STARX32: A Complete On-Chip X-Ray Spectroscopy Readout System with Imaging Capability

Presented by P. Bastia on behalf of the STARX32 team

Politecnico di Milano

University of Pavia

AMICSA 2010 workshop, 5-7 september 2010, ESA-ESTEC

All rights reserved, 2010, Thales Alenia Space

ORIGIN OF THE PROJECT

In the last decade the Detector technology became mature for realization of large 2D X-ray detector array in GaAs, CdZnTe and similar materials

To use these arrays in a space instrument a Read Out Integrated Circuit is mandatory, this ROIC should be low-power, low-noise, hi-speed, highly integrated ... and in general subjected to all limitation of space environment.

No device with these characteristics existed around 2002 when ESA started a dedicated technological program "Large Format Detector Readout"

A Industry-University team formed in Italy to search a solution to this technological challenge

THALES All rights reserved, 2010, Thales Alenia Space

Page 4

More than 30 year experience in development of space instruments for x-rays, gamma-rays, cosmic-rays, and scientific payload in general.

UNIVERSITY TEAMS

Politecnico di Milano, Department of Electronics Engineering and Information Science

• particular skills in designing ultra low noise front end for Xray detectors (more than 100 papers on the subject)

University of Pavia, Integrated Microsystem Laboratory

- member EUROPRACTICE
- large experience in mixed-signal ASIC development

REQUIREMENTS REVIEW

REQUIREMENTS REVIEW

Page 7

A SET OF CHALLENGING REQUIREMENTS

ThalesAlenia

Parameter	Value	Remarks
Number of channels	32 x 32	1024:1 mux-ing required
Layout	Square array of channels (300µm pitch)	bump-bonding required between detector and ASIC
Input charge range	120 – 12000 electrons	0.5 – 50 keV in GaAs
ENC	< 30 electrons r.m.s.	with Cdet < 400fF and Idet < 2 pA detector connected
Shaping peak time	1-10µs selectable	
ADC	on-chip ≥ 9 bit resolution	system-on-a-chip including all readout logic and ADC
Event rate	> 10 kcps/channel	~10 ⁶ cps total rate capability
Power consumption	≈ 500 µW/channel	

ARCHITECTURAL DESIGN

OVERALL BLOCK DIAGRAM

All rights reserved, 2010, Thales Alenia Space

RPC DESIGN

CHARGE PREAMPLIFIER FEATURES

- •Dedicated preamplifiers supply line
- •P-MOS input stage & cascode
- •Continuous reset with subthreshold transistor
- •On/Off features

ThalesAlenia

A Thales / Finmeccanica Company Space

- •Calibration input
- 100µm x 100µm occupation
- 120 µW power dissipation

AMICSA 2010 workshop, 5-7 september 2010, ESA-ESTEC

All rights reserved, 2010, Thales Alenia Space

PZC, SHAPER AND STRETCHER

- Reset circuit non linearity compensation
- Current-mode shaper
- DC cancellation
- Adjustable peak time 1,2,4,5,6,7,9,10 µs
- Equalization gain w.r.t. shaping time
- 40x 1st pole R-LENS R-LENS SWAPE SWAPE SWAPE
- •250 µW power dissipation

SIMPLIFIED BLOCK DIAGRAM

VRESET

RPC TRIGGER CIRCUITRY

- Amplitude discriminator
- Fine THR tuning
- Peak discriminator
- Current-mode trigger to periphery
- Reset Logic

AMICSA 2010 workshop, 5-7 september 2010, ESA-ESTEC

All rights reserved, 2010, Thales Alenia Space

ADCs

• < 2 mW power dissipation</p>

Page 18

CALIBRATION NETWORK

•three independent nets

•internal or external pulsing

telecommand

All rights reserved, 2010, Thales Alenia Space

PROTOTYPES

Selected Technology: AMS C35 0.35µm CMOS

Four foundry runs:

- 16x16 study prototype #1 (MPW)
- 16x16 study prototype #2 (MPW)

- 32x32 prototype (STARX32 v.1) (dedicated run)
- 32x32 "final" (STARX32 v.2)

(dedicated run) (dedicated run)

TESTING

DEDICATED TEST SYSTEM

Device mounted on carrier hybrid

Shielded box with local biasing

ReadOut box (FPGA)

ThalesAlenia

A Thales / Finmeccanica Company Space

Fast digital I/O card for data

Standard I/O card for configuration

PC-controlled

Control and Analysis SW

Page 22

Page 23

CARRIER HYBRID

ThalesAlenia

A Thates / Finmeccanica Company Space

provides a light-tight and protected environment for the device under test

allows easy mating/demating with the test equipment

Hosts some ancillary passives for filtering/bias purposes

TYPICAL RPC SIGNALS

Shaping Time [µs]

END-TO-END LINEARITY (include on-board ADC)

Stimulus via calibration network

Range ~1000 to 10000 electrons

INL < 0.25 %

AMICSA 2010 workshop, 5-7 september 2010, ESA-ESTEC

All rights reserved, 2010, Thales Alenia Space

QUICK-LOOK ANALYSIS

- all RPCs found working
- thin individual spectra lines

• gain/offset spread ...

PEAK WIDTH

PEAK WIDTH

THALES All rights reserved, 2010, Thales Alenia Space

- Custom-made 32x32 pixels p-n Silicon detector procured for test in realistic condition
- Bump-Bonded on some samples of STARX-32, one sample put on carrier hybrid

without detector

with detector

AMICSA 2010 workshop, 5-7 september 2010, ESA-ESTEC

THALES All rights reserved, 2010, Thales Alenia Space

FINDINGS

- bump-bonding process functionally OK (just 1 out of 1024 missing bond found)
- process possibly critical w.r.t. pixels performance:

reverse currents much higher than expected

up to > 50 nA/cm²,

is this due to bump-bonding process ?

Page 33

FINDINGS

• inter-pixel cross-talk

some signals from an active RPC can AC-couple to nearby RPCs via detector

Additional shielding (metal) above disturbing nodes implemented in final prototype.

effectiveness to be tested soon

ThalesAlenia A These / Finneccenics Company Space

AMICSA 2010 workshop, 5-7 september 2010, ESA-ESTEC

THALES All rights reserved, 2010, Thales Alenia Space

TID TEST

In view of possible application on spaceborne instruments

THALES All rights reserved, 2010, Thales Alenia Space

TEST BOARD

A dedicated Test Board has been designed and manufactured.

The board has been used both for biasing during irradiation and for measurements.

The board is able to host up to 6 chips together and to stimulate and test up to 5 chip at the same time.

TID TEST RESULTS

- most of RPC parameters do not show significant variations up to 60 krad
- one RPC bias show constant negative trend ~1% at 60 krad (tolerable)
- only marginal drifts on ADCs

• two samples needed re-adjust of the rest voltage above 40 krad

The test results suggest that the AMS 0.35 μ m CMOS technology used in the LFDR prototype is rad tolerant at least to 60 krad.

THALES

SUMMARY & CONCLUSIONS

- We presented the latest development for the STARX32 project
- The overall performances are very good, e.g. ENC and power dissipation, moreover radiation tolerance (TID) has been proven up to > 50 krad
- As expected for such a challenging design task we are improving the design through successive prototypes and extended test campaigns
- Control of internal interference is of paramount importance and the major reason for the need of multiple prototypes
- Bump-Bonded detector requires carefull "top" shielding of the front end cell
- The 4-th prototype (STARX32 v.2) has been manufactured in May 2010 and is presently under test, results so far are encouraging, we are looking forward to bump-bond a sample with a detector for complete end-to-end test