The strategy for qualification and mission validation of a mixed ASIC developed for next NASA Mars Mission

AMICSA 2010, ESTEC

Jose F. Moreno-Alvarez / Sept. 5th, 2010

Table of Content

- 1. Crisa overview
- 2. The REMS instrument for ,Curiosity'
- 3. The Sensors Front-End Mixed ASIC
- 4. The challenge ...
- 5. The validation approach
- 6. Conclusions

- Founded in 1985, Crisa has contributed to most of the European Space Agency (ESA) programmes.
- The leading company in Spain in space Flight Electronics design and production.
- Located in Tres Cantos, ~15 km north of Madrid.
- > 400 persons in three buildings.
- More than 700 flight units have been delivered.
- Strong reputation as high technology firm in Space (satellites, launchers and space vehicles), Telecommunications, Defence, and Audiovisual sectors.

Facilities

2.000 m² Clean Room Class 100.000

Thermal Vacuum Chamber

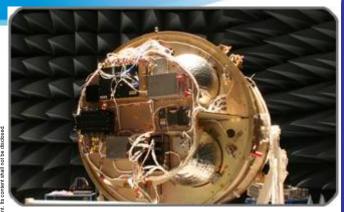
Wave Soldering Machine

Class 100 Clean Room area inside class 1.000

EMC testing facilities

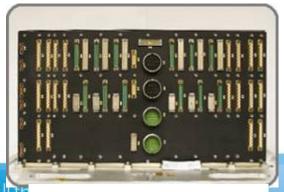
Space qualified Surface Mounting Technology

Design & Test Laboratories



High-voltage room

Shaker



VEGA avionics integration and test

JWST NIRSpec instrument controller

GOCE power subsystem

Science & EO instruments / payloads

System engineering

Small EO/Sc payloads & System engineering

Electrical Propulsion PPU

Driving Electr. & Cooler electr.

Power Subsystems PCDU

DC/DC Converters

Power Sytems

On board computers (OBC/ICU)

Digital Signal Processing (DPU)

Remote Terminal controllers (RTU)

