AT697E LEON2-FT Final Presentation

ESA contract 15036/01/NL/FM

Nicolas RENAUD ATMEL Nantes + 33 2 40 18 17 19

nicolas.renaud@nto.atmel.com

Overview

- Initial objectives design phase
- Validation and characterisation results
 - Performance results
- Radiation results
 - Total dose
 - Single Event Effects
- Hardware / software / documentation status
- Conclusion

ATMEL Sparc microprocessor family

ESA/CNES funding

A chipset version (ERC32) for IU-FPU-memory controller

CMOS 0.8 μm - Flight version in 1997 – Phased out

TSC695F : current Sparc space processor (ERC32 SC)

- CMOS rad-hard 0.5 µm technology
- Sparc V7 with FPU; 25 MHz max; 5V ± 0.5V
- 20 Mips / 5 MFlops at 25 MHz ; 230 mA
- MQFP-F 256 & die form
- Total Ionizing dose : 300 Krad
- No Single Event Latch up below 80 MeV/mg/cm2
- Excellent SEU immunity
 - E.g : SEU error rate better than 3 E-8 / device / day in GEO orbit
- SCC B & QML V
- Flight version in 2000 now available
- Flying since a few years
 - Launchers telecomm satellites various scientific missions defense applications
- A 3.3V version available : the TSC695FL

AT697E development

The AT697E was developed under ESA contract

 Design, manufacturing, validation and characterization of a SPARC V8 LEON processor (LEON2-FT prototype – phase 2)

Implements LEON2 FT ESA VHDL model

- Version 1.0.9.5
- Fault tolerance by design
 - Triple Modular Redundancy with skew
 - SEU and SET protection
 - EDAC on register file
 - Parity on the caches

AT697E block diagram

AT697E design phase (1)

- ATC18 standard cell library (CMOS 0.18 μm)
- 1.8V bias for the processor itself, 3.3V bias for buffers
- Die size : 8,6 mm x 8.6 mm
 - Pad limited
 - Space assembly rules fulfilled
- MCGA 349 package advantages
 - Weight, size, thermal resistance, space qualified

AT697E design phase (2)

- Fault coverage > 96 %
- Design simulations : 100 MHz in worst case conditions
- Gate count: 850 Kgates
 - Processor logic : 280 Kgates (PCI excluded)
 - IU:67 Kgates,
 - FPU: 29 Kgates,
 - memory controller : 87 Kgates
 - PCI logic : 117 Kgates

The chip

Presentation progress

- Initial objectives design phase
- Validation and characterisation results
- Radiation results
 - Total dose
 - Single Event Effects
- Hardware / software / documentation status

Conclusion

Organisation of the validation

- AT697E samples available since April 2005
- ATMEL internal validation
- ESA : subcontracted an AT697E validation to Gaisler Research
 - Final presentation mid June 05
- Three « formal » alpha customers :
 - Saab Ericsson Space (Göteborg, Sweden)
 - EADS Astrium (Velizy and Toulouse, France)
 - Alcatel Space (Toulouse, France)
- Some early design starters

ATMEL validation environment (1/2)

6U format Compact PCI Evaluation board

ATMEL validation environment (2/2)

PCI validation

- Passive backplane with two 64 bits PCI slots
- TA700 PCI analyser engine from Catalyst
- Development and Debug environment
 - Compiler
 - RCC and BCC
 - Debugger
 - GRMON (1.0.12 and 1.1.5, the latest being adapted to the AT697-EVAB)

ATMEL validation results (1)

Processor validation

- No additional bugs than the ones coming from the LEON2-FT 1.0.9.5 model
 - These bugs are listed in the AT697 errata sheet
 - See ATMEL web site http://www.atmel.com/products/radhard/

Power consumption

- 7 mW / MHz
 - Core : 0.5W
 - I/O:0.2 W
 - At 100 MHz and for high activity
- Idle mode : power consumption reduced by 20 %

ATMEL validation results (2)

- Performance at 100MHz
 - 86 MIPS (Dhrystone 2.1)
 - 23 MFLOPs (Whetstone)
 - SDRAM interface speed impacted by the bus load
 - On AT697-EVAB (2 SRAM and 1 SDRAM banks) : 65 MHz maximum

Saab Ericsson space board

EADS Astrium board

Summary of the alpha customers validation

- Fully functional (no new bugs)
- Good power figures
- Answers the requirement of space community
- Issues to be solved for QML-V parts :
 - SDRAM timings
 - Correction of known bugs

