

9

Hardware Modeling using Virtual Platforms

> The ESA HW/SW Co-Verification SoC Validation Platform

> > T. Schuster, R. Meyer 19-Sep-11

8

Introduction to Virtual Platforms and TLM The SoCRocket SystemC Modeling Library Models Verification

Introduction to Virtual Platforms and TLM The SocRocket VP Verification

Design & Productivity Gap

How to manage the raising complexity?

Productivity (K) Trans./Staff - I

Dipl.-Ing. Thomas Schuster

Advantages of Virtual Platforms

Virtual Platforms are abstract hardware models that are simulated by software:

Availability Software development can start early

Productivity
Can be easily duplicated and packaged

Accessibility

Software is easy to observe and control

Consistency Gradual HW refinement / keep your tests

TLM: Abstraction of communication using function calls.

Hardware Verification

Cycle-Timed Modeling

Master samples D1

Dipl.-Ing. Thomas Schuster

Software Development

TLM 2.0 Loosely Time Coding Style (LT)

Very little concurrency – blocking communication only.

Drawbacks of VP Approach

Availability of Simulation IP

Additional EDA costs

In Aerospace domain trusted components are reused many times.

The long IP life cycle repays the simulation models.

Introduction to Virtual Platforms and TLM **SoCRocket VP** Verification and Documentation

SoCRocket – VP for Aerospace applications

http://www.esa.int/TEC/Microelectronics/SEM151AMT7G_0.html

TLM Simulation Models for Aeroflex GRLIB library Modeling library and tools

Library structure

e

templates

Library structure Models

models

Simulation Models for LT and AT abstraction LEON processor simulator Component-level tests

Templates for platform models (e.g. single core, multi-core) Structural information – top level C code Parameters for Design Space Exploration

9

Library structure

templates

• • • • • • • • •

Platform Configurator (generates platforms from templates) Co-Simulation Adapters Power Monitor Timing Monitor

Library structure Platforms

templates

• • • • • • • • • • • • • • • • • • • • • • • • • • • •

.

е

Platform simulators are generated here

Library structure WAF – The META build system

templates

tools

WA ≟F

• • • • • • • • •

Python based build system (code.google.com/p/waf/) Manages all tools of the library

Configuring the Library ./waf configure

GreenSoCs (GreenSockets, GSParams, GreenReg) Open Virtual Platform Infrastructure www.greensocs.org ARM/Carbon AMBAKit TLM2.0 Sockets with AMBA Extensions www.carbonsystems.org SystemC/TLM 2.0 Installation Mentor Modelsim Simulator (optional) Multi-language simulator for RTL Co-Simulations www.mentor.com Python GCC, GDB, other GNU

e J

Setting up a system ./waf generate

00 X SoCRocket - Configuration Wizard Name Value Name: SoCRocket - Configuration Wizard APB IO Area Address 0 Cache replacement strategy APB IO Area Mask 0 0 Value: testplatform APB CFG Area Address 0 Test Platform singlecore APB CFG Area Mask 0 Type: Integer Intersection checking simplesystem true Range: From 0 to 3 ⊡ MMU Cache AHB Base Address 0 Default: 0 This is a simple system. It is AHB Base Mask 0 Enable debug support build from the simple System true 00 = non, 01 = LRU, 10 = LRR, 11 = random Enable instruction cache true in the Library. Cache replacement st... 0 • Number of cache sets 1 Indicates size of cach... 4 Indicates size (kBytes)... 1 Enable cache locking false 🗄 Enable data cache true Cache replacement st... 0 Number of cache sets 1 < Back Next > Cancel Indicates size of cach... 4 Indicates size (kBytes)... 1 Enable cache locking false

Select an architecture template

(e.g. single core, multi-core, custom) Configure parameters like cache size, address masks, ...

Generate the platform simulator

Next >

Cancel

< Back

Compiling the platform

./waf -target=singlecore

main.cp

config.h

link.ld

prom.s

prom.ld

Top-level of SystemC simulation (sc_main) Instantiation of all components

Parameter definitions (settings from Platform Configurator)
 Defines constructor parameters of all IP blocks

Boot code for LEON processor

Linker script for boot code

WAF build script

Result is executable simulator: ./singlecore boot.elf program.elf

Simulating the platform

Verbosity of debug output may be configured in four stages (error, warn, info, debug)

Analyze results Event Monitoring

Event Monitor provides API for Event Recording IPs register at begin of simulation EM::registerIP(this,"type")

At runtime time-stamps for begin and end of important events are send to the monitor

EM::send(this, "event", 1, sc_time_stamp())

Event Monitor maintains hierarchical database of events After simulation database is analyzed

EM::analyze("power.dat")

Power Profile

Example GPTimer

Introduction to Virtual Platforms and TLM SoCRocket VP Verification

TLM Testbed is re-used for both simulations Timing Monitor keeps track of simulation time

Verification

Timing Monitor

e

Example: Simulation of AHBCTRL with 16 masters and 16 slaves

• • • • • • • • '. . . '. • • • . • • . • •

O MASLEIS AND IO SIAVES					C → rend re		
	Ľ	Т	AT		RTL		
Phase	Start	End	Start	End	Start	End	
1	100	10100	100	10100	100	10100	
2	100	10100	100	20100	100	20100	
Total		21000		359990		360140	

LT Timing is far off – LT Router does not model arbitration

Code Coverage

LCOV - code coverage report

Current view: top level		Hit	Total	Coverage	
Test: Icov.info	Lines:	3098	5242	59.1 %	
Date: 2011-07-26	Functions:	773	1618	47.8 %	
	Branches:	1335	3562	37.5 %	

Directory	Directory Line Coverage 🗢		e ≑	Functions 🖨		Branches 🖨	
common		100.0 %	18/18	74.9 %	224 / 299	50.0 %	1/2
contrib/transactors		15.1 %	103 / 684	40.7 %	11/27	5.6 %	30 / 532
models/ahbctrl		66.1 %	211/319	19.5 %	16 / 82	44.4 %	63 / 142
models/gptimer		88.5 %	255 / 288	36.1 %	39 / 108	46.7 %	100/214
models/irqmp		98.0 %	144 / 147	25.6 %	20 / 78	70.2 %	73 / 104
models/mctrl		46.2 %	249 / 539	22.9 %	22 / 96	32.0 %	135/422
<pre>models/mmu_cache/lib</pre>		68.2 %	899 / 1318	39.5 %	77 / 195	47.6 %	395 / 829
models/socwire		54.0 %	516 / 955	41.5 %	73 / 176	33.2 %	168/506
models/utils		70.3 %	600 / 853	45.2 %	75 / 166	55.6 %	253/455
<u>signalkit/signalkit_h</u>		85.1 %	103 / 121	55.2 %	216 / 391	32.9 %	117/356

Generated by: LCOV version 1.9

Code coverage still too low for most of the IPs. Verification is work in progress

Virtual Platforms are abstract hardware models that are simulated by software.

Virtual Platforms and TLM can help to manage the raising complexity in system design

The SoCRocket VP provides simulation models and infrastructure for Design Space Exploration of LEON based SoCs.

Project planned to be completed end of 2011