Star Tracker/Cam Electronics

Proximity Electronics

Data Handling

Mission Scheduling

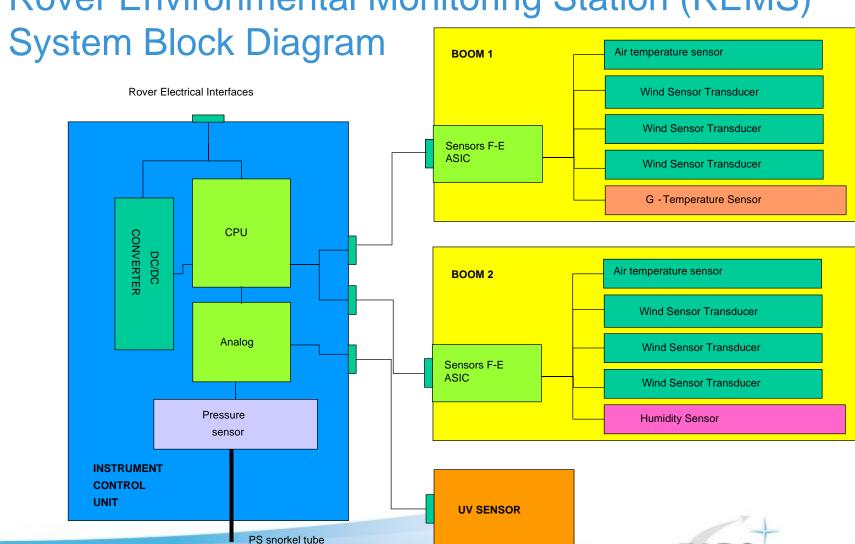
Data Management

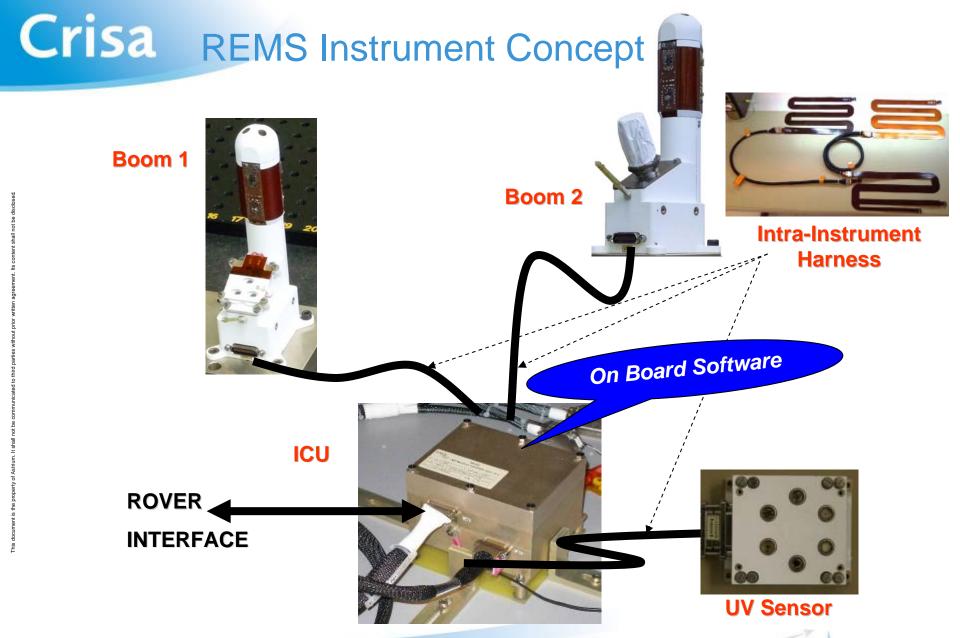
Ground Segment

Recurrent production for E3000 & Launchers. Technology engineering

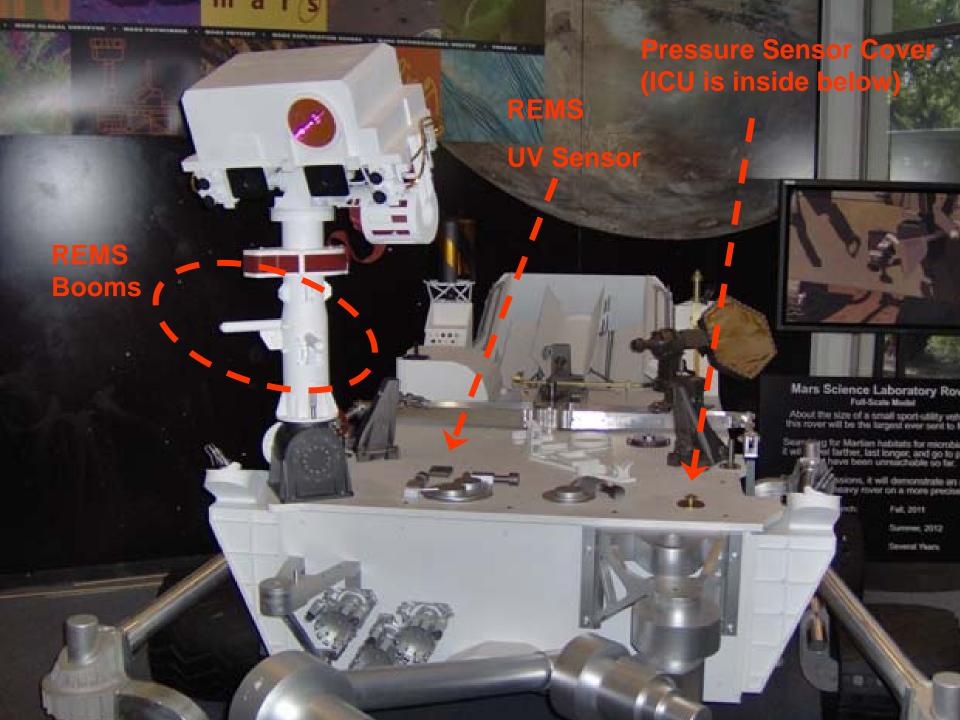
Manufacturing

П




The "Curiosity" rover (Mars Science Laboratory)

- Next NASA Rover for 2011
- A truly science mission
 - Many (>10) scientific payloads
- Step forward on Mars exploration
 - Enormous Rover: twice as higher and longer than MERs (2.7m length x 2.7m width x 2.2 m height)
 - Mass: ~800Kg, 78Kg for payloads
 - Using nuclear energy (Radiosiotope Thermal Generator)
 - High Mobility: more than 20 Km during Primary mission (1 Martian year or 2 Earth years)
 - Open to landing sites on higher latitudes ±40° (4 sites in final list)
 - Impresive entry-descent & landing system
 - Guided capsule
 - Parachute braking
 - Powered descent
 - Skycrane lowering rover
 - Preparatory for Mars Sample Return and manned missions


Rover Environmental Monitoring Station (REMS)

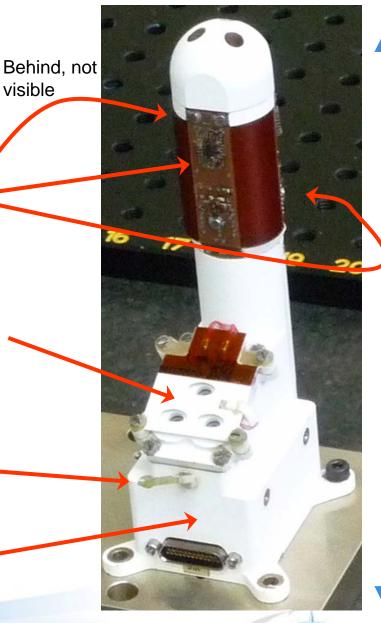
REMS DOES NOT CONTAINS MOBILE PARTS NOR JETISSONABLE PARTS

All the space you need

REMS Measurements

- Wind Speed and Direction (in a 3D geometry)
- Air Temperature
- Temperature of the surrounding terrain
- Pressure
- Relative Humidity
- Ultraviolet radiation, in 8 bands

Boom 1 Sensors


Wind Sensor

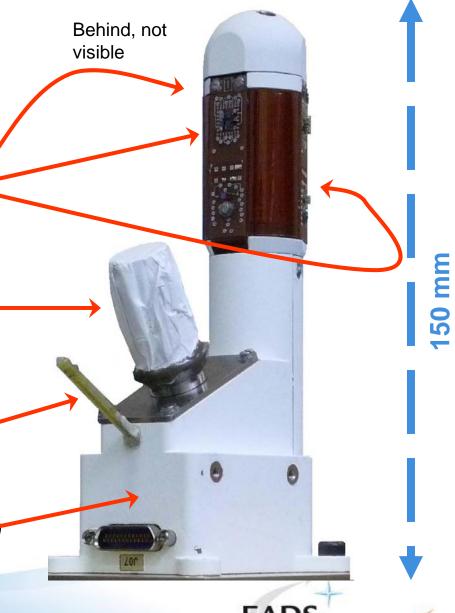
visible

Ground Temperature Sensor

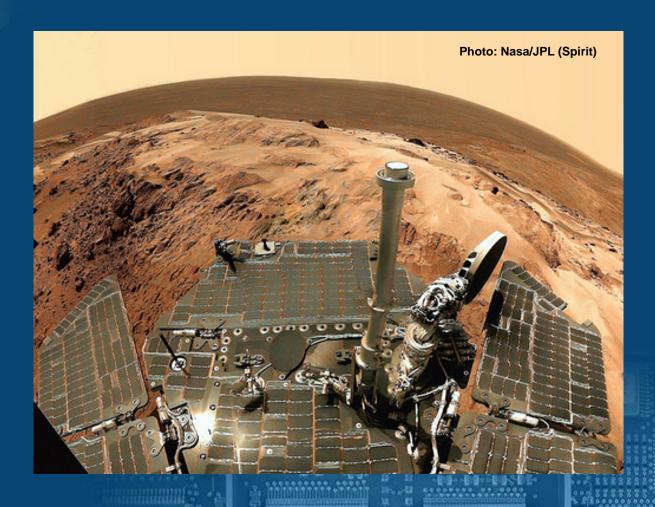
Air Temperature Sensor

Sensor Front-End Mixed ASIC (inside)

150 mm

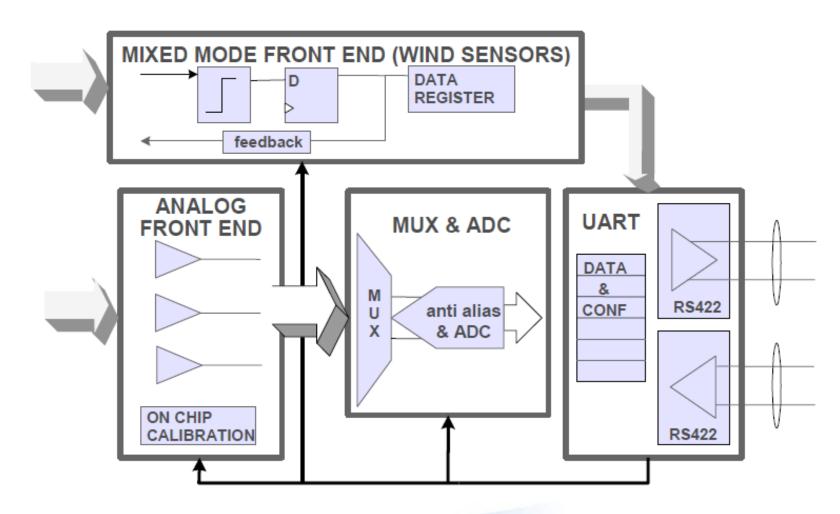


Wind Sensor


Humidity Sensor

Air Temperature Sensor

Sensor Front-End Mixed ASIC (inside)