Characterization results

- Characterisation performed
 - In full bias ranges : 3.0 V to 3.6V and 1.65 V to 1.95V
 - In full military temperature range : 55 ℃ to +125 ℃
- Parts fully functional in all the bias and temperature ranges
- DC and AC parameters in line with design expectations
 - Current consumptions, input leakages, output currents
 - Setup, hold, output delays
- Update of the datasheet done in February 06
 - See ATMEL web site http://www.atmel.com/products/radhard/

Presentation progress

- Initial objectives design phase
- Validation and characterisation results
- Radiation results
 - Total dose
 - Single Event Effects
- Hardware / software / documentation status
- Conclusion

Total dose test results (1)

20 parts used

- 12 parts in static mode
- 6 parts in dynamic mode (5 MHz)
- 2 parts unbiased
- In accordance with MIL STD 883 method 1019.6
- **Co60** source located near the Nantes factory

Total dose test results (2)

- Parts fully functional at 200 krad (Si)
- 3.3V I/O standby current increases after 100 krad (Si), and recovers after high temperature annealing
- These results allow to use these AT697E parts for space mission requiring a maximum of 60 krad (Si)

Single Event Effects test objectives

- Assess the SEU sensitivity of the AT697E processor
 - Check the implementation of EDAC and parity
- Assess the SET influence
 - Variation of the skew
 - Variation of the frequency
- Assess the SEL capability

Single Event Effects test

- Four heavy ions test campaigns done, 9 parts used
- Heavy ions test done at UCL (Louvain, Belgium)
 - From July to December 2005

- Use of a dedicated test board (in partnership with TIMA laboratory in Grenoble, France) and the ATMEL evaluation board
 - See next slide
- Different test programs used
 - Static tests to assess the memories SEU sensitivity and to confirm the appropriate behaviour of the EDAC and parity protections
 - Dynamic benchmarks
 - Matrix calculation
 - Bubble sort
 - PCI transfer
 - Orbit calculation program

SEE test set-up

- SEL conditions : max voltage, dynamic tests
- SEU/SET tests : min voltage, static and dynamic tests

Single Event Effects test results

- Single Event Latchup
 - 3 parts used
 - No SEL at 70 MeV/mg/cm2 max voltage 25 °C for a fluence of 1 E7 particles/cm2
- The static tests have confirmed the SEE test results of the ATC18RHA library (cross sections in cm2/bit)
 - the implementation of EDAC and parity is correct

LET	SRAM	Icache	Itag	Dcache
$(MeV/mg/cm^2)$	ATC18RHA			
2.97	5 E-9	5.1 E-9	6.3 E-9	4.5 E-9
14.1	1.4 E-8	1.6 E-8	1.6 E-8	1.5 E-8
55.9	5 E-8	8.1 E-8	8.1 E-8	7.3 E-8

Protection against SET

- All FF are triplicated, with three separated clocks.
- The skew between the clocks can be the natural one or can be increased by an additional delay.

Error rate in space due to SEU/SET

The SEU/SET error rate is good for space applications

- The error rate decreases with the frequency in the same order of magnitude
- No functional interrupt during all the test campaigns (no processor hang)

Error rate using the sort test

uncorrectable errors (wrong calculation and traps)

Error rate per device per day versus orbit / MTBF (years)	AT697E used with maximum skew	AT697E used with natural skew
GEO	1.3 E-5 / 211	2.4 E-5 / 114
LEO 53° - 1000 km	3.9 E-6 / 702	7.9 E-6 / 347
LEO 98° - 852 km; Spot	4.9 E-6 / 559	9.2 E-6 / 298
LEO 98° - 600 km	3.8 E-6 / 720	7.1 E-6 / 386
LEO 51° - 450 km; ISS	1.4 E-6 / 1956	2.6 E-6 / 1053

Presentation progress

- Initial objectives design phase
- Validation and characterisation results
- Radiation results
 - Total dose
 - Single Event Effects
- Hardware / software / documentation status
- Conclusion

AT697 Development Platforms

ATMEL Development Platforms

- AT697-EVAB : ATMEL AT697 evaluation board
 - Hardware + Software Examples
 - Free compiler
 - One AT697E-2E-E part (engineering sample)
- AT697-DKIT : ATMEL AT697 development kit
 - Hardware + Software Examples
 - Free compiler
 - One AT697E-2E-E part
 - Debug Monitor

