

D

Earth Space & Future

Kayser-Threde GmbH

Δ

Space Industrial Applications

AMICSA 2008

R

First radiation test results of the SiGe Technology SGB25V of IHP

н

R

September 2nd, 2008 – 14:15

Kayser-Threde GmbH, Munich / Heinz-Volker Heyer

Contents

- Overview
- Test samples
- Test boards
- Test equipment
- TID verification
- SEE verification
- Displacement damage verification
- Conclusion

Overview radiation test

- Baseline: Characterization of the IHP SiGe SGB25VD BiCMOS process regarding its sensitivity to a radiation environment.
- Goal: Derive inputs for the design of the local oscillator and future applications.
- Test program:
 - Total dose tests (7 samples biased, 3 samples unbiased, 1 reference sample)
 - High dose rate
 - Low dose rate
 - SEE tests (2 samples, 1 reference sample)
 - Single Event Effects
 - Latch-up
 - Displacement damage tests (4 samples, 1 reference sample)
 - Degradation

Overview SGB25V technology

S

E

R

Y

K

A

Parameter	High Standard Performance		High Voltage				
Bipolar Section							
A _E	$0.42 \text{ x } 0.84 \ \mu \text{m}^2$						
Peak f _{max}	95 GHz	90 GHz	70 GHz				
Peak f _T	75 GHz	45 GHz	25 GHz				
BV _{CE0}	2.4 V	4 V	7 V				
BV _{CB0}	>7 V	>15 V	>20 V				
V _A	>50 V	>80 V	>100 V				
ß		190					

Parameter	SGB25VD			
CMOS Section (0.25 µm)				
Core Supply Voltage	2.5 V			
nMOS V _{th}	0.6 V			
nMOS I _{Dsat}	570 µA/µm			
nMOS I _{off}	3 pA/µm			
pMOS V _{th}	-0.51 V			
pMOS I _{Dsat}	290 µA/µm			
pMOS I _{off}	3 pA/μm			

Н

т

R

E

D

E

4 02/09/2008 AMICSA 2008 - First radiation test results of the SiGe Technology SGB25V of IHP

Test samples (1)

- Each chip with test structures included:
 - 3 bipolar NPN transistors of type npnVh (standard)
 - 3 bipolar NPN transistors of type npnVp (increased V_{CE} breakthrough voltage)
 - 3 bipolar NPN transistors of type npnVs (speed optimized)
 - 1 NMOS transistor 25 x 0.24µm² (W x L), 1 NMOS transistor 25 x 25µm² (W x L)
 >> common gate and common source
 - 1 PMOS transistor 25 x 0.24µm² (W x L), 1 PMOS transistor 25 x 25µm² (W x L)
 >> common gate and common source
 - 1 CMOS ring oscillator (CRO) with 100 inverters plus 1 NAND logic (transistors: 0.24 x 0.48µm²)
 - 1 bipolar ring oscillator (BRO) with 53 CML circuits (transistors: type npnVp)
 - 1 CMOS shift register (SR) with 10 blocks of 100 D-FF plus 1 inverter (transistors: 0.24 x 0.48µm² and 0.24 x 1.1µm²)
- Each structure is protected by guard rings which are all connected to power GND.

Test board TID (1)

Y

Δ

Κ

 Up to 8 samples could be installed and tested at the same time.

R

- Test sockets were used to take up the test samples.
- Unbiased samples were placed on conductive foam in between the two rows of biased ones.
- The distance between biased and unbiased samples to the board was equalized.
- SMB connectors were used to get access to the outputs of the CMOS ring oscillators and shift registers.
- The area to be irradiated was about 15 x 10 cm².

н

R

Test board with samples

E

Test board TID (2)

- Charged particle equilibrium was ensured by an aluminum plate of 2 mm in front of the samples.
- The distance to the samples was minimized but determined by the RF connectors.