The Sensors Front-End Mixed ASIC

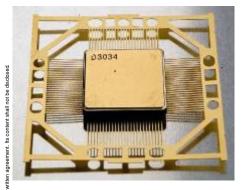
Main ASIC functions

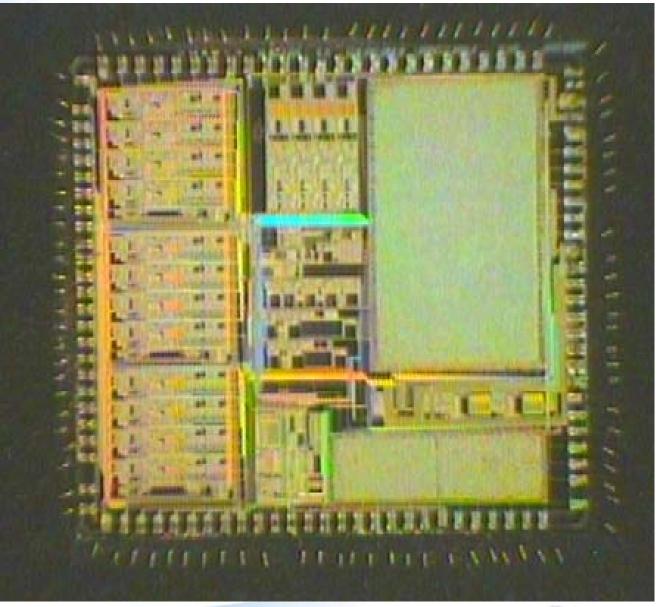
Diagram: Aurelia Microelettronica

Sensors Front-End Mixed ASIC

Main functions included:

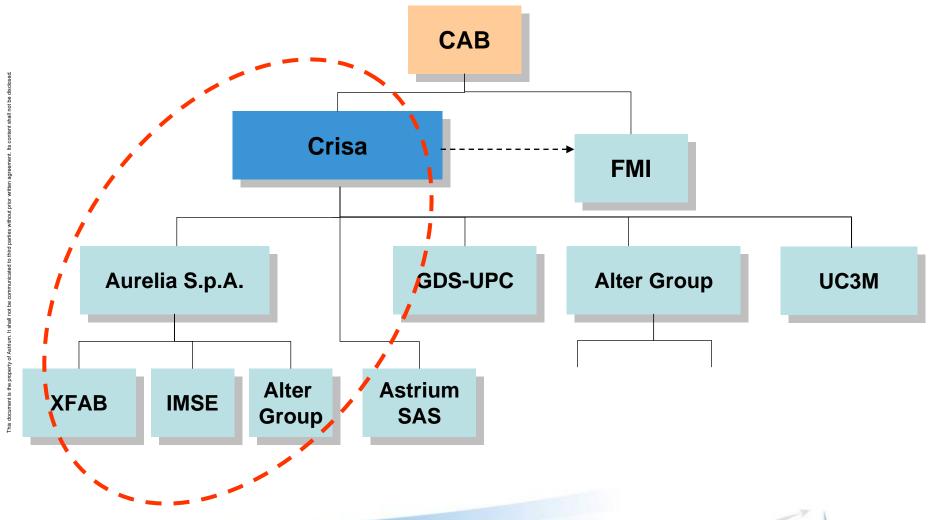
- 16-bit ADC (~12 bits effective) + 16 channel mux & buffer
- PT1000 conditioning channels
- Low-level voltage channels (millivolts)
- Specific sigma-delta control loops for our Wind-Sensor
- 100mA current driver for heater
- Digital control part, including automated cyclic acquisition control and serial communications (RS422 interfaces embedded & UART based).
- Ancillary functions: Power-up reset, band-gap reference, ...


Manufacturing details:


- XFAB SOI 1um
- ASIC die size ~ 9x9 mm
- Multi-Level Mask Process
- 6 Wafers (size: 6 inches)
- ~150 ASICs per Wafer

Tight Schedule limited to 2 design + foundry iterations, resulting in:

- Some performances not fully met
- Parametric dependencies with the T & Vcc
- Poor ASIC to ASIC repetitiveness
- ESD sensitivity (design error)



Engineering Project Organization

The difficulties

Environmental Requirements & Mission Definition

- Withstanding the temperature cycles
 - -135°C to +70°C for qualification of exposed elements
- Low-pressure CO2 environment
- Surviving one launch & one entry, descent and landing
 - Vibration and Pyroshock levels very high (e.g. 3000 g's for UVS)
- Vehicle vibrations: (traverse loads, microphonics...)
- The Martian Dust! (and the Wind, ...)
- Radiation (neutrons)
 - Use of a RTG + DAN instrument, then needing to test for high neutron fluence
- Contamination control & Planetary protection
 - +110°C or +125°C for sterilization
 - Need to manufacture in ISO-3 clean room
- 2 years primary mission life:
 - x 3 mission validation (PQV)
 - Need of test around 2000 cycles with thermal gradient > 145°C
 - 10.000 cycles tested for mixed ASIC

ASIC constraints

Mixed ASIC design ...

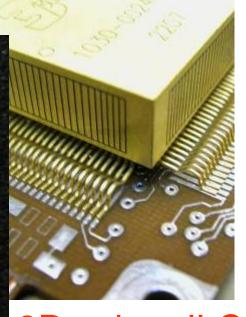
- Need for use a commercial ASIC process
- Lack of libraries & data for designing below -55°C

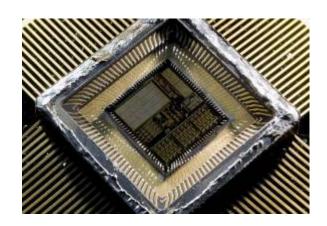
& development

- Target to validate it for operating at lower temperatures (-75°C achieved)
- Heating system to ensure warming-up before operation (to -55°C)
- Performance problems due mainly to parasitic layout effects
- Need to validate it to 10.000 thermal cycles. ASIC on/off cycling 24 times/sol.