ATMEL AT697 Compact PCI Evaluation board

- Compact PCI plug-in format
 - 6U format, 32 bit, 33MHz interface
 - Configurable for System and Peripheral slot operation
- Processor
 - Atmel AT697E, Rad-Hard 32 bit Sparc V8 Embedded Processor
- On-board memory
 - SRAM 4Mbyte
 - 2 AT60142 SRAM banks
 - FLASH 2Mbyte
 - SDRAM 64Mbyte
- Interfaces
 - Memory/Peripheral expansion connectors
 - Debug Support Unit interface
 - PIO expansion
 - On-board power regulation allows operation from PCI slot, or stand-alone with +5V supply.

AT697 Software Development Tools

Compiler

- Bare-C Cross-compiler
- RTEMS Cross-compiler
- Debugger
 - GRMON debug monitor target debug through serial DSU or PCI interface
- Simulator
 - TSIM simulator
- Real Time Operating Systems
 - RTEMS
 - VxWorks
 - eCOS
 - Snapgear Embedded Linux (uClinux)

GRMon Monitor

		C:\Program Files\GRTools\grmon\bin\grmon.exe				
	Loader	grlib> dis 0000000 a0100000 clr %10				
	 Flash 	0000004 290000d sethi xhi(0x3400), x14 0000008 81c5237c jmp x14 + 0x37c 000000c 01000000 nop 0000010 a1480000 mou xmsr x10				
	- RAM	00000014 a7500000 mov %wim, %13 00000018 10800e40 ba 0x00003918 0000001c ac102001 mov 1, %16 00000020 91402000 ±= 0x0				
		00000024 01000000 nop 0000002c 01000000 nop 0000002c 01000000 nop				
	Debuaaer					
		0000003c 01000000 nop				
		grlib> reg				
•	Disassembler	INS LOCALS OUTS GLOBALS 0: 0000000 0000000 0000000 0000000 1: 0000000 0000000 0000000 0000000 2: 0000000 0000000 0000000 0000000 3: 0000000 0000000 0000000 0000000 4: 0000000 0000000 0000000 80000040 5: 0000000 0000000 40016740 6: 0000000 0000000 0000000 7: 0000000 0000000 0000000				
	Trace	psr: 004030E0 wim: 00000002 tor: 00000800 y: 01800000 pc: 00000000 clr ×10 npc: 00000004 sethi ×hi(0x3400), ×14				
		grlib> mem 0x0000000 0x20				
		0 a0100000 2900000d 81c5237c 01000000)ü.#¦ 10 a1480000 a7500000 10800e40 ac102001H≏PC.P				
		grlib> hbre 0x00000008 grlib> run breakpoint 1 (0x0000008) grlib>				

Links / Documentation

ATMEL

- Documentation regularly updated on ATMEL web site
 - http://www.atmel.com/products/radhard/
 - Datasheet, errata sheet, evaluation board user manual
- One dedicated Sparc Hotline
 - sparc-applab.hotline@nto.atmel.com
- Radiation report available on demand

Gaisler Research

www.gaisler.com

Presentation progress

- Initial objectives design phase
- Validation and characterisation results
- Radiation results
 - Total dose
 - Single Event Effects
- Hardware / software / documentation status

Conclusion

Summary results

- AT697E samples available since April 2005
- Validation, characterisation, radiation test results available since end 2005, and very positive :
 - AT697E is fully functional
 - over the whole bias and mil temp ranges
 - 86 MIPs / 23 MFLOPs at 100 MHz
 - 7 mW / MHz
 - Successfully tested up to 200 Krad (Si)
 - **SEU/SET hardened processor**
 - 1 uncorrectable error every 200 years in GEO orbit with max skew
 - No SEL at room temperature for a LET of 70 MeV/mg/cm2

AT697E military quality grade version

- Some requests to use the current version for flight in some scientific missions
 - e.g. for ESA PROBA2 project
- AT697E lot qualification performed successfully
- AT697E-2E-MQ parts are available since August 2006
 - Screening equivalent to QML-Q quality flow
 - Include burn-in and life test

AT697E interest

- A number of early AT697E design starters
 - In Europe (~ 10)
 - In North America (~ 5)
- Near half of the technical questions received on the ATMEL Sparc hotline are AT697 related

The end

Thank you for your attention !

