simulation Time
(nanoseconds)

RTL 2824 4223644493

AT-exchange level 84 4222377400

LT-exchange level 65 4221724000

AT-packet level 3 4002783700

LT-packet level 2 4221724000

SpaceWire CODEC Model Timing accuracy (%)
AT-exchange level 99.97
LT-exchange level 99.95
AT-packet level 94.77
LT-packet level 99.90

SpaceWire CODEC Model Speedup ratio
AT-exchange level 1:33
LT-exchange level 1:43
AT-packet level 1:941
LT-packet level 1:1412

Simulation duration and time

Performance improvement

Timing accuracy

Encountered issues

 Protocol constraints dominate implementation choices
◦ Flow control in packet level - Error injection mechanisms
◦ Phase decomposition in AT – Single phase transactions

 Custom interface on network side (vs. objective)
◦ SpW not appropriate for base protocol/generic payload

 Simulation speed improvement (vs. RTL)
◦ Iterative code optimisations to attain performance targets

 Dual data abstraction levels and combinations
◦ Dual implementation in several places due to:
 Differences in data handling because of lack of mechanisms (e.g. flow

control)
 Independent to coding style to allow combinations

◦ Optimisations to allow streamlined use

 Transactor complexity
◦ Interaction between SystemC model and transactor processes in

order to produce the least amount of event notifications possible

Experience gained

 Modeling task has to be finely focused
◦ Solid understanding of implementation subject
◦ Well defined interfaces
◦ Good knowledge of system timing

 Adopt an architecture suitable for a stepped
implementation approach
◦ Allow for additional details from preliminary spec

 Compromises made have to be fully assessed
◦ Timing inaccuracies considered a priori and in retrospect

 Mixed-language models (SystemC + VHDL or Verilog)
◦ Pose diversions from pure scenario

Lessons learned

 Keep implementation of building blocks as simple as possible
◦ Avoid breaking up functionality in many functions
 Function calls reduce overall model execution speed

 Use module member variables in place of local variables
within functions
◦ Local variables incur performance penalty - constructed every

time the function is entered
 Use callbacks and reduce events usage

◦ Callbacks used in place of event notifications for inter-process
communication incur lower delays and increase execution speed

 Dual coding style/double data abstraction
◦ Complete isolation of data and communication

 Transactor complexity
◦ Attributed to complexity of RTL TB
◦ I/F signal-by-signal approach

Thank you

Backup slides

Aspects of implementation

 Tradeoffs: accuracy vs speed
◦ Data abstraction
 Bit level avoided

◦ Communication abstraction
 Temporal decoupling

 Tradeoffs: code elegance vs speed
◦ Macros instead of configuration variables

 Tool peculiarities
◦ Mixed language simulation constrains TLM
 Conditional defines in code

◦ Catering for tested compilers
 Compiler option alternatives in makefiles
 Code adapted when compilation problems existed

SpaceWire CODEC

 SpaceWire-b (SpW-b) CODEC
◦ compliant with SpaceWire standard
◦ serial transmitter/receiver
◦ full‐duplex, bidirectional, point‐to‐point data link

 Data Tx via 2 (pairs of) wires using LVDS
◦ The clock can be recovered as (D xor S)

 Phase-locked-loops are not needed
 Accurate control of clock frequencies not needed

◦ Link failure detected by loss of the derived clock signal

 Operation:
◦ a SpaceWire node sends Tokens to the node on the other end of the link
◦ Each Token that a node sends indicates to the receiving node that the sender has

8 bytes of available buffer space
 Three tokens would indicate there are 24 bytes of available space in the Host System buffer

◦ Both nodes are senders and receivers of Tokens and data etc.