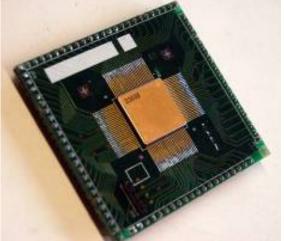
Others aspects:

- ITAR restrictions: NASA can talk about requirements, interfaces and problems, but not solutions hints!
- Lack of Phase-A for REMS.
- Instrument mass < 1.3 Kg</p>
- Available energy very limited: 20-30 Watt-day


Validation and testing program

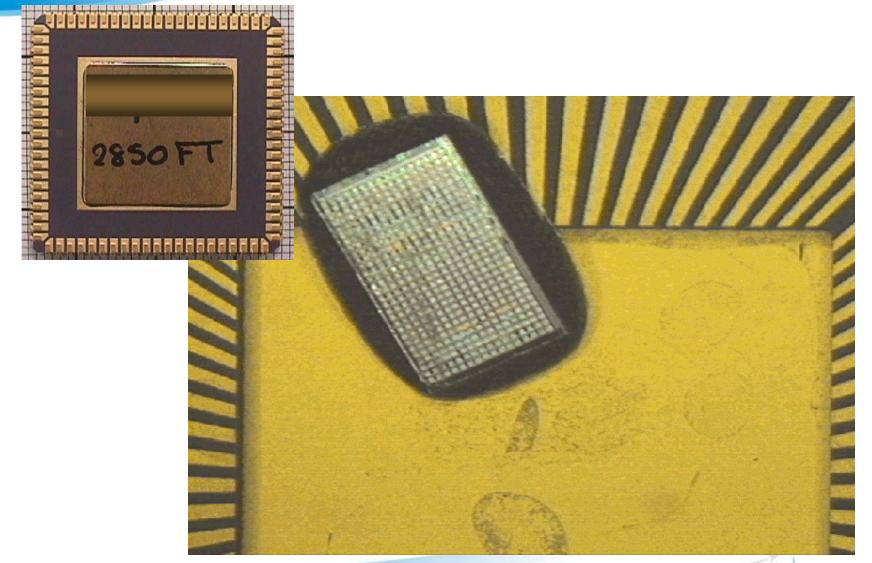

- Program run at 2 levels:
 - 1. Technology validation program
 - a. Pre-tests
 - Concept/Sensors validation (functional / environmental)
 - Package Qualification and Verification (PQV)
 - Screening and Qualification

 a. Screening and characterization in Temperature
 b. Qualification and acceptance of REMS elements
- Ready to fail. Use of several solutions in parallel

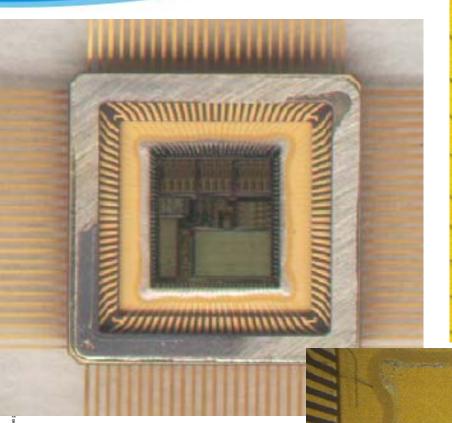


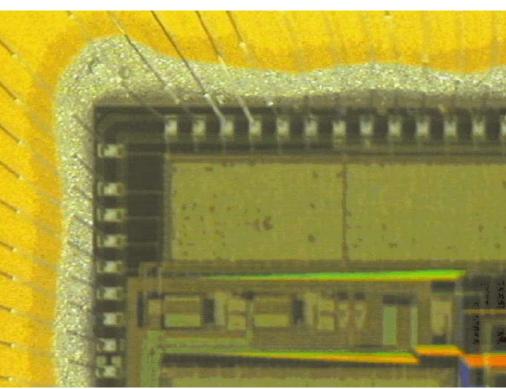
3D cube, JLCC84, 2 x CQFP100, ...

Several processes in Europe and US...

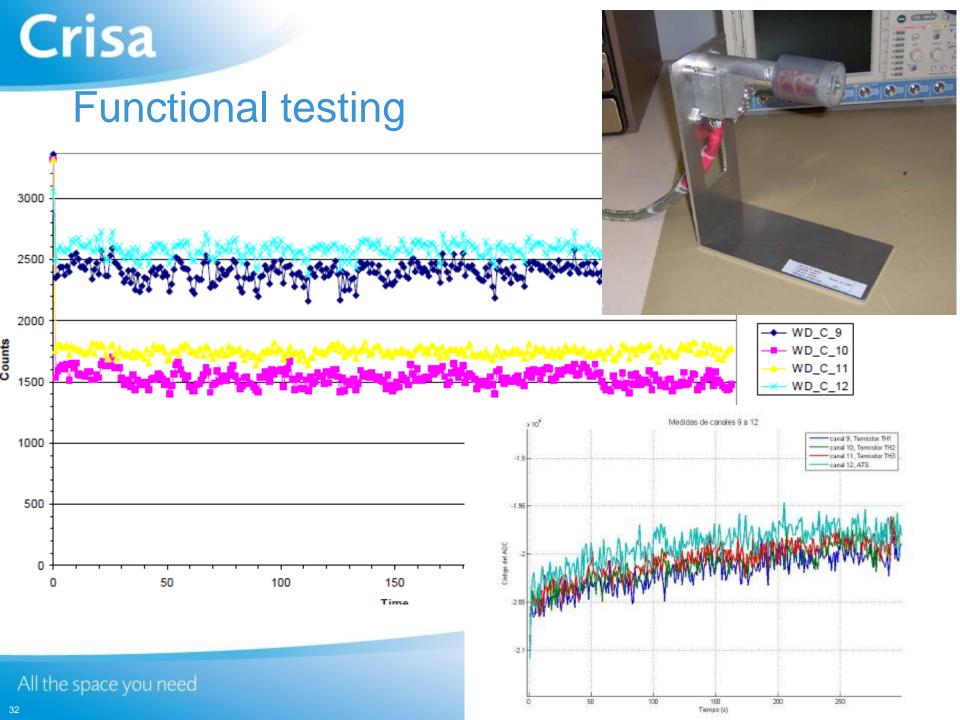

Technology Validation Program (I)

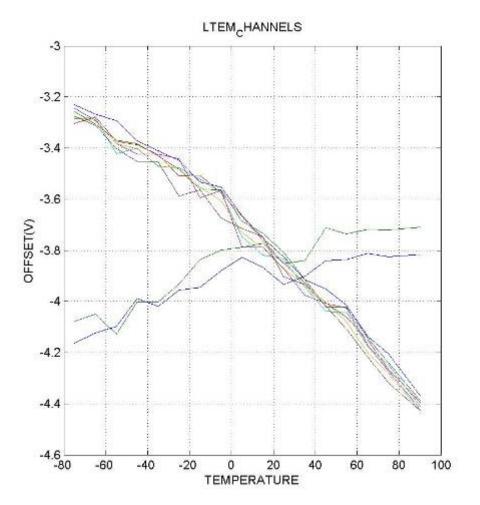
a) Pre-tests

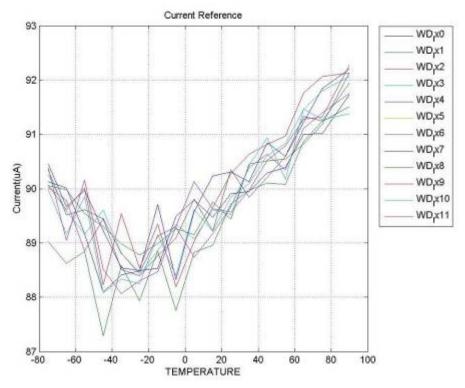

- Aims to get early feedback on suitability of materials, processes
 & EEE parts for 'exposed' elements.
- Based on test samples submitted to TVT (few cycles), pyroshock and vibration
 - -135°C to +110°C; 4000g's shock
- Test and Post analysis of the components



