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Overview

Aim of the contract is:

Development and Implementation of a SystemC executable
model of the LEON2 and LEON3 processors

Various accuracy levels are required:

Standalone Instruction-Accurate simulator
Standalone Cycle-Accurate simulator
Loosely/Approximate -timed Instruction Accurate
Loosely/Approximate -timed Cycle Accurate

Following Tools are provided:

Debugger
Operating-System Emulator
Profiler
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Overview

Models are carefully verified for what concerns:

Correctness of the Instruction-Set behavior:

Tests on individual instructions
Tests on the overall model using synthetic tests and real-world
benchmarks

Timing accuracy:

Reference model: simulation with TSIM/HW (LEON2) and
TSIM (LEON3).

3 / 17



Results

Functionally and Timing correct Instruction-/Cycle- Accurate
models
Behavioral testing performed with:

1424 test over the 145 identified ISA instructions
160 synthetic benchmarks for checking the correctness of
single instruction patterns (memory access, shift, etc.)
104 real-life applications (MiBench, PowerStone, JPEG, etc.)
for checking the overall processor model

Instruction-Accurate model:
Average Execution speed of 7.7 MIPS
Timing accuracy: 99.8%

Cycle-Accurate model:
Average Execution speed of 80 KIPS
Timing accuracy: 100%

Testing of the interfaces by integration with external IP
models into a Virtual Platform
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TRAP: Code Generator
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Processor Model

Processor modeling performed using automatic code generation
starting from a high level model

5 files used for LEON model (5K lines of Python code),
containing:

Architecture Structure:

List of storage elements (registers, memories, etc.)

List of pipeline stages

Detailed hardware structure is ignored

Instructions Encoding:

Specify how the bits of the machine code relate to the
instruction parts

which bits are the opcode, which one identify the operands, . . .
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Processor Model

Processor modeling performed using automatic code generation
starting from a high level model

5 files used for LEON model (5K lines of Python code),
containing:

Instructions Behavior (split into 2 files):

C++ code implementing the behavior of each instruction

Behavior separated among the different pipeline stages

Instructions Tests:

Enables separate tests for each instruction

We specify the processor status before the execution of the
instruction and the expected status after the execution
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Instruction Set Simulator

From the model description, TRAP (our code generator) creates:

C++ code implementing the simulator itself

Compilation scripts
Tests of the single instructions

Lines of code:

Functional Model 20K (21 files)
Cycle Accurate Model 90K (23 files)
Instruction Tests 110K

Implementing an average of 300 distinct C++ classes

TRAP libraries (4.5K lines of code)

GDB debugger server

Object file loader

Operating-System emulator

profiler
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Code Structure

Created code is written in C++ and it makes extensive use of
object oriented features of the language

Most Important Data Structures

Register

Alias ease access to registers,
working like a hardware mux

Instruction with its subclasses,
implements the actual behavior
of the Instruction Set

Processor: the entity which
glues everything together,
containing the registers and
calling the instruction behaviors.

Pipeline Stages: each one is a
separate SystemC thread
concurrent with the others

Decoder, translating the
instruction word into the
appropriate class and the actual
behavior.

External Pins, e.g the interrupt
port for receiving incoming
interrupts

Memory Ports, for
communication with caches,
memories, busses, etc

Tools, such as debugger, profiler,
Operating System emulator, etc.
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Tools

Analysis and Debugging Tools

Without analysis tools, simulators are of limited usefulness

Commonly used tools are debuggers, profilers, etc.

Simple means for integrating new tools by decoupling the
simulator from the tool through a well defined interface are
provided

Default tools (part of every generated model):

Debugger: connects via network to standard GNU/GDB
debugger
Profiler: keeping statistics on the software running in the
processor model
Operating System emulator: enables execution of bare
applicative software by forwarding every supervisor call to the
host OS.
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Execution Speed: comparison among
different models
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Comparison with TSIM

TSIM LEON2/3 ISS

scope full system integer unit

interfaces
self-contained IEEE standard

(custom for GRSIM) (OSCI SystemC and TLM)

speed
up to 45 MIPS

up to 12 MIPS
(5 MIPS for GRSIM)

tools full set (debugger, profiler, instruction trace, etc.)

target Software Development
Software Development
Hardware Optimization

Architecture Exploration
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Development Status

Functional and Cycle-accurate Simulator behaviorally correct

Including support for Hardware/Software analysis tools (OS
emulation, GDB server, and profiler)

Different versions:

standalone, including an internal memory
using memory ports with different accuracy levels
with or without instruction tracing capabilities

Compiles under unix environments

Cygwin is necessary for the use under Windows

15 / 17



Areas to be Improved/Future Work

Simulation speed:

concentrating on instruction decoding
cycle-accurate: propagation of registers in the pipeline, stages
synchronization mechanisms
profiler

Integration in a Virtual Platform to carefully test TLM
interfaces.

Improvement of the tools

Support of additional GDB commands
Emulation of pthread routines in addition to standard OS ones

Native support for compilation/execution under Microsoft
Windows
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Further Information

TRAP development website together with processor models,
maintained by Politecnico di Milano and the OpenSource
community:
http://trap-gen.googlecode.com

More information on the SystemC IP models, the Virtual
Platform, etc., available on the ESA Microelectronics Website
http://www.esa.int/TEC/Microelectronics/
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