SOC: Digital programmable controller

- SOC currently in design phase
- Digital: 4 MCU cores
 - Supervision and management
 - Regulation arithmetic sequencer
 - Communication protocols
 - Debugging interface
- Analog
 - Reference voltage
 - Power management LDOs
 - Frequency reference
 - 4 flexible ADCs
 - 3 DACs
 - PWM
 - POR circuitry
 - Under voltage detector
SOC: Digital programmable controller

• Applications:
 – Instrument control units
 – Digitally controlled power management
 – Motor controllers
 – Intelligent remote sensor and controllers
 – Remote terminal controllers
 – Data bus protocol translation (gateway)

• Requirements
 – TID 100krad
 – SET 60MeV.cm²/mg for e.g. PLL
ADCs

• Core of all ADCs is identical
 – Cyclic pipelined topology
• Extensive input muxing
 – Up to 8 analog single-ended or 4 differential signals
 – Sampling time and channel selection is controllable by MCU
 – On-chip temperature sensor
 – Offset calibration by shorting inputs
 – Sensing amplifier chain
 • Sense very small differential input signals
 • Targeted to measure shunt currents

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of bits</td>
<td>13</td>
</tr>
<tr>
<td>Output data rate</td>
<td>1 MS/s</td>
</tr>
<tr>
<td>Input range single-ended</td>
<td>0 – 2.5 V</td>
</tr>
<tr>
<td>Input range differential</td>
<td>-1.25 - +1.25 V</td>
</tr>
<tr>
<td>INL</td>
<td>6 LSB</td>
</tr>
<tr>
<td>DNL</td>
<td>1 LSB</td>
</tr>
<tr>
<td>Current consumption of 1 core</td>
<td>6 mA @ 1.8V</td>
</tr>
</tbody>
</table>
Reference voltage of DPC

- Bandgap with external buffer capacitor
 - SET sensitivity checked up to 60MeV.cm2/mg on all nodes
- Untrimmed accuracy < 2 %
 Temperature drift < 0.6%

- Startup circuit
 - Traditional circuit monitors output node of the bandgap.
 - Risk for SET due to e.g. glitch on ENABLE control input of the bandgap
 - Bandgap core will be completely shutdown
 - Output voltage will slowly drop due to large external capacitor
 - Startup circuit will take a long time to react since external capacitor prevents it from being triggered
 - Result: very slow recovery
 - Solution: Replica reference circuit to ensure fast reboot
Reference voltage of DPC

- **Internal replica reference voltage for fast recovery**
 - ENABLE glitch will immediately effect replica voltage and ensure fast activation of startup circuit
 - Bandgap core recovers very fast
 - Effect on the reference voltage is minimal
PLL

- PLL must ensure reliable operation under SET of digital cores
 - No clock glitches
 - No additional/skipped clock cycles

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relaxation oscillator frequency</td>
<td>100 kHz</td>
</tr>
<tr>
<td>PLL output frequency</td>
<td>120 MHz ±10% after SET</td>
</tr>
<tr>
<td>Cycle-to-cycle jitter (over 480 cycles)</td>
<td>14ps</td>
</tr>
</tbody>
</table>
PLL

- **Relaxation oscillator**
 - External R and C for excellent stability and temperature drift
 - Triplicated comparator for SET
 - Special topology to combine low jitter and low T drift.
 - T drift is dominated by external components

- **VCO**
 - VCO is based on derivative of Maneatis delay cell
 - SET sensitivity reduced by increased current levels and capacitance values
 - Simulation plot shows impact of SET strike in internal node of the VCO
Design flow for SET

• SET of 60 MeV.cm2/mg
 – inject double exponential current with total charge of 1.2pC

• Flow procedure for building-block SET simulations
 1. Typical conditions: inject in every node to produce short list of sensitive nodes
 2. SET simulations for all sensitive nodes over PVT. Adapt design if needed by
 • Increasing current levels
 • Add buffer caps
 • Topology changes
 3. Re-inject all nodes in worst-case corners

• Clock signals: vary also injection time relative to clock period

• Top level: check e.g. if SET on bandgap does not influence PLL

• Fully automated flow integrated into our MATLAB driven design environment
Design flow for TID

- Vth shifts: monitor $V_{DS} - V_{DS_{SAT}}$ of every device over PVT corners to ensure that sufficient margin is present to accommodate Vth shifts.
- Ensure that bias conditions of matching structure are identical in all operation modes.
- Extra DRC rules to check for proper P+ guard-ring inbetween N+ regions with DARE ADK.
- Analog block with highest matching sensitivities use 1.8V devices.
- 3.3V parts use ELT devices for NMOS.
Top level verification: wreal modeling

• Top-down bottom-up design approach
 – Good models are essential to provide good coverage of all operation modes for a mixed-signal ASIC

• Modeling approach: wreal
 – Verilog-AMS with wreal data types for analog parts
 • No analog parts of verilog-AMS language are used in the models
 – Wreal discipline is continuous in amplitude and discrete in time
 – Event-based simulation in digital simulator → fast

• Key advantages
 – Identical models are used by digital team and analog team
 – Early start of top-level functional verifications
 – Top-level mixed-signal simulations: full flexibility in trade-off between simulation accuracy, coverage and simulation speed
 • Digital part: verilog
 • Analog part: extracted layout / schematic / model
Questions?

• Geert.Thys@imec.be
• Steven.Redant@imec.be
• Yves.Geerts@icsense.com