Crisa 4219 **DLISH** EP 02 EPOJ EADS All the space you need




Technology Validation Program (II)


- b) Concept/Sensors Validation
 - WS Proto testing
 - At transducer level
 - Functional Testing
 - Tests in low-pressure/low temperature CO2 & with dust

Testing with EM/EQMs

Crisa Example of sensors validation. WS Testing

(CO2, low temp, low pressure)

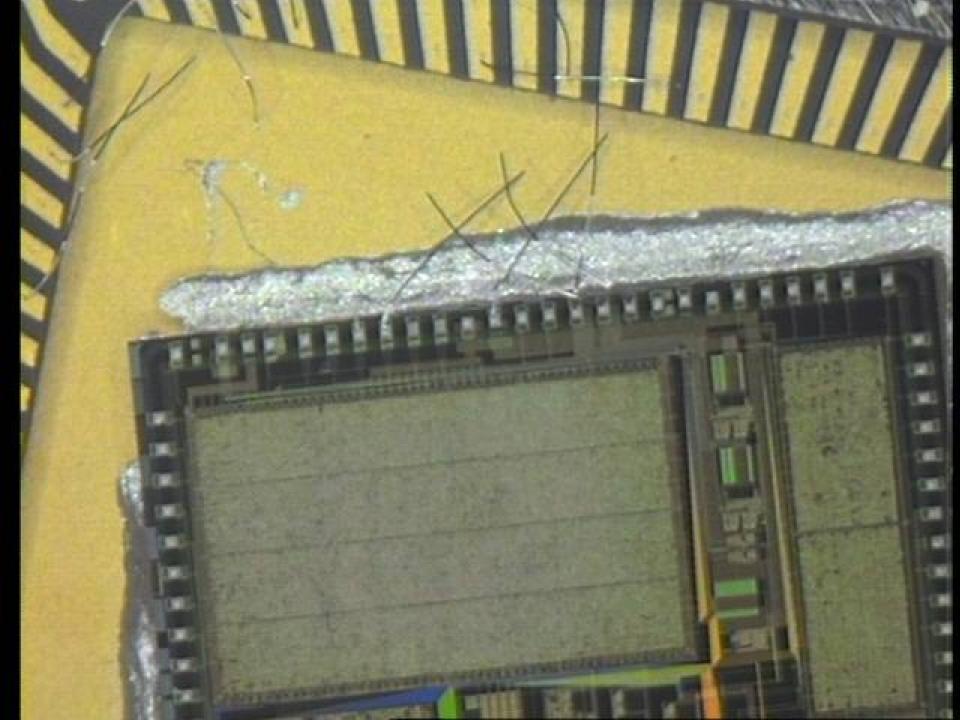
Technology Validation Program (III)

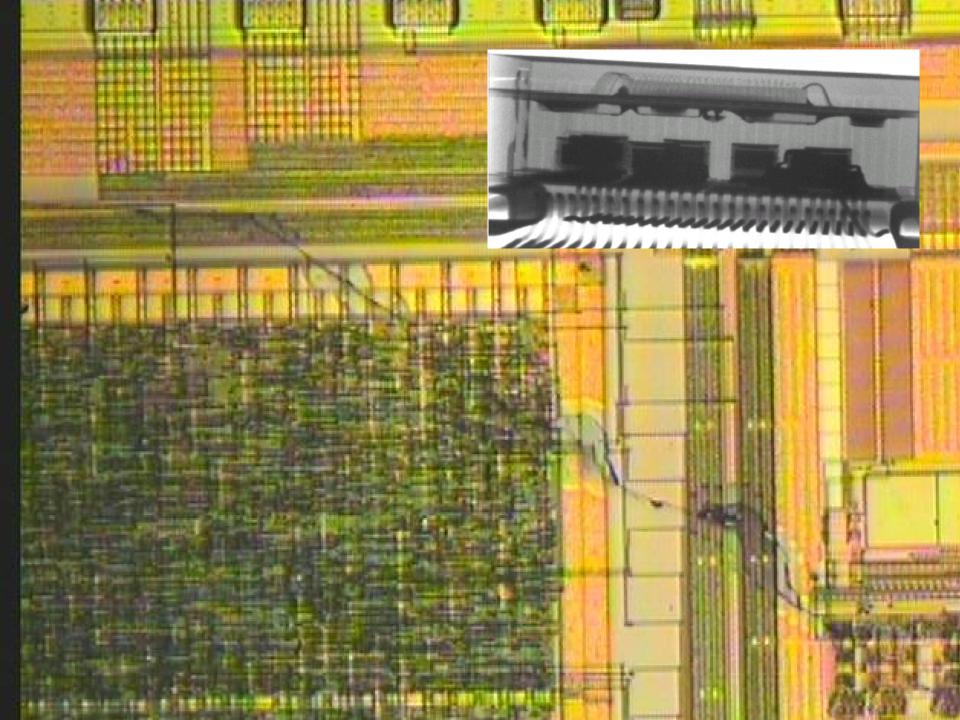
c) Package Qualification and Verification

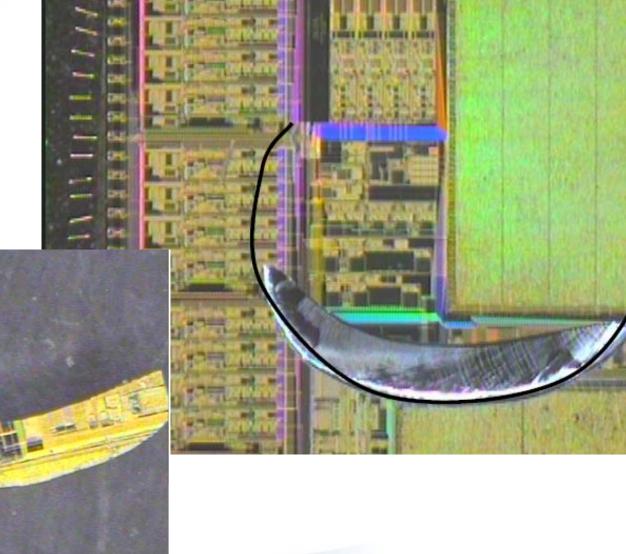
- Validation of all assemblies and mounting methods for 3 times the Primary Mission
- ASIC system, includes warming up heating to reach operation temperatures before switching it ON.
- Nominal operation: once per hour, every day during 3 times the primary mission (2 years)= 52560 times!

→ Need for extra-fatigue testing!

- 2680 summer cycles & 8040 winter cycles.
- From -135°C to -55°C, winter case.