Test board with cover

Test board SEE

Δ

 The board was designed to fit to a sample board holder as defined in ECSS 25100.

R

- Test sockets were used to take up 2 test samples.
- For online measurement of output signals, level shifter and line driver were installed close to shift registers and oscillators.
- Only one sample was irradiated, biased, and verified at a time.
- Transistors were not biased during irradiation.
- For verification of all structures after irradiation the TID sample board and unit tester were used.

R

н

Test board

Test board DD

- A dedicated board was designed to take up 4 passive samples on test sockets.
- The area was limited to 5 x 5cm² to ensure a uniform proton density across the samples.

Test board

Test equipment

Unit tester:

- Laptop
 - Control, data storage
- Measurement equipment
 - Biasing, data acquisition
- Signal conditioning electronics
 - Filters, buffers
- Interfaces:
 - Laptop rack: LAN (30m)
 - Rack signal conditioner: about 2.5m
 - Signal conditioner sample board: about 1m
- Monitoring of measurements via VPN tool

TID verification (1)

Measured parameters

- Shift registers: time delay, power supply current
- Ring oscillators: frequency, power supply current
- Transistors: see tables below

Verification of NPN-Transistors				v	erification of P-/NMO	S-Transistors			
Modes:	Basic	"Gummel - 0V"	"Gummel - 1V"	"Break Through"	Modes:	Basic	"Threshold"	"Saturation"	"Leakage"
U _{CE}	1V	0V	1 V	open	U _{DS}	-0,1V / 0,1V	-0,1V / 0,1V	-2,5V / +2,5V	-2,5V / +2,5V
U _{BE}	0.7V	01V in steps of 0,1V	01V in steps of 0,1V	05V in steps of 0,1V	U _{GS}	-2V / 2V	02,5 / +2,5V in steps of 0,25V	02,5 / +2,5V in steps of 0,25V	0V
Measured Parameters		$U_{CE},U_{BE},I_{C},I_{B}$	U _{CE} , U _{BE} , I _C , I _B	U _{CE} , U _{BE} , I _C , I _B	Measured Parameters		U _{GS} , U _{DS} , I _D	U_{GS}, U_{DS}, I_D	U _{GS} , U _{DS} , I _D
Plots		$I_{\rm C}$ and $I_{\rm B}$ over $U_{\rm BE}$ @ different TID levels	$I_{\rm C}$ and $I_{\rm B}$ over $U_{\rm BE}$ @ different TID levels	$I_{B} \mbox{ over } U_{BE} \mbox{ @ different } TID \mbox{ levels }$	Plots		I_D over U_{GS} @ different TID levels	I_D over U_{GS} @ different TID levels	I_G @ different TID levels

Y

• Test facility: GSF, Neuherberg/München

Test program:

Δ

Κ

- High dose rate 200krad @ 2rad/s
- 24h annealing @ ambient temperature

R

- 168h annealing @ 100°C
- Low dose rate 20krad @ 0.02rad/s
- 24h annealing @ ambient temperature
- 168h annealing @ ambient temperature
- Summary of test results:
 - All structures passed the irradiation tests.
 - No distinct ELDR effects were seen.
 - Only low drifts were detected on transistor elements as well as on complex structures.

R

н

Test set-up

TID verification (3)

30/20 Early Structures: LDR biased -- NPN3 -- IC 2 -- Sample 44 -- *Breakthrough* (open collector) -- 2007-02-22

Low Dose Rate Tests (biased) Plots of NPN-T3 transistors with no degradation after annealing (yellow and blue curves)

30/20 Early Structures: HDR unbiased -- NPN1 -- IC 1 -- Sample 9 -- *Breakthrough* (open collector) -- 2007-02-08

High Dose rate tests (unbiased) Plots of NPN-T1Transistors

Y

A

S

Е

Κ

R

н

R

E

D

SEE verification (1)

- Test facility: RADEF, Jyvaskyla/Finland
- Test program:

Κ

Determination of the cross-section in the LET range of 1.8 to 85MeV/mg/cm²

R

- Verification of latch-up sensitivity at elevated temperature (about 60°C)
- Test of dynamic and static mode of shift registers
- Check for transients at oscillator outputs.
- Summary of test results:
 - All structures passed the irradiation tests
 - The upset threshold is rather low. Upsets could already be detected at 3.6MeV/mg/cm²
 - No latch-up occurred up to 85MeV/mg/cm²
 - Error rates of static and dynamic modes correspond
 - No transients were detected on oscillator output signals with the given set-up (limited resolution).

R

н

Test facility

E

R

K

A

Y

S

			ТОР	Sample "O"			
Particles	LET	Angle	Fluence	Dose	Upsets	Cross Section	Remarks
Ν	1,8	0	1,00E+07	288,396	1	1,00E-10	
Ne	3,6	0	1,00E+07	576,792	11	1,10E-09	
Ne	5	45	1,00E+07	801,1	99	9,90E-09	
Ar	10,1	0	5,00E+06	809,111	156	3,12E-08	
Ar	14,1	45	5,00E+06	1129,551	203	4,06E-08	
Fe	18	0	2,00E+06	576,792	67	3,35E-08	
Fe	18	0	1,00E+07	2883,96	422	4,22E-08	Control Measurement
Fe mean	18					3,79E-08	
Kr	32,1	0	1,00E+07	5143,062	648	6,48E-08	
Kr	45	45	1,00E+06	720,99	108	1,08E-07	
Kr	45	45	1,00E+06	720,99	122	1,22E-07	Control Measurement
Kr mean	45					1,15E-07	
Xe	60	60	1,10E+07	10574,52	1338	1,22E-07	
Xe	85	45	1,00E+07	13618,7	1804	1,80E-07	
TID	krad			37843,964			

Н

т

R

E

D

E

Displacement damage verification (1)

S

Y

- Test facility: RADEF, Jyvaskyla/Finland
- Test program:

Α

К

Determination of degradation after 1E+11, 2E+11,
 5E+11 and 1E+12 protons

R

- Application of protons of 30MeV
- Applied flux was about 1E+8 particles/cm²/s.
- Summary of test results:
 - All structures passed the irradiation tests
 - No distinct degradation effects could be identified.

н

R

Test setup

Displacement damage verification (2)

30/20 Early Structures: Heavy Ions -- NPN1 -- DD, OSC off -- *Breakthrough* (open collector) -- 2007-03-19

S

E

Y

R

K

A

Plots of NPN-T1transistors (Breakthrough measurements)

Plots of NPN-T2 transistors (Breakthrough measurements)

Sample 0.1E+12 post Sample 0.2E+12 post Sample 0.5E+12 post Δ. 3 -Sample 1.0E+12 post -Sample H-Ref post 2.5 2 Ā Ib/ 1.5 1 0.5 0 -0.5 0.5 0.7 0.8 1 1.1 1.2 1.3 0.4 0.6 0.9 Ube actual / V

н

4

3.5

Sample 0.1E+12 pre

Sample 0.2E+12 pre

Sample 0.5E+12 pre

Sample 1.0E+12 pre

Sample H-Ref pre

30/20 Early Structures: Heavy Ions -- NPN2 -- DD, OSC off -- *Breakthrough* (open collector) -- 2007-03-19

R

E

D

Displacement damage verification (3)

S

E

Y

K

A

R

(Threshold measurements)

H

R

E

D

Conclusion

■ TID

- The technology only shows minor degradation up to the maximum tested level of 200krad.
- No distinct ELDR effects were detected.

SEE

- No latch-up occurred up to the tested value of 85MeV/mg/cm².
- The technology is sensitive to bit-flips. The SEU threshold is below 3.6MeV/mg/cm².

■ DD

- The technology only shows negligible degradation effects up to the tested value of 1E+12 protons/ cm².