Host
System
(Node 1)

Subsystem

(Node 2)DS

DS

A bit of history

 Initiative announced 12 years ago
◦ 27-9-1999 Open SystemC announcement
◦ Originates in Scenic programming language
◦ SpecC was chief competitor

 Open SystemC Initiative (OSCI) formed
2000

 TLM 1.0 standard released 2005
 SystemC v2.2 released 2007
 TLM-2.0 LRM, TLM-2.0.1 lib.released 2009
 SystemC AMS extensions 1.0 LRM 2010

released

Performance improving modifications

 Replacement of FCT sending method with corresponding
callback

 Optimisation to the “Begin Response” method
 Modification to behavior of control and status registers

◦ Eliminated polling

 Reversal of notification between TX/RX methods and FIFO
◦ Polling essentially becomes event driven mechanism

 In address decoding: if()-else() replaced by case

Verification challenges

 RTL core provides meticulous testbench
◦ Re-use methodology desirable
 Interface (e.g. transactors)
 Timing – satisfy assertions of testbench

 Verification coverage
◦ ≥90% of code

Tools

 Build platform
◦ SystemC 2.2.0
◦ TLM 2.0.1
◦ SCV 1.0e
◦ GCC version ≥4.3.4
◦ Cmake version ≥2.8.1

 Waveform viewer
◦ GTKWave

Transmitter

 Target for the host side
 Initiator for the network side
 Read data from Tx FIFO
 Credit counter maintenance

◦ Credit Error indication

 Execution thread
◦ CTxEncodeInitTh()

Tx FIFO
 i/f

TLM
-2.0 i/f

inter-module i/f
TLM

-2.0 i/f

CTxEncodeTop

host
time codes

data chars
+ EOPs

Spacewire
chars

write
requests
(FCTs,

current link state)

CTxEncode Tx FIFO
 i/f

TLM
-2.0 i/f

inter-module i/f
TLM

-2.0 i/f

CTxEncodeTop

host
time codes

data chars
+ EOPs

Spacewire
chars

write
requests
(Tx credit

error)

CTxEncode

Receiver

write
requests
(Tx credit

error)

R
x buffer i/f

TLM
-2.0 i/f

inter-module i/f
TLM

-2.0 i/f

CRxDecodeTop

link
time codes

data chars
+ EOPs/EEPs

Spacewire
chars

CRxDecode

write
requests
(FCTs,

current link state)

 Process target transactions
 Extract characters

◦ Store into Rx buffer

 Process time codes
 Maintain flow control

◦ Request FCT transmission

 Realise LinkFSM
 Execution thread

◦ RxDataTh()

Transactor

Rx buffer i/fTLM-2.0 i/f

RTL i/f

CDeltaSpacewTractTop

Tx fifo i/fTLM-2.0 i/f

data chars +
EOPs

host
time codes

data chars +
EOPs/EEPs

link
time codes

CDeltaSpacewTract

host time
code i/f

tx
data i/f

rx
data i/f

link time
code i/f

 TLM interface for VHDL TB
 Translate between

transactions and signals
 TLM interface for Receiver &

Transmitter
 Custom interface to Rx/Tx

buffers
◦ To be converted to TLM

 RTL interface for VHDL TB

LinkFSM

Reset
RxErr OR
gotFCT OR
gotN­Char OR
gotTime­CodeRxErr OR

CreditError OR
[Link Disabled]

After 6,4 us

RxErr OR
gotFCT OR
gotN­Char OR
gotTime­Code OR
after 12,8 us

RxErr OR
gotFCT OR
gotN­Char OR
gotTime­Code

RxErr OR
gotN­Char OR
gotTime­Code OR
after 12,8 us

gotFCT

gotNULL [Link Enabled]

After 12,8 us

ErrorReset
Reset Tx
Reset Rx

ErrorWait
Reset Tx

Enable Rx

Ready
Reset Tx

Enable Rx

Started
Send NULLs

Enable Rx

Connecting
Send FCTs/NULLs

Enable Rx

Run
Send Time­Codes/

FCTs/N­Chars/NULLs
Enable Rx

	SpaceWire
	Project Overview
	Motivation
	SpaceWire standard*
	SpaceWire IP overview
	Implementation constraints
	Implementation characteristics
	Model structure
	Implementation decisions - I
	Implementation decisions - II
	Abstraction levels combination
	Verification strategy
	Timing and speed comparisons
	Testbench – re-use method
	SystemC only verification
	Results
	Encountered issues
	Experience gained
	Lessons learned
	Thank you
	Backup slides
	Aspects of implementation
	SpaceWire CODEC
	A bit of history
	Performance improving modifications
	Verification challenges
	Tools
	Transmitter
	Receiver
	Transactor
	LinkFSM