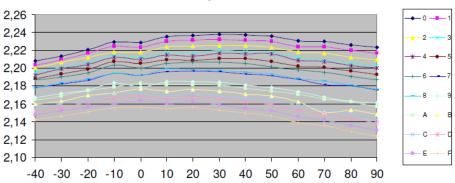



PQV tests for Booms

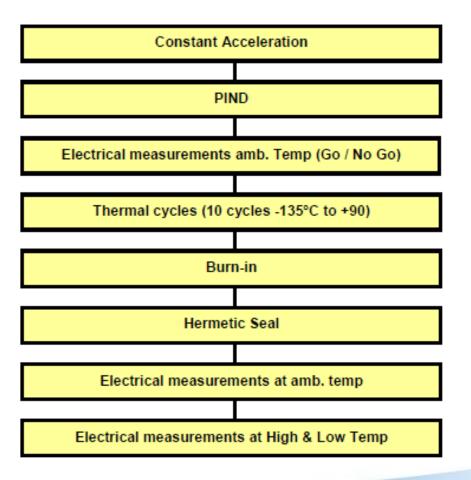


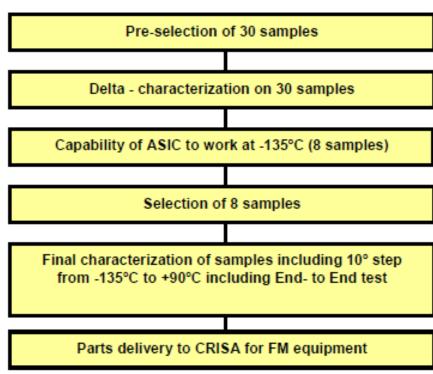
- To validate all assemblies for x3 times the primary mission
- 2000 cycles approx:
 600 winter cycles: -130°C to +15°C
 1400 summer cycles: -105°C to +40°C.

ASIC Screening and Qualification


- Test at ASIC level
- ASIC screening tests
- Detailed characterization of selected pieces in T
- Qualification tests
- FM Board level characterization

ASIC level testing




Bandgap vs. Code

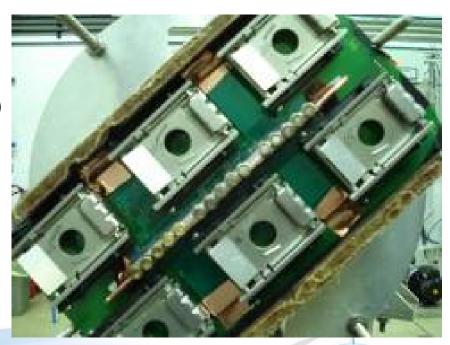
	ASIC	2L_TEMP							IR_Cond			WD REF OUT	WD Currents									WD Total Counter	Random Registers Write						
		R0	R1	R2	R3	R4	R5	R6	Air Temp	R_Therm Cal	IR0	IR1	IR2	IR3	CH2	СНО	CH1	CHZ	СНЗ	CH4	CH5	CH6	CH7	СНВ	СН9	CH10	CH11	All	All
D	1004	οк	ОK	ок	OK	OK	ок	ок	DΚ	OK	ок	ок	ОК	ОK	OK	OK	OK	ок	ΟK	ок	OK	ок	ок	OK	ОК	ОK	OK	οκ	ОK
D	1006	ΚO	ΚĐ	ко	ΚO	ΚO	ко	ΚO	kЮ	KO	КO	ок	ко	ок	ко	ΚĐ	ΚĐ	КО	ко	KO	ΚĐ	ΚO	ко	ко	ко	KO	KO	OK	ко
D	2006	ок	αк	ок	OΚ	OΚ	ок	ок	DΚ	OK	ок	ок	ОК	oĸ	ok	OΚ	OΚ	ок	οĸ	ок	OΚ	ок	ок	οĸ	ОК	oк	OK	ок	ок
D	1003	ок	OK	ок	OK	OK	ок	oĸ	OK	OK	ок	ок	0K	OK	OK	OK	OK	ок	ΟK	ок	OK	ок	ОК	OK	ΟK	oĸ	OK	OK	0K
D	1001	ок	ОK	ок	OΚ	ОK	ок	ок	DΚ	ОК	ок	ок	ОК	ОK	0K	OK	OK	ок	DΚ	ок	OK	ок	ок	ΟK	ОК	ок	ок	οĸ	OΚ
D	2004	ок	ОK	ок	OK	OK	ок	ок	οĸ	OK	ок	ок	ОК	ОK	ok	OK	OK	ок	ΟK	ок	OK	ок	ок	OK	ОК	ОK	ok	ok	ok
D	2003	ок	aк	ок	OΚ	OΚ	ок	ок	DΚ	OΚ	ок	ок	ОК	ОK	OΚ	OΚ	OΚ	ок	DΚ	ок	ΟK	ок	ок	οĸ	ОК	ОK	οĸ	oĸ	ОK
D	1007	ΚO	ΚО	ко	ΚO	ΚО	ко	ΚO	КO	KO	KO.	ΚO	ко	K0	ко	ОK	OK	ок	ΟK	ок	OK	ок	ок	OK	ко	OK	OK	OK	ok

ASIC screening & delta characterization

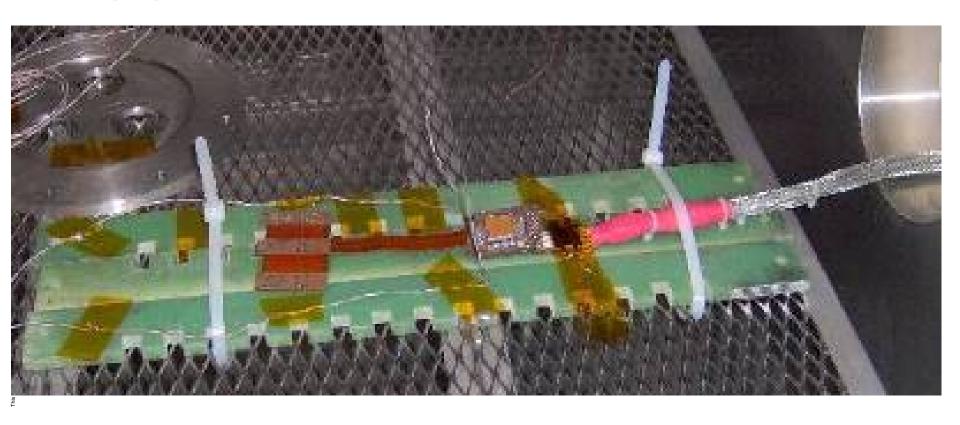
SN	Wafer		GO/NO	BI Batch	BI	Pre-	Delta	Selected	Final	Delivered
	Area	COC	GO		Results	selected	screening	(8+2	Characterization	for FM
		REF.	TEST			(30	results	samples)	Test Results	equipmentt
444	241/	00000	DAGO	DATOLLA	EAH	samples)				
141	3AY	60062	PASS	BATCH 1	FAIL					
142	3AY	60062	PASS	BATCH 1	FAIL					
143	3AY	60062	PASS	BATCH 1	FAIL					
144	3AY	60062	FAIL							
145	3AY	60062	PASS	BATCH 1	FAIL					
146	3AY	60062	PASS	BATCH 1	FAIL					
147	3AY	60062	PASS	BATCH 1	FAIL					
148	3AY	60062	PASS	BATCH 1	FAIL					
149	3AY	60062	PASS	BATCH 1	FAIL					
150	3AY	60062	PASS	BATCH 1	FAIL					
151	3BY	60063	PASS	BATCH 1	PASS	Υ	PASS			
152	3BY	60063	PASS	BATCH 1	PASS	Υ	FAIL			
153	3BY	60063	FAIL							
154	3AY	60063	PASS	BATCH 1	FAIL					
155	3BY	60063	PASS	BATCH 1	PASS					
156	3BY	60063	PASS	BATCH 1	FAIL					
157	3BY	60063	PASS	BATCH 1	FAIL					
158	3BY	60063	PASS	BATCH 1	PASS	Y	PASS	Y	PASS	Y
159	3BY	60063	FAIL							
160	3BY	60063	FAIL							
161	3BY	60063	PASS	BATCH 1	PASS	Y	PASS			
162	3BY	60063	PASS	BATCH 1	PASS					
163	3BY	60063	PASS	BATCH 1	FAIL					
164	3BY	60063	PASS	BATCH 1	FAIL					
165	3BY	60063	PASS	BATCH 1	PASS	Υ	PASS			
166	3BY	60063	PASS	BATCH 1	PASS					
167	3BY	60063	PASS	BATCH 1	FAIL					
168	3BY	60063	PASS	BATCH 1	FAIL					

