Processor and Peripheral IP Cores for Microcontrollers in Embedded Space Applications

Presentation at ADCSS 2010 MESA
November 4th, 2010

www.aeroflex.com/gaisler
Presentation outline

- Microcontroller requirements
- Requirements vs. available technology
- What can be provided today
 - Why a SPARC based microcontroller
 - Available peripherals
 - Proposed architecture
 - Single-event hardening
 - Existing architectures
- Availability
- Conclusions/Summary
Microcontroller requirements

• Requirements
 – Single chip
 – Single processor core
 – Medium speed interfaces such as CAN, PWM
 – On-chip memories (RAM/EEPROM)
 – Analogue function such as ADC/DAC
 – Power management functions / low power consumption
 – Low price
 – Low pin count, package easy to assemble
Requirements vs. available technology (1)

• No problem to specify an architecture that meets all requirements. More interesting is perhaps:
 – What can actually be manufactured?
 – What technology is available in Europe?

• Processor and peripheral IP cores
 – Several processor alternatives exist
 – Peripheral IP available from several sources
 – IP core availability is not a major issue

• On-chip RAM
 – Consumes significant area
 • Does not fit well with simple package requirement
Requirements vs. available technology (2)

• Target process must support digital system combined with on-chip rad-hard EEPROM.
• Should this not be available an alternative is external rad-hard EEPROM
 – Existing devices have parallel interfaces
 – Does not fit well with low pint count package
 – Limited size ~128 KiB (may be enough for \(\mu \)C)
 – Workaround: Larger package

• Rad-hard process must support digital system combined with on-chip ADC/DAC and building blocks need to be available.
 – Appears not to be currently available in Europe
 – Alternative: Use Ramon Chips 130 nm which has ADC/DAC
Requirements vs. available technology (3)

- Requirement: Low pin count
 - Requires on-chip RAM and EEPROM
 - But on-chip RAM requires large area
 - Off-chip EEPROM requires ~30 pins
- Requirement: Easy assembly
 - Requires simple package
 - See above
- Reducing area by moving RAM off-chip → higher pin count
- Low pin count and/or easy assembly is not easily attainable with currently available technologies

- Requirement: Low cost - Producing a µC is not necessarily cheaper compared to building a more advanced SoC
• Competence for developing the building blocks required for ADC/DAC and EEPROM combined with digital system targeted for space use is available in Europe
 – All building blocks not available on the same process

• A microcontroller can still be implemented, not fulfilling all requirements:
 – Processor/peripheral IP: Available
 – On-chip RAM: Available, results in large area
 – On-chip EEPROM, ADC/DAC: Not available on same process
 – Low pin count, easy assembly: Hard to achieve
Why a SPARC based microcontroller?

• Open standard → No licensing issues
• Certified instruction set
• Code compatibility: ERC32 → LEON2FT → LEON3FT (→ LEON4)
• Potential drawbacks
 – No 16-bit instruction set
 • Alternative: Code compression
 – No major obstacles on hardware side
 – Work on software side is major
 » Requires external funding
 – Objections to 32-bit - “not a μC”
 • Many applications work with 32-bit data
 • SW developers used to OS support
 – More powerful μC may be necessary
LEON3FT SPARC V8 processor core

- Fault-tolerant and SEU-proof
- Already used in a number of space applications
- SPARC V8 instruction set with V8e extensions
- 7-stage pipeline
- Hardware multiply, divide and MAC units
- IEEE-754 FPU options available
- Configurable caches: 1-4 ways, 1-256 KiB/way
- On-chip debug support with instruction and data trace buffer
- Power-down mode and clock gating
- Robust and synchronous single-edge clock design
- Extensively configurable
- Large range of software tools: compilers, kernels, simulators and debug monitors
- High performance: 1.4 DMIPS/MHz, 1.8 CoreMark/MHz (gcc-4.1.2)
Selection of peripheral IP cores in GRLIB

• Memory controllers
 – SRAM/PROM/IO controller with EDAC (FTMCTRL, FTSRCTRL)
 – SPI memory controller (SPIMCTRL, requires external FT devices)

• Communication interfaces:
 – SPI master/slave controller with 3-wire mode (SPICTRL)
 – I2C master and slave controllers (I2CMST / I2CSLV)
 – PWM controller (GRPWM)
 – General Purpose I/O port (GRGPIO)
 – CAN controllers (OC_CAN / GRCAN)
 – USB device and host controllers (GRUSBDC / GRUSBHC)
 – SpaceWire controllers (GRSPW1 / GRSPW2)
 – MIL-STD-1553B (GR1553B)
 – ADC/DAC controller (GRADCDAC)
 – Pulse controller (GRPULSE)

• Other:
 – Timer units (GPTIMER, GRTIMER)
 – Time distribution cores
Proposed architecture

- Processor core: LEON3FT, no MMU, 4+4 KiB I/D cache, GRFPU-light
- RAM: On-chip 256 or 512 KiB
- EEPROM: Off-chip, parallel (~27 pins)
- Peripherals: Timer unit, interrupt controller, UART (4 pins), 2x SPI (8 pins), 2x I²C (4 pins), 1553 BRM (A/B) (12 pins), CAN 2.0b with redundant port (4 pins), SpaceWire codec with RMAP target (4 pins), GPIO (16 pins)
- Pin count: 27 memory, 52 I/O, 2 clocks, total: 81 + power
- Debug connection: UART
- Pin count: ~50 + power (requires pin sharing)
- Proposed package: CQFP68
- Example implementation Ramon Chips 130 nm:
 - Area: 5.5 mm² core area including routing
 - + 10 mm² for 256 KiB on-chip RAM
 - + 20 mm² for 512 KiB on-chip RAM
 - Power: 1mW / MHz with clock gating
 - Frequency: 0 – 200 MHz
Fault tolerance in proposed system is aimed at detecting and correcting SEU errors in on-chip RAM.

- L1 cache and register file in LEON3FT is protected using parity and BCH.
- RAM blocks in on-chip IP cores can be protected using BCH or TMR, smaller buffers can be synthesized as flip-flops.
- Flip-flops should be protected using SEU-hardened library cells or TMR.
- Technique proven (used for existing LEON2FT and LEON3FT devices).
Architecture 2

- Processor core: LEON2-FT with Meiko FPU
- RAM: On-chip 64 KiB SRAM and external SRAM
- EEPROM: Off-chip, parallel
- Peripherals: UARTs, FIFO I/F with DMA, ADC/DAC interface, 24 GPIO with pulses, CAN, 2x SpaceWire links
- Implementation on Atmel ATC18RT:
 - Frequency: 50 MHz
 - Package: MCGA 349
- Currently available as AT7913 from Atmel
Architecture 3 (1)

- Processor core: 2x LEON3FT with MMU and GRFPU
- RAM: 192 KiB on-chip, external SRAM/SDRAM
- EEPROM: Off-chip, parallel.
- Peripherals: 6x SpaceWire links, redundant 1553 BRM, CCSDS Telemetry Generator, CCSDS TC Decoder Front-end, 2x CAN 2.0B, 6x UARTs, 10/100 Mbit Ethernet MAC, I²C master, SPI master, 64 General Purpose I/O
- Debug link: JTAG
- I/O matrix offering five configurations, power save via clock gating
Architecture 3 (2)

- Implementation on Ramon Chips/Tower 180 nm, CQFP-240 package
- Performance
 - 100 MIPS/100 MFLOPS peak @ 100 MHz (per processor core)
 - 140 DMIPS/core in on-chip SRAM
 - 55 MFLOPS/core Whetstone
- Soon available as GR712RC component from Aeroflex Gaisler
Availability

- All IP cores are available as part of a highly portable IP library
- Library has already been used to target DARE 0.18, Atmel 0.18, Ramon chips 180 nm, and several other ASIC targets.
- All IP cores can be licensed for use in projects
- Design services are also available
- Component availability: Actel RTAX/FT ProASIC 3
 - Perhaps not low power enough
 - Typically not a small chip with few pins
- Architecture 2 is already available as an ASIC
 - AT7913 (SPW-RTC) from Atmel
- Architecture 3 soon to be available as an ASIC
 - GR712RC from Aeroflex Gaisler
• Microcontroller requirements need to be formulated
 – What does the industry think about 8- vs. 32-bit
 – What interfaces are most important?
• Based on the requirements given in this presentation: A “real” microcontroller for space use requires ASIC technology which may not be available in Europe today
• To build microcontroller with on-chip EEPROM and ADC/DAC, focus should be on developing ASIC technologies
• Aeroflex Gaisler can provide microcontroller systems for space use on Actel RTAX/FT ProASIC 3.
• IP cores for microcontroller development are available, both for licensing as standalone cores and as part of a highly portable IP library.
• There are components available, or soon available, for instance AT7913 from Atmel and GR712RC from AG
Thank you for listening