

ADCSS10

MESA Roundtable on Microcontrollers for Embedded Space Applications

Introduction

Claudio Monteleone ESA/ESTEC

Four routes/product lines were defined in the **Round Table on Next Generation Microprocessors (ESTEC on 11-13 September 2006)**:

Route A: general purpose processor for data handling/data processing computers. A dedicated round table was part of ADCSS09, Next Generation Multi Purpose Microprocessor project on going.

Route B: very high performance DSP.

A dedicated round table on Next Generation DSP was part of ADCSS07.

Route C: COTS processors.

Three activities are on-going to develop COTS based Computers for space applications

Route D: microcontrollers.

in this round table we'll focus on **Route D** with dedicated presentations on requirements, possible solutions and on-going developments.

Microcontrollers are a key element in any distributed processing architecture. They allow to implement **software based control architectures** and give a **higher flexibility** and autonomous capability versus pure hardware solutions.

Microcontrollers are the main processing unit in many applications such as:

- robotics applications
- motors control
- propulsion system control
- sensor bus control
- mechanisms control
- power control
- particle detector instruments
- radiation environment monitors
- thermal control
- antenna pointing control etc

Despite the need and importance of this element of avionics, the current **availability of a modern space qualified microcontroller is limited** as it was highlighted during the round table on Microprocessors for space application held in ADCSS 2009.

The obsolescence of the 80C32 will create a hole not filled by available high-end microcontrollers like the AT7913E.

Microcontroller applications imply a device with the following general characteristics:

- reduced component price
- low pin-count and easy to assemble package
- low power consumption
- integration of small amount of RAM
- integration of most of the I/O peripherals for control and data acquisition (serial I/Fs, GPIO's, PWM, ADC etc.)
- design emphasis on predictability rather than on the pure computing performance
- \rightarrow Simplicity is emphasized

European Space Agency

5

Examples of µCs for **Space Applications**

80C32F based microcontrollers

- ATMEL 80C32 radiation tolerant ROMless microcontroller
- 0.8µm CMOS technology, 30 Krad (Si)
- ATMEL announced end of life in 2010/11
- 44 pin package

CLP

 \rightarrow See ATMEL presentation

Control Loop Processor

- Cacheless and deterministic RISC architecture with dual FPU
- Based on HBRISC processor developed by SABCA
- Used in applications characterized by complex hard real-time control loops
- \rightarrow See SABCA presentation

6

ATMEL AT7913E SpaceWire RT Controller

- LEON2ET SoC with cache and internal RAM
- CAN, SPW, FIFO, ADC/DAC interfaces
- MCGA package, 349 pins

Examples of µCs for

Space Applications

 \rightarrow See ATMEL presentation

- Cacheless LEON2ET IP core downsized and configurable FPU
- Memory controller with DMA engine, event controller and on-chip RAM
- It is on development as IP core
- → see SITAEL Aerospace (formerly CAEN Aurelia Aerospace) presentation

USART 0 B O V8uC

Round Table Questions

Basic Architecture

Architecture/instruction set, width of data path

- a. ARM, AVR, INTEL, MIPS, SPARC, XAP ...?
- b. 4, 8, 16, 32, 64 bit....?

1. Floating point capability

- a. Is IEEE compliance required, with single/double/quad accuracy, or is a reduced variant sufficient?
- b. Execution time for floating point instructions?
- c. Is SW floating point emulation sufficient?

2. Software methodology and tools

- a. Programming in assembler or high level language? Which language (C, ADA,..)?
- b. Is an OS used? Which OS (RTEMS, Vxworks,...?)
- c. Debugging on a simulator or on a HW emulator with enhanced debug capability?
- d. Use of commercial or open source tool chains?
- e. Desired macro function libraries (as linker objects or on-chip in ROM)
- 3. Interrupt and sub-program handling and latency
 - a. Maximum depth of nested calls and interrupts
 - b. Acceptable context-saving overhead
- 4. Memory and cache architecture
 - a. Type (RAM/ROM/volatile/non-volatile), size and width of internal and external memory?

Round Table Questions

Peripherals, mechanical & environmental

1. Analog peripherals

a. Number, type and spec of peripherals? ADC/DAC, oscillator/PLL, PWM/AWG

2. Digital peripherals

- a. Interfaces to platform? Mil-std-1553, CAN, I2C, UART, MAP, PacketWire, ...
- b. Interfaces to payload? GPIO's (how many?), SPI,
- c. HW accelerators for common processing tasks

3. Supply requirements

- a. residual (leakage) consumption in idle mode
- b. Maximum " P / MIPS " figure
- c. Desired supply voltage(s)

4. Packaging options (type, pin-count)

a. QFP, DIL, pin-count

5. Environmental requirements

- a. Temperature range, is MIL really necessary
- b. Total dose requirement
- c. Required level of SEU protection

6. Qualification requirements

a. Is QML-(V/Q) really necessary?

7. Other specific features

a. Specific DMA engines, bit/bit-fields manipulation module etc

Time	Presentation
MESA - M	icrocontrollers for Embedded Space
Applications	
00.00 00.10	Introduction
09:00-09:10	Philippa Armhrustar
	Claudio Montoloono, ESA
Section 1 N	Claudio Monteleone, ESA
Peripherals	
09:10-09:30	ARM Microcontrollers for Space
	Applications
	ARM, Emre Ozer
09:30-09:50	Using XAP processors in Space
	Applications
	Cambridge Consultants, Chris Roberts
09:50-10:10	Processor and Peripheral IP Cores for
	Microcontrollers in Embedded Space
	Applications
	Aeroflex Gaisler, Jan Andersson
10:10-10:30	ATMEL Microprocessors Products
	Family
	ATMEL, Guy Mantelet
10:30-11:00	Coffee Break
Session 2 Ongoing Microcontroller Development Projects	
11:00-11:20	Control Loop Processor - Towards
	European programmable solution for
	dedicated hard real time applications
	SABCA, Marco Ruiz
11:20-11:40	Radiation Test of 8 Bit Microcontrollers
	ATmegal128 & AT90CAN128
	ASTRIUM Space Transportation, Sven
	Rakers
11:40-12:00	V8uC: a new Sparc V8 microcontroller
	core derived from LEON2FT
	CAEN Aurelia, Walter Errico
12:00-12:20	Using Microcontroller & SW in Digital
	Control for Space Power Management
	Devices
	ETCA, Marc Fossion
12:20-13:30	Lunch Break
Session 3 Re	equirements and Driving Applications
13:30-14:00	Microcontroller applications within
	Thales Alenia Space products
14004400	IAS, Livid Esposti
14:00-14:30	Microprocessor to Microcontroller:
	ACTRUIM Timethy Bike
14004500	ASTRIUM, TIMOTNY PIKe
14:30-15:00	Use of microcontroller for next
	CNES Detrick Le Meur
15.00 18:00	David Table and Surgraph of the
12:00-16:00	Nound Table and Summary of the
	workshop

Programme MESA

Convenors:

Claudio Monteleone, ESA/ESTEC TEC-EDD

claudio.monteleone@esa.int

Felice Torelli ESA/ESTEC TEC-SWS

felice.torelli@esa.int

Roland Weigand ESA/ESTEC TEC-EDM

roland.weigand@esa.int