POWER SUPPLY	PARAMETER (CC (V) (CC (mA)	LIMIT LOW 4,90	LIMIT HIGH	TEMP= 25°C	TEMP= 90°C	TEMP= -55°C	TEMP= 25°C	TEMP= 90°C	TEMP550
IC VI VI POWER SUPPLY VI	CC (mA)	4,90	- 40						
POWER SUPPLY VI			5,10	4,980	4,980	4,980	PASS	PASS	PASS
POWER SUPPLY V		85,00	95,00	90,670	89,390	91,080	PASS	PASS	PASS
POWER SUPPLY V	CM (V)	2,30	2,70	2,750	2,700	2,790	FAIL	PASS	FAIL
	CM (V) max (16 bandgap register cond)	2,30	2,70	2,890	2,860	2,900	FAIL	FAIL	FAIL
AND REFERENCE V	CM (V) min (16 bandgap register cond)	2,30	2,70	2,750	2,700	2,790	FAIL	PASS	FAIL
	'L (V)	0,90	1,10	1,130	1,110	1,140	FAIL	FAIL	FAIL
VOLTAGE AND VI	'H (V)	3,80	4,20	4,400	4,320	4,480	FAIL	FAIL	FAIL
CURRENT Ire	ef (µA) after Vref Adjusted	97,5	102,5	100,0	98,2	102,0	PASS	PASS	PASS
N	Iominal Bias Current at MAX VOLTAGE (mA)	0,98	1,02	1,015	1,015	1,013	PASS	PASS	PASS
	Iominal Bias Current at MIN VOLTAGE (mA)	0,98	1,02	1,012	1,018	1,025	PASS	PASS	FAIL
G	GAIN (Common mode)	1,50	1,70	1,670	1,666	1,743	PASS	PASS	FAIL
	T Analog Ground MAX VOLTAGE 1.33 Kohm (V)	0,90	1,10	0,716	0,688	0,760	FAIL	FAIL	FAIL
	T Analog Ground MIN VOLTAGE 470 ohm (V)	0,90	1,10	0,713	0,684	0,758	FAIL	FAIL	FAIL
	MP RMS Noise Contribution (mVrms)	0,00	3,00	0,980	0,919	0,960	PASS	PASS	PASS
	OFFSET MAX VOLTAGE 1.33 KOHM (mV)	0,00	2,00	4,149	4,791	3,104	FAIL	FAIL	FAIL
	OFFSET MIN VOLTAGE 470 OHM (mV)	0.00	2,00	1.118	1,326	0,755	PASS	PASS	PASS
	Iominal Bias Current at MAX VOLTAGE (mA)	0,98	1,02	1,016	1,018	1,015	PASS	PASS	PASS
	Iominal Bias Current at MIN VOLTAGE (mA)	0,98	1,02	1,022	1,028	1,031	FAIL	FAIL	FAIL
	GAIN (Common mode)	1,50	1,70	1,727	1,658	1,747	FAIL	PASS	FAIL
	T Analog Ground MAX VOLTAGE 1.33 Kohm (V)	0,90	1,10	0,680	0,646	0,734	FAIL	FAIL	FAIL
	T Analog Ground MIN VOLTAGE 470 ohm (V)	0,90	1,10	0,677	0,640	0,732	FAIL	FAIL	FAIL
	MP RMS Noise Contribution (mVrms)	0.00	3,00	1,151	0,908	1,101	PASS	PASS	PASS
	DFFSET MAX VOLTAGE 1.33 KOHM (mV)	0,00	2,00	1,152	1,354	1,452	PASS	PASS	PASS
	OFFSET MIN VOLTAGE 470 OHM (mV)	0.00	2,00	1.097	1,333	0.772	PASS	PASS	PASS
	VD 1 COMPARATOR INPUT OFFSET (mV)	0.00	2,00	0,181	0,473	0,475	PASS	PASS	PASS
	VD 2 COMPARATOR INPUT OFFSET (mV)	0,00	2,00	0,210	0,431	3,009	PASS	PASS	FAIL
	VD 3 COMPARATOR INPUT OFFSET (mV)	0,00	2,00	0,131	0,638	0,583	PASS	PASS	PASS
	VD Heater 0 Inx-Imx Low Setting (mA)	4.40	4.70	4,615	4,528	4,696	PASS	PASS	PASS
	VD Heater 1 Inx-Imx Low Setting (mA)	4.40	4,70	4,547	4.460	4,618	PASS	PASS	PASS
	VD Heater 2 Inx-Imx Low Setting (mA)	4.40	4,70	4,495	4,397	4,571	PASS	FAIL	PASS
	VD Heater 3 Inx-Imx Low Setting (mA)	4,40	4,70	4,427	4,317	4,533	PASS	FAIL	PASS
	VD Heater 4 Inx-Imx Low Setting (mA)	4,40	4,70	4,427	4,404	4,632	PASS	PASS	PASS
	VD Heater 5 Inx-Imx Low Setting (mA)	4,40	4,70	4,439	4,404	4,632	PASS	FAIL	PASS
	VD Heater 10 Inx-Imx Low Setting (mA)	4,40	4,70	4,439	4,344	4,534	PASS	PASS	FAIL
	VD Heater 11 Inx-Imx High Setting (mA)	4,70	4,90	4,781	4,752	4,986	PASS	FAIL	PASS
	VD Ix 0 Current x00 code (µA)	87,50	95,00	90,1	,	,	PASS	PASS	PASS
					88,6	91,2			
	VD lx 1 Current x00 code (µA)	87,50	95,00	89,6	88,2	91,0	PASS	PASS	PASS
	VD lx 9 Current x00 code (µA)	87,50	95,00	89,9	88,8	92,7	PASS	PASS PASS	PASS
WD I00	VD Ix 10 Current x00 code (µA)	87,50	95,00	90,5	88,9	92,5	PASS		PASS
	VD Ix 11 Current x00 code (μA)	87,50	95,00	89,9	88,4	92,0	PASS	PASS	PASS
	R CHAIN 3 INPUT OFFSET (mV)	0,00	2,00	0,070	0,340	0,390	PASS	PASS	PASS
	R CHAIN 3 Amp RMS noise (mV)	0,00	3,00	1,110	0,870	1,130	PASS	PASS	PASS
	R CHAIN 3 GAIN x64	62,72	65,28	64,560	62,650	63,830	PASS	FAIL	PASS
IR_CHAIN IR	R CHAIN 3 GAIN x256	243,20	268,80	253,700	253,000	259,000	PASS	PASS	PASS

•Qualification programme

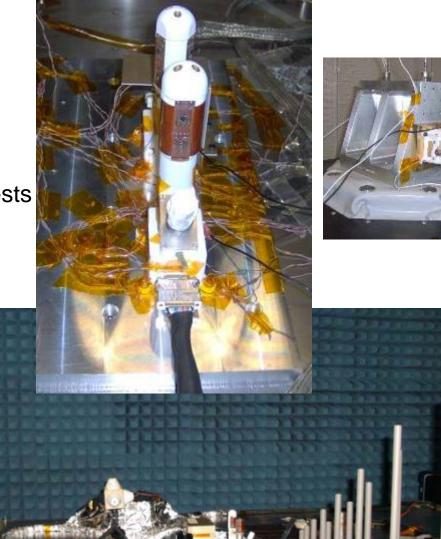

- At component level, but also ...
- At assembly level
- At REMS element level
- At REMS system level

Mixed ASIC qualification


- Includes screening, characterization and formal qualification incl.
 - Mechanical verification
 - Long-term reliability tests
 - Package verification
 - Radiation tests (dose, SEE, ...)
- Plus others REMS level qualifications:
 - REMS element level qual.
 - System level

ASIC radiation test board

ASIC board level characterization in T



Qualification Tests

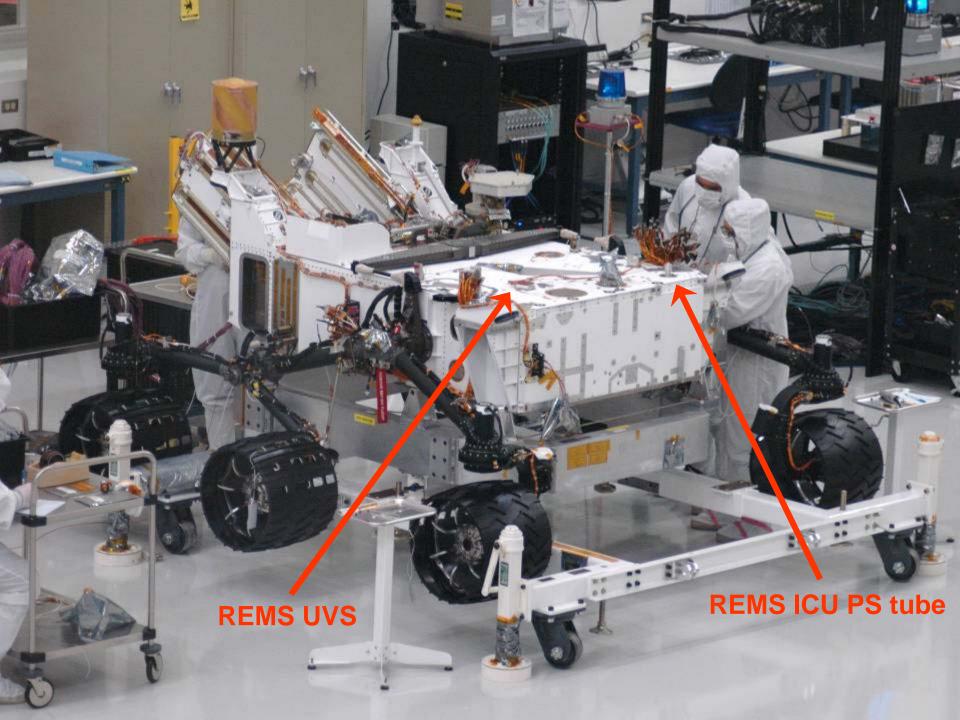
- Covering the usual ...
 - Electrical and functional tests
 - Thermal Vacuum Tests
 - Quasi-static loads and Vibration tests
 - Pyroshock
 - EMC tests

You are here

Conclusions

Mars sunrise

Photo: Nasa/JPL (Spirit)



Conclusions

- We successfully developed and qualified a Mixed ASIC intended for Mars operation
 - The mission demands were very constraining in terms of performances, operation temperatures and mission life thermal cycling requirements.
 - It was a difficult, costly and long process. We followed a 'trial and error' approach; needed two design iterations and tried several manufacturing processes in parallel.
 - There was not data/heritage to design ASICs for operation below -55°C, but it was possible to succeed.
 - We used a commercial process and custom packaging... but with a comprehensive qualification.
 - It was needed a thoroughly performance-based screening and samples characterization.
- The technology is available for Crisa reuse in other Mars missions.

Status and acknowledge

- The project is now in the final development phase with the REMS FM being integrated in the Rover.
- The project is led by the investigators of the Centre of Astrobiology (CAB INTA-CSIC) in Madrid who coordinate a network of Coinvestigators and Spanish collaborators (University of Alcalá de Henares, Polytechnical univ. of Cataluña and of the own Astrobiology Centre) and foreigners (University of Michigan, Ames Research Center & Caltech in the USA, and the Finnish Meteorological Institute).
- The project has been funded by the Spanish "Centro para el Desarrollo Tecnológico e Industrial" (CDTI) and the National Plan for I+D+I, both depending of the Ministry of Science and Innovation.
- I want to express my gratitude to the many people and collaborating institutions who contributed their time, energy and expertise to make REMS a reality.

Thank you for your attention!

Contact info:

Crisa

Calle Torres Quevedo 9 (Parque Tecnológico de Madrid)

28760 Tres Cantos (Madrid)

Telephone: +34 91 8068600

Telefax: +34 91 8060235

Tech. Direction: Jose Moreno (jmoreno@crisa.es)

General information: info@crisa.es

