A radiation-hardened μHz-range 24-bit 2.5-mW Digital-to-Analog Converter

Vincent Arkesteijn¹, Daniël Schinkel¹, Anne Stellinga², Ed van Tuijl¹

¹ Axiom IC Enschede, the Netherlands

² SRON Utrecht, the Netherlands

Contents

- introduction, requirements
- sigma-delta modulator
- switched-capacitor stage
- radiation-hardening
- measurement results
- conclusions

Introduction

• ESA Exomars mission

tute for Space Research

- Humboldt payload
 - Seismic measurement system
 - SHAMROC chip (by SRON)
 - DAC (by Axiom IC)

Key DAC requirements

Frequency range	10 µHz – 50 Hz
SNR (0.1 Hz-50 Hz)	> 110 dB (>18 ENOB)
Temperature stability	< 3 ppm/K (-55 – +35°C)
TID	6.2 krad
SEE	50 MeV·cm²/mg
Power consumption	< 6 mW
Technology	UMC 0.18 µm CMOS

DAC overview

Recursive $\Sigma\Delta$ modulator

- $\Sigma\Delta$: high resolution
- recursive modulator with weighted DAC elements:
 - low out-of-band noise
 - robust against mismatch

Recursive $\Sigma\Delta$ modulator (cont.)

Switched-capacitor DAC

- high temperature stability
- low 1/f noise
- radiation hard:

- hardly any radiation effect on (metal) caps
- parameter shift in switches has no effect (provided settling remains sufficient)
- leakage around switches to be solved in layout

Radiation hardening: digital part

• use DARE kit

Radiation hardening: analog part

- Switched capacitor
 - robust against TID
 - no memory in analog part of circuit
- Guard rings to protect against latch-up
- STI avoids leakage, so ELT or H-shaped transistors not necessary

Chip photograph

area: 2.22 mm²

Measurement results

- power consumption: 2.5 mW
- linearity well within spec
- output noise OK: 126 dB DR (0.1 – 50 Hz)

Measurement results (cont.)

• temperature coefficient: -1.5 ppm/K

Total ionizing dose (TID) test setup

- tested with ⁶⁰Co source
- one reference device: 0 krad
- five devices: up to 16 krad
- five other devices: up to 409 krad
- measured all DACs after 0, 1, 3 and 9 days, and after annealing and accelerated ageing

Total ionizing dose (TID) test results

- low dose rate devices: no effects
- higher dose rate devices:
 - no effects up to 136 krad
 - at 409 krad:
 - higher offset (300 μ V)
 - slightly higher noise
 - DACs returned to normal behaviour after accelerated ageing (7 days @ 100°C)

Single-event effects (SEE) test setup

• preliminary CASE tests (with ²⁵²Cf source)

no tests with particle accelerator

Single-event transient (SET) test results

- measured DAC output voltage
- 2 devices; 60 hours of testing each
- two transients detected (possibly SET)
- both occasions: spike < 5 μV
 (~2.5 ppm relative to full scale)

Single-event upset & latch-up (SEU & SEL)

- total testing: 13 days
- 144.10⁶ digital values checked
- all correct \rightarrow no SEU
- 10⁹ measurements of supply current
- supply current always within limits
 → no SEL

Key measurement results

	Requirement	Result
SNR	> 110 dB (18 ENOB)	> 126 dB
Temperature stability (-55 – 35°C)	< 3 ppm/K	±1.5 ppm/K
TID	>6.2 krad	no effects @133 krad
SEE	>50 MeV·cm²/mg	>43 MeV·cm ² /mg (preliminary CASE)
Power cons.	< 6 mW	2.5 mW

Spin-off

Humboldt payload canceled, but DAC development continued:

- improvements:
 - added chopping (lower 1/f noise & offset)
 - temperature stability now even better
- wider application area
 - higher $f_s \rightarrow$ suitable for high-bandwidth instrumentation and control

Conclusions

High-resolution DAC

- new concepts demonstrated
- >20 ENOBs
- low temperature coefficient
- low 1/f noise
- robust against radiation
- scalable
- wide application area (low latency, low OOBN)

KNOW-HOW TO CREATE / AXIOM-IC.